Dissertations / Theses on the topic 'Protein Sequence Analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Protein Sequence Analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Abhiman, Saraswathi. "Prediction of function shift in protein families /." Stockholm, 2006. http://diss.kib.ki.se/2006/91-7140-869-X/.
Full textParsons, Jeremy David. "Computer analysis of molecular sequences." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282922.
Full textBoscott, Paul Edmond. "Sequence analysis in protein structure prediction." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386870.
Full textHollich, Volker. "Orthology and protein domain architecture evolution /." Stockholm, 2006. http://diss.kib.ki.se/2006/91-7140-783-9/.
Full textLassmann, Timo. "Algorithms for building and evaluating multiple sequence alignments /." Stockholm, 2006. http://diss.kib.ki.se/2006/91-7140-887-8/.
Full textTuason, Maria Clarita. "Functional analysis of Proteolipid Protein regulatory sequence." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=101805.
Full textRussell, Robert Bruce. "Computer analysis of protein sequence and structure." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358736.
Full textHamby, Stephen Edward. "Data mining techniques for protein sequence analysis." Thesis, University of Nottingham, 2010. http://eprints.nottingham.ac.uk/11498/.
Full textMaccallum, Robert Matthew. "Computational analysis of protein sequence and structure." Thesis, University College London (University of London), 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285202.
Full textKatti, M. V. "Analysis of simple sequence repeats in genome and protein sequences and development of computational tools for comparative promoter sequence analysis." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2001. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2323.
Full textJonsson, Andreas. "Mass spectrometry in protein structure analysis /." Stockholm, 2001. http://diss.kib.ki.se/2001/91-628-4716-3/.
Full textParry-Smith, David John. "Algorithms and data structures for protein sequence analysis." Thesis, University of Leeds, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.277404.
Full textChivian, Dylan Casey. "Application of information from homologous proteins for the prediction of protein structure /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/9264.
Full textGiorgini, Flaviano. "Functional analysis of the murine sequence-specific RNA binding protein MSY4 /." Thesis, Connect to this title online; UW restricted, 2002. http://hdl.handle.net/1773/10293.
Full textGanapathy, Ashwin. "Computational analysis of protein identification using peptide mass fingerprinting approach /." free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p1426056.
Full textOppermann, Madalina. "Chemical and mass spectrometrical methods in protein analysis /." Stockholm, 2000. http://diss.kib.ki.se/2000/91-628-4542-x/.
Full textGilbert, Richard James. "Novel programs for protein sequence analysis and structure prediction." Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305431.
Full textSonnhammer, Erik Leonard Laage. "Classification of protein domain families for genomic sequence analysis." Thesis, Open University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336799.
Full textTångrot, Jeanette. "Structural Information and Hidden Markov Models for Biological Sequence Analysis." Doctoral thesis, Umeå universitet, Institutionen för datavetenskap, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1629.
Full textBioinformatik är ett område där datavetenskapliga och statistiska metoder används för att analysera och strukturera biologiska data. Ett viktigt område inom bioinformatiken försöker förutsäga vilken tredimensionell struktur och funktion ett protein har, utifrån dess aminosyrasekvens och/eller likheter med andra, redan karaktäriserade, proteiner. Det är känt att två proteiner med likande aminosyrasekvenser också har liknande tredimensionella strukturer. Att två proteiner har liknande strukturer behöver dock inte betyda att deras sekvenser är lika, vilket kan göra det svårt att hitta strukturella likheter utifrån ett proteins aminosyrasekvens. Den här avhandlingen beskriver två metoder för att hitta likheter mellan proteiner, den ena med fokus på att bestämma vilken familj av proteindomäner, med känd 3D-struktur, en given sekvens tillhör, medan den andra försöker förutsäga ett proteins veckning, d.v.s. ge en grov bild av proteinets struktur. Båda metoderna använder s.k. dolda Markov modeller (hidden Markov models, HMMer), en statistisk metod som bland annat kan användas för att beskriva proteinfamiljer. Med hjälp en HMM kan man förutsäga om en viss proteinsekvens tillhör den familj modellen representerar. Båda metoderna använder också strukturinformation för att öka modellernas förmåga att känna igen besläktade sekvenser, men på olika sätt. Det mesta av arbetet i avhandlingen handlar om strukturellt förankrade HMMer (structure-anchored HMMs, saHMMer). För att bygga saHMMerna används strukturbaserade sekvensöverlagringar, vilka genereras utifrån hur proteindomänerna kan läggas på varandra i rymden, snarare än utifrån vilka aminosyror som ingår i deras sekvenser. I varje proteinfamilj används bara ett särskilt, representativt urval av domäner. Dessa är valda så att då sekvenserna jämförs parvis, finns det inget par inom familjen med högre sekvensidentitet än ca 20%. Detta urval görs för att få så stor spridning som möjligt på sekvenserna inom familjen. En programvaruserie har utvecklats för att välja ut representanter för varje familj och sedan bygga saHMMer baserade på dessa. Det visar sig att saHMMerna kan hitta rätt familj till en hög andel av de testade sekvenserna, med nästan inga fel. De är också bättre än den ofta använda metoden Pfam på att hitta rätt familj till helt nya proteinsekvenser. saHMMerna finns tillgängliga genom FISH-servern, vilken alla kan använda via Internet för att hitta vilken familj ett intressant protein kan tillhöra. Den andra metoden som presenteras i avhandlingen är sekundärstruktur-HMMer, ssHMMer, vilka är byggda från vanliga multipla sekvensöverlagringar, men också från information om vilka sekundärstrukturer proteinsekvenserna i familjen har. När en proteinsekvens jämförs med ssHMMen används en förutsägelse om sekundärstrukturen, och den beräknade sannolikheten att sekvensen tillhör familjen kommer att baseras både på sekvensen av aminosyror och på sekundärstrukturen. Vid en jämförelse visar det sig att HMMer baserade på flera sekvenser är bättre än sådana baserade på endast en sekvens, när det gäller att hitta rätt veckning för en proteinsekvens. HMMerna blir ännu bättre om man också tar hänsyn till sekundärstrukturen, både då den riktiga sekundärstrukturen används och då man använder en teoretiskt förutsagd.
Jeanette Hargbo.
Nilsson, Johan. "Membrane protein topology : prediction, experimental mapping and genome-wide analysis /." Stockholm, 2004. http://diss.kib.ki.se/2004/91-7349-963-3/.
Full textWang, Kai. "Novel computational methods for accurate quantitative and qualitative protein function prediction /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/11488.
Full textReinhardt, Astrid. "Neural network-based methods for large scale protein sequence analysis." Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624141.
Full textTubiana, Jérôme. "Restricted Boltzmann machines : from compositional representations to protein sequence analysis." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEE039/document.
Full textRestricted Boltzmann machines (RBM) are graphical models that learn jointly a probability distribution and a representation of data. Despite their simple architecture, they can learn very well complex data distributions such the handwritten digits data base MNIST. Moreover, they are empirically known to learn compositional representations of data, i.e. representations that effectively decompose configurations into their constitutive parts. However, not all variants of RBM perform equally well, and little theoretical arguments exist for these empirical observations. In the first part of this thesis, we ask how come such a simple model can learn such complex probability distributions and representations. By analyzing an ensemble of RBM with random weights using the replica method, we have characterised a compositional regime for RBM, and shown under which conditions (statistics of weights, choice of transfer function) it can and cannot arise. Both qualitative and quantitative predictions obtained with our theoretical analysis are in agreement with observations from RBM trained on real data. In a second part, we present an application of RBM to protein sequence analysis and design. Owe to their large size, it is very difficult to run physical simulations of proteins, and to predict their structure and function. It is however possible to infer information about a protein structure from the way its sequence varies across organisms. For instance, Boltzmann Machines can leverage correlations of mutations to predict spatial proximity of the sequence amino-acids. Here, we have shown on several synthetic and real protein families that provided a compositional regime is enforced, RBM can go beyond structure and extract extended motifs of coevolving amino-acids that reflect phylogenic, structural and functional constraints within proteins. Moreover, RBM can be used to design new protein sequences with putative functional properties by recombining these motifs at will. Lastly, we have designed new training algorithms and model parametrizations that significantly improve RBM generative performance, to the point where it can compete with state-of-the-art generative models such as Generative Adversarial Networks or Variational Autoencoders on medium-scale data
Gane, Paul J. "A sequence, structure and electrostatic analysis of the disulphide oxidoreductases." Thesis, University of Kent, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242888.
Full textRussell, Rodney S. "Novel RNA and protein sequences involved in dimerization and packaging of HIV-1 genomic RNA." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=85092.
Full textJohnstone, Pamela. "Cloning and sequence analysis of rubella virus nonstructural protein coding region." Thesis, University of Surrey, 1994. http://epubs.surrey.ac.uk/844437/.
Full textDi, Domenico Tomás. "Computational Analysis and Annotation of Proteome Data: Sequence, Structure, Function and Interactions." Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423805.
Full textCon l'avvento delle tecnologie di sequenziamento moderne, la quantità di dati biologici disponibili ha cominciato a sfidare la nostra capacità di elaborarli. È diventato quindi essenziale sviluppare nuovi strumenti e tecniche capaci di produrre dei risultati basati su grandi moli di informazioni. Questa tesi si concentra sullo sviluppo di tali strumenti computazionali e dei metodi per lo studio dei dati proteici. Viene dapprima presento il lavoro svolto per la comprensione delle proteine intrinsecamente disordinate. Attraverso lo sviluppo di nuovi predittori di disordine, siamo stati in grado di sfruttare le fonti di dati attualmente disponibili per annotare qualsiasi proteina avente sequenza nota. Memorizzando queste predizioni, insieme ai dati provenienti da altre fonti, è stato creato MobiDB. Questa risorsa fornisce una visione completa sulle annotazioni di disordine disponibili per una qualsiasi proteina di interesse presente nel database UniProt. Sulla base delle osservazioni ottenute da questo strumento, è stato quindi creato un workflow di analisi dei dati con l'obiettivo di approfondire la nostra comprensione delle proteine intrinsecamente disordinate. La seconda parte della tesi si concentra sulle proteine ripetute. Il metodo RAPHAEL è stato sviluppato per contribuire nell'identificazione di strutture proteiche ripetute all'interno dei file PDB. Le strutture selezionate da questo strumento sono state poi catalogate manualmente utilizzando uno schema formale di classificazione, e pubblicate quindi come parte del database RepeatsDB. Infine, viene descritto lo sviluppo di strumenti basati su grafi per l'analisi di dati proteici. RING consente all'utente di visualizzare e studiare la struttura di una proteina come una rete di nodi collegati da tra loro da proprietà fisico-chimiche. Il secondo metodo, PANADA, consente all'utente di creare reti di similarità di proteine e di valutare la trasferibilità delle annotazioni funzionali tra cluster diversi.
Wistrand, Markus. "Hidden Markov models for remote protein homology detection /." Stockholm, 2005. http://diss.kib.ki.se/2006/91-7140-598-4/.
Full textKosuk, Nicholas L. "Topological analysis of the F plasmid encoded TraD protein /." Thesis, Connect to this title online; UW restricted, 1997. http://hdl.handle.net/1773/10244.
Full textChen, Sharon S. "Peptide sequence assignments by probabilistic peptide profile matching to an annotated peptide database /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/8084.
Full textZhao, Zhiyu. "Robust and Efficient Algorithms for Protein 3-D Structure Alignment and Genome Sequence Comparison." ScholarWorks@UNO, 2008. http://scholarworks.uno.edu/td/851.
Full textHsieh, Jui-Cheng. "Structure-function analysis of the bacteriophage PRD1 DNA terminal protein: Nucleotide sequence, overexpression, and site-directed mutagenesis of the terminal protein gene." Diss., The University of Arizona, 1990. http://hdl.handle.net/10150/184974.
Full textDubey, Anshul. "Search and Analysis of the Sequence Space of a Protein Using Computational Tools." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14115.
Full textCote, Marie-Jose. "The human parainfluenza virus 3 fusion protein: Cloning, mapping, sequence analysis and expression." Thesis, University of Ottawa (Canada), 1989. http://hdl.handle.net/10393/20781.
Full textWang, Xiao-yu. "Deduced amino acid sequence and gene sequence of microvitellogenin, a female specific hemolymph and egg protein from the tobacco hornworm, Manduca sexta." Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/184329.
Full textLutya, Portia Thandokazi. "Expression and purification of the novel protein domain DWNN." Thesis, University of the Western Cape, 2002. http://etd.uwc.ac.za/index.php?module=etd&.
Full textLim, Raelene. "Analysis of Madm, a novel adaptor protein that associates with Myeloid Leukemia Factor 1." Thesis, Curtin University, 2003. http://hdl.handle.net/20.500.11937/2269.
Full textBresell, Anders. "Characterization of protein families, sequence patterns, and functional annotations in large data sets." Doctoral thesis, Linköping : Department of Physics, Chemistry and Biology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-10565.
Full textBoscariol, Rya. "Studies on ovine CD4 : genomic sequence analysis and protein cleavage studies with cathepsin proteases." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=81601.
Full textOvine CD4 is also of interest to us as a target of F. hepatica cathepsin L activity. Here we confirm a recently reported ovine CD4 cDNA sequence and the existence of a single nucleotide polymorphism (T/C) within this sequence. The polymorphism translates to a serine-proline switch near the hinge region of the protein. Additionally, we have found that this polymorphism is also present in genomic DNA, suggesting that two alleles of CD4 exist in the ovine genome.
Fredriksson, Simon. "Proximity Ligation : Transforming protein analysis into nucleic acid detection through proximity-dependent ligation of DNA sequence tagged protein-binders." Doctoral thesis, Uppsala University, Department of Genetics and Pathology, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-2691.
Full textA novel technology for protein detection, proximity ligation, has been developed along with improved methods for in situ synthesis of DNA microarrays. Proximity ligation enables a specific and quantitative transformation of proteins present in a sample into nucleic acid sequences. As pairs of so-called proximity probes bind the individual target protein molecules at distinct sites, these reagents are brought in close proximity. The probes consist of a protein specific binding part coupled to an oligonucleotide with either a free 3’- or 5’-end capable of hybridizing to a common connector oligonucleotide. When the probes are in proximity, promoted by target binding, then the DNA strands can be joined by enzymatic ligation. The nucleic acid sequence that is formed can then be amplified and quantitatively detected in a real-time monitored polymerase chain reaction. This convenient assay is simple to perform and allows highly sensitive protein detection. Parallel analysis of multiple proteins by DNA microarray technology is anticipated for proximity ligation and enabled by the information carrying ability of nucleic acids to define the individual proteins. Assays detecting cytokines using SELEX aptamers or antibodies, monoclonal and polyclonal, are presented in the thesis.
Microarrays synthesized in situ using photolithographic methods generate impure products due to damaged molecules and interrupted synthesis. Through a molecular inversion mechanism presented here, these impurities may be removed. At the end of synthesis, full-length oligonucleotides receive a functional group that can then be made to react with the solid support forming an arched structure. The 3’-ends of the oligonucleotides are then cleaved, removing the impurities from the support and allowing the liberated 3’-hydroxyl to prime polymerase extension reactions from the inverted oligonucleotides. The effect of having pure oligonucleotides probes compared to ones contaminated with shorter variants was investigated in allele specific hybridization reactions. Pure probes were shown to have greater ability to discriminate between matched and singly mismatched targets at optimal hybridization temperatures.
Iqbal, Sumaiya. "Machine Learning based Protein Sequence to (un)Structure Mapping and Interaction Prediction." ScholarWorks@UNO, 2017. http://scholarworks.uno.edu/td/2379.
Full textCapella, Gutiérrez Salvador Jesús 1985. "Analysis of multiple protein sequence alignments and phylogenetic trees in the context of phylogenomics studies." Doctoral thesis, Universitat Pompeu Fabra, 2012. http://hdl.handle.net/10803/97289.
Full textFilogenómica es una disciplina biológica que puede ser entendida como la intersección entre los campos de la genómica y la evolución. Su área de estudio es el análisis evolutivo de los genomas y como se relacionan las distintas especies entre sí. Además, la filogenómica tiene como objetivo anotar funcionalmente, con gran precisi ón, genomas recién secuenciados. De hecho, esta disciplina ha crecido rápidamente en los úultimos años como respuesta a la avalancha de datos provenientes de distintos proyectos genómicos. Para alcanzar sus objetivos, la filogenómica depende, en gran medida, de los distintos métodos usados para generar árboles filogenéticos. Los árboles filogenéticos son las herramientas básicas de la filogenómica y sirven para representar como secuencias y especies se relacionan entre sí por ascendencia. Durante el desarrollo de mi tesis, he centrado mis esfuerzos en mejorar una pipeline (conjunto de programas ejecutados de forma controlada) automática que permite generar árboles filogenéticos con gran precisión, y como ofrecer estos datos a la comunidad científica a través de una base de datos. Entre los esfuerzos realizados para mejorar la pipeline, me he centrado especialmente en el post-procesamiento previo a cualquier análisis de alineamientos múltiples de secuencias, ya que la calidad del alineamiento determina la de los estudios posteriores. En un contexto más biológico, he usado esta pipeline junto con otras herramientas filogenómicas en el estudio de la posición filogenética de Microsporidia. Dadas sus características genómicas especiales, la evolución de Microsporidia constituye uno de los problemas clásicos y difíciles de resolver en filogenómica. Finalmente, he usado también la pipeline como parte de un nuevo método para seleccionar combinaciones óptimas de genes con potencial como marcadores filogenéticos. De hecho, he usado este método para identificar conjuntos de marcadores filogenéticos que permiten reconstruir con alto grado de precisión las relaciones evolutivas en Cyanobacterias y en Hongos. Lo más interesante de este método es que eval úa la fiabilidad de los marcadores en especies no usadas para su selección.
Roth, Christian [Verfasser]. "Statistical methods for biological sequence analysis for DNA binding motifs and protein contacts / Christian Roth." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2021. http://nbn-resolving.de/urn:nbn:de:gbv:7-21.11130/00-1735-0000-0008-5912-0-2.
Full textRoscoe, Benjamin P. "Analyses of All Possible Point Mutations within a Protein Reveals Relationships between Function and Experimental Fitness: A Dissertation." eScholarship@UMMS, 2014. https://escholarship.umassmed.edu/gsbs_diss/716.
Full textRoscoe, Benjamin P. "Analyses of All Possible Point Mutations within a Protein Reveals Relationships between Function and Experimental Fitness: A Dissertation." eScholarship@UMMS, 2003. http://escholarship.umassmed.edu/gsbs_diss/716.
Full textDuke, Jamie L. "Structural analysis of the EGR family of transcription factors : templates for predicting protein-DNA interactions /." Link to online version, 2006. https://ritdml.rit.edu/dspace/handle/1850/2296.
Full textLim, Raelene. "Analysis of Madm, a novel adaptor protein that associates with Myeloid Leukemia Factor 1." Curtin University of Technology, School of Biomedical Sciences, 2003. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=14294.
Full textMadm formed dimers and although it contains a kinase-like domain, the protein lacks several critical residues required for catalytic activity, including an ATP-binding site. Purification of recombinant Madm revealed that the protein was not a kinase; however, studies in mammalian cells showed that Madm associated with a kinase and that Madm was phosphorylated on serine residues in vivo and in vitro. Madm also contains a nuclear localization sequence and nuclear export sequence and was shown to localise to both cytoplasm and nucleus by subcellular fractionation and confocal microscopy. The presence of two nuclear receptor binding motifs (consensus MILL) suggests that Madm may have a functional role in the nucleus. Madm co-immunoprecipitated with Mlf1 and co-localized in the cytoplasm. In addition, the Madm-associated kinase phosphorylated Mlf1 on serine residues, including the RSXSXP motif. In contrast to wild-type Mlf1, the oncogenic fusion protein NPM-MLF1 did not bind 14-3-3i; and localized exclusively in the nucleus. Although Madm co-immunoprecipitated with NPM-MLF1 the binding mechanism was altered. As Mlf1 is able to reprogram erythroleukemic cells to display a monoblastoid phenotype and potentiate myeloid maturation (Williams et al., 1999), the effects of Madm on myeloid differentiation was investigated. However, unlike Mlf1, ectopic expression of Madm in M1 myeloid cells suppressed cytokine-induced differentiation.
In summary, the data presented in this thesis reports on the cloning and characterization of a novel adaptor protein that is involved in the phosphorylation of the proto-oncoprotein MIM. Phosphorylation of Mlf1 is likely to affect its interaction with other proteins, such as 14-3-3~. Complex formation, therefore, may well alter the localization of Mlf1 and Madm, and influence hematopoietic differentiation.
Hase, Manuela. "Molecular and ultrastructural analysis of Tpr, a nuclear pore complex-attached coiled-coil protein /." Stockholm, 2003. http://diss.kib.ki.se/2003/91-7349-525-5/.
Full textVerzotto, Davide. "Advanced Computational Methods for Massive Biological Sequence Analysis." Doctoral thesis, Università degli studi di Padova, 2011. http://hdl.handle.net/11577/3426282.
Full textCon l'avvento delle moderne tecnologie di sequenziamento, massive quantità di dati biologici, da sequenze proteiche fino a interi genomi, sono disponibili per la ricerca. Questo progresso richiede l'analisi e la classificazione automatica di tali collezioni di dati, al fine di migliorare la conoscenza nel campo delle Scienze della Vita. Nonostante finora siano stati proposti molti approcci per modellare matematicamente le sequenze biologiche, ad esempio cercando pattern e similarità tra sequenze genomiche o proteiche, questi metodi spesso mancano di strutture in grado di indirizzare specifiche questioni biologiche. In questa tesi, presentiamo nuovi metodi computazionali per tre problemi fondamentali della biologia molecolare: la scoperta di relazioni evolutive remote tra sequenze proteiche, l'individuazione di segnali biologici complessi in siti funzionali tra loro correlati, e la ricostruzione della filogenesi di un insieme di organismi, attraverso la comparazione di interi genomi. Il principale contributo è dato dall'analisi sistematica dei pattern che possono interessare questi problemi, portando alla progettazione di nuovi strumenti computazionali efficaci ed efficienti. Vengono introdotti così due paradigmi avanzati per la scoperta e il filtraggio di pattern, basati sull'osservazione che i motivi biologici funzionali, o pattern, sono localizzati in differenti regioni delle sequenze in esame. Questa osservazione consente di realizzare approcci parsimoniosi in grado di evitare un conteggio multiplo degli stessi pattern. Il primo paradigma considerato, ovvero irredundant common motifs, riguarda la scoperta di pattern comuni a coppie di sequenze che hanno occorrenze non coperte da altri pattern, la cui copertura è definita da una maggiore specificità e/o possibile estensione dei pattern. Il secondo paradigma, ovvero underlying motifs, riguarda il filtraggio di pattern che hanno occorrenze non sovrapposte a quelle di altri pattern con maggiore priorità, dove la priorità è definita da proprietà lessicografiche dei pattern al confine tra pattern matching e analisi statistica. Sono stati sviluppati tre metodi computazionali basati su questi paradigmi avanzati. I risultati sperimentali indicano che i nostri metodi sono in grado di identificare le principali similitudini tra sequenze biologiche, utilizzando l'informazione presente in maniera non ridondante. In particolare, impiegando gli irredundant common motifs e le statistiche basate su questi pattern risolviamo il problema della rilevazione di omologie remote tra proteine. I risultati evidenziano che il nostro approccio, chiamato Irredundant Class, ottiene ottime prestazioni su un benchmark impegnativo, e migliora i metodi allo stato dell'arte. Inoltre, per individuare segnali biologici complessi utilizziamo la nozione di underlying motifs, definendo così alcune modalità per il confronto e il filtraggio di motivi degenerati ottenuti tramite moderni strumenti di pattern discovery. Esperimenti su grandi famiglie proteiche dimostrano che il nostro metodo riduce drasticamente il numero di motivi che gli scienziati dovrebbero altrimenti ispezionare manualmente, mettendo in luce inoltre i motivi funzionali identificati in letteratura. Infine, combinando i due paradigmi proposti presentiamo una nuova e pratica funzione di distanza tra interi genomi. Con il nostro metodo, chiamato Unic Subword Approach, relazioniamo tra loro le diverse regioni di due sequenze genomiche, selezionando i motivi conservati durante l'evoluzione. I risultati sperimentali evidenziano che il nostro approccio offre migliori prestazioni rispetto ad altri metodi allo stato dell'arte nella ricostruzione della filogenesi di organismi quali virus, procarioti ed eucarioti unicellulari, identificando inoltre le sottoclassi principali di queste specie.
Gong, Ping Otsuka Anthony John. "Genetic and biochemical analysis of the interaction between unc-44 AO13 ankyrin and protein phosphatase 2A." Normal, Ill. : Illinois State University, 2005. http://wwwlib.umi.com/cr/ilstu/fullcit?p3196647.
Full textTitle from title page screen, viewed September 26, 2006. Dissertation Committee: Anthony J. Otsuka (chair), Radheshyam Jayaswal, Kevin A. Edwards, David L. Williams, Hou Tak Cheung. Includes bibliographical references (leaves 110-124) and abstract. Also available in print.