Contents
Academic literature on the topic 'Protéines de choc thermique – Immunologie'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Protéines de choc thermique – Immunologie.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Protéines de choc thermique – Immunologie"
DAVID, J. C., and J. F. GRONGNET. "Les protéines de stress." INRAE Productions Animales 14, no. 1 (February 16, 2001): 29–40. http://dx.doi.org/10.20870/productions-animales.2001.14.1.3723.
Full textMénoret, A., and J. Le Pendu. "Protéines de choc thermique et antigènes tumoraux." médecine/sciences 10, no. 6-7 (1994): 665. http://dx.doi.org/10.4267/10608/2683.
Full textTarrade, Anne, Coralie Fassier, and Judith Melki. "Neuropathies périphériques et petites protéines de choc thermique." médecine/sciences 20, no. 12 (December 2004): 1073–75. http://dx.doi.org/10.1051/medsci/200420121073.
Full textBensaude, O. "Protéines de choc thermique, transport des protéines dans le noyau et oncogenèse." médecine/sciences 8, no. 7 (1992): 710. http://dx.doi.org/10.4267/10608/3207.
Full textArrigo, André-Patrick. "Chaperons moléculaires et repliement des protéines : L’exemple de certaines protéines de choc thermique." médecine/sciences 21, no. 6-7 (June 2005): 619–25. http://dx.doi.org/10.1051/medsci/2005216-7619.
Full textKahn, A. "Protéines du choc thermique, immunité et récepteur γδ des cellules T." médecine/sciences 6, no. 1 (1990): 80. http://dx.doi.org/10.4267/10608/4070.
Full textBriand, P. "Les protéines du choc thermique au carrefour de l'immunologie et de l'endocrinologie." médecine/sciences 8, no. 7 (1992): 743. http://dx.doi.org/10.4267/10608/3217.
Full textBoutibonnes, P. "Les protéines de choc thermique chez Lactococcus lactis : synthèse et régulation ; thermotolérance." Le Lait 76, no. 1-2 (1996): 111–28. http://dx.doi.org/10.1051/lait:19961-210.
Full textJobin, Michel-Philippe, Françoise Delmas, Dominique Garmyn, Charles Divies, and Jean Guzzo. "Caractérisation des protéines de choc thermique de faible poids moléculaire chez les bactéries lactiques." Le Lait 78, no. 1 (1998): 165–71. http://dx.doi.org/10.1051/lait:1998120.
Full textGuisasola, M. C., A. Ortiz, F. Chana, B. Alonso, and J. Vaquero. "Réaction inflammatoire précoce du patient polytraumatisé : cytokines et protéines du choc thermique. Une étude pilote." Revue de Chirurgie Orthopédique et Traumatologique 101, no. 5 (September 2015): 395. http://dx.doi.org/10.1016/j.rcot.2015.04.002.
Full textDissertations / Theses on the topic "Protéines de choc thermique – Immunologie"
Cellier, Mathieu. "Elaboration de modèles expérimentaux pour l'étude des stress cellulaires dans les interactions hôte - agent pathogène." Montpellier 2, 1992. http://www.theses.fr/1992MON20205.
Full textAnquetil-Behra, Carole. "Les protéines de choc thermique chez les mammifères." Paris 5, 1992. http://www.theses.fr/1992PA05P203.
Full textMoutaoufik, Mohamed Taha. "Étude de la structure et de la fonction de la petite protéine de choc thermique DmHsp27." Doctoral thesis, Université Laval, 2017. http://hdl.handle.net/20.500.11794/30306.
Full textSmall heat shock proteins are present in varying numbers in all organisms. In Drosophila melanogaster there are 12 sHsps, which have distinctive developmental expression patterns, intracellular localizations and substrate specificities. DmHsp27 is one of the very few sHsps that have a nuclear localization before and after heat shock. This nuclear localization is unusual, especially since no specific function has yet been identified. The mechanisms responsible for the nuclear localization of DmHsp27 and its function in the nucleus remain poorly understood. First, the study of DmHsp27 orthologs helped to determine that nuclear localization is not specific to DmHsp27 and other sHsps in insects have the same nuclear localization signal as DmHsp27. The DmHsp27 interaction network leads to believe that this protein does not only play the role of chaperone, but it is also involved in various nuclear processes. Second, unlike metazoan sHsps, DmHsp27 forms two populations of oligomers not in equilibrium. Mutations of highly conserved arginine residues in the ACD domain in mammalian sHsps has been reported to be associated with protein conformational defects and intracellular aggregation. Independent mutation of three highly conserved arginines (R122, R131 and R135) to glycine in DmHsp27 results in only one population of higher molecular weight form. In vitro, the chaperone-like activity of wild type DmHsp27 was comparable with that of its two isolated populations and to the single population of the R122G, R131G and R135G using luciferase as substrate. However, using insulin, the chaperone-like activity of wild type DmHsp27 was lower than that of R122G and R131G mutants. Finaly, we established the importance of the N-terminal region for oligomerization and we investigated the heat activation under in vitro experimental conditions using size exclusion chromatography and gradient native gels electrophoresis. By deletion strategy, we have examined the role of the N-terminal region and delineated a motif (FGFG) important for the oligomeric structure and chaperone-like activity of this sHsp. Deletion of the full N-terminal domain, resulted in total loss of chaperon-like activity; intriguingly deletion of the (FGFG) at position 29 to 32 or single mutation of G30R and G32R enhanced oligomerization and chaperoning capacity under non heat shock conditions using the insulin assay suggesting the importance of this site for chaperone activity. Unlike mammalian sHsps heat activation of DmHsp27 leads to enhanced dissociation/association of oligomers to form large structures about 1000 kDa. We suggest a new mechanism of heat activation for DmHsp27. In summary, this study characterized DmHsp27 and mutant in the alpha crystallin domain and the N-terminal region and provided an overview of a new protection mechanism. The role played by DmHsp27 as molecular chaperone and its induction during embryonic development, suggest that this protein may perform other important cellular functions
Lanneau, David. "Rôle des protéines de choc thermique HSP90 et HSP70 dans la différenciation macrophagique." Phd thesis, Université de Bourgogne, 2010. http://tel.archives-ouvertes.fr/tel-00560535.
Full textMoullintraffort, Laura. "Structures quaternaires et fonctions de la Hsp90, protéine de choc thermique de 90 kDa." Rennes 1, 2012. http://www.theses.fr/2012REN1S008.
Full textHsp90 is a chaperone protein involved in late-stage protein folding under physiological conditions, according to a « chaperone cycle » of the dimer regulated by ATP and co-chaperone proteins. Hsp90 has many client proteins that are mainly involved in oncogenesis, thus making Hsp90 a target for the development of new anti-cancer drugs. Hsp90 self-oligomerizes in vitro under the influence of temperature (irreversible oligomers) or divalent cations (oligomers in a dynamic equilibrium). These oligomers are supposed to be active as chaperones under stress conditions. We demonstrated that the protective effect of Hsp90 towards a labile protein, tubulin, is ATP-independent. This finding allowed us to design a chaperone activity test for new Hsp90 inhibitors screening. We then characterized biochemically the stoichiometries of the oligomers association, and resolved the Hsp90 hexamer's structure by cryo-electron microscopy. This quaternary structure exhibits a nest-like shape that could bind a substrate protein. P23, a co-chaperone known as an Hsp90 ATPase inhibitor, binds mainly the Hsp90 dimer, whereas Aha1 an activator, has a greater affinity for the oligomeric species. This suggests a function of these quaternary structures. Finally, we demonstrated that under mild heat shock conditions, irreversible oligomers are predominating, and that nucleotide binding reverses the process, maintaining the oligomers in a dynamic equilibrium. This regulation strengthens the functionality of the Hsp90 oligomers, which would be the quaternary structures endowed with chaperone activity
Maurel, Sébastien. "Rôle des protéines de choc thermique dans la régulation du facteur de transcription HIF." Phd thesis, Université de Bourgogne, 2011. http://tel.archives-ouvertes.fr/tel-00704624.
Full textVidal, Vincent. "Caractéristiques moléculaires et fonctionnelles d'une protéine mitochondriale de choc thermique de type hsp70 chez Phaseolus vulgaris." Toulouse 3, 1992. http://www.theses.fr/1992TOU30087.
Full textCapon, Alexandre. "Suture cutanée assistée par Laser : étude des mécanismes d'accélération de la cicatrisation sur modèle animal et sur la peau humaine." Lille 2, 2003. http://www.theses.fr/2003LIL2MT19.
Full textPla-Brunet, Mathilde. "Rôle de la protéine de choc thermique HSP27 dans les processus d'ubiquitination et de sumoylation." Dijon, 2008. http://www.theses.fr/2008DIJOMU09.
Full textThe small heat shock protein HSP27 is a chaperone ATP independent that accumulates in cells in response to various stresses and that enables the cells to survive in adverse conditions. The intra-cellular functions of Hsp27 are modulated by its ability to form small or large oligomers according to its phosphorylation status. In this work, we demonstrate that HSP27 according to its oligomerization status may be involved in 2 related post-translational modifications mechanisms: ubiquitination and SUMOylation. At first, we have shown that, in response to various stresses, p27Kip1, a protein regulating the cell cycle (CDK inhibitor), first accumulates in cells then decreases when the cells begin to die. These observations are associated with an enhanced expression of HSP27 that in the form of small oligomers promotes ubiquitination of p27Kip1 and its proteasomal degradation. HSP27 small oligomers seem to facilitate the transition G1/S and could therefore enable quiescent cells to re-enter the cell cycle. Thereafter, we demonstrated that, under stress, large oligomers of HSP27 store in the nucleus, bind to HSF1, the transcription factor responsible for the inducible expression of HSP, and the E2 SUMO ligase Ubc9 and thus promote SUMOylation of HSF1 by SUMO-2/-3. Accordingly, HSF1, while keeping its DNA binding ability, loses its transactivation capacity. These data demonstrate that HSP27 exerts a feedback inhibition of HSF1 transactivation activity, enlighten the strictly regulated interplay between HSP and HSF1
Lepecuchel, Lydia. "Interaction de la troisième région hypervariable des molécules HLA-DR avec la protéine de choc thermique HSP73." Aix-Marseille 2, 2002. http://www.theses.fr/2002AIX22048.
Full textBooks on the topic "Protéines de choc thermique – Immunologie"
Kaufmann, S. H. E. Heat Shock Proteins and Immune Response (Current Topics in Microbiology and Immunology). Springer, 1991.
Find full text1952-, Morimoto Richard I., Tissières Alfred, and Georgopoulos Costa, eds. The Biology of heat shock proteins and molecular chaperones. Plainview , N.Y: Cold Spring Harbor Laboratory Press, 1994.
Find full textCsermely, Peter, and László Vígh. Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks. Springer, 2010.
Find full text(Editor), Peter Csermely, and László Vígh (Editor), eds. Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks (Advances in Experimental Medicine and Biology). Springer, 2006.
Find full text