To see the other types of publications on this topic, follow the link: Protéines de transport du phosphate.

Journal articles on the topic 'Protéines de transport du phosphate'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Protéines de transport du phosphate.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Bigay, Joëlle, Bruno Mesmin, and Bruno Antonny. "Un marché d’échange de lipides." médecine/sciences 36, no. 2 (2020): 130–36. http://dx.doi.org/10.1051/medsci/2020009.

Full text
Abstract:
Le cholestérol est synthétisé dans le réticulum endoplasmique (RE) puis transporté vers les compartiments cellulaires dont la fonction en nécessite un taux élevé. Nous décrivons ici le mécanisme de transport du cholestérol du RE vers le réseau trans golgien (TGN) par la protéine OSBP (oxysterol binding protein). Celle-ci présente deux activités complémentaires : elle arrime les deux compartiments, RE et TGN, en formant un site de contact où les deux membranes sont à une vingtaine de nanomètres de distance ; puis elle échange le cholestérol du RE avec un lipide présent dans le TGN, le phosphati
APA, Harvard, Vancouver, ISO, and other styles
2

Bensaude, O. "Protéines de choc thermique, transport des protéines dans le noyau et oncogenèse." médecine/sciences 8, no. 7 (1992): 710. http://dx.doi.org/10.4267/10608/3207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Goud, Bruno, and Cedric Saudrais. "Le transport des protéines dans la cellule eucaryote." Biofutur 1998, no. 184 (1998): 53–57. http://dx.doi.org/10.1016/s0294-3506(99)80013-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Katunguka Rwakishaya, E. "Influence de l’infection à Trypanosoma congolense sur quelques constituants protéiques et inorganiques du sang chez le mouton." Revue d’élevage et de médecine vétérinaire des pays tropicaux 49, no. 4 (1996): 311–14. http://dx.doi.org/10.19182/remvt.9502.

Full text
Abstract:
Cette étude avait pour objet d'évaluer les variations des concentrations plasmatiques de zinc, cuivre, calcium, magnésium, phosphate inorganique, protéines totales, albumine et globuline, de la sidérémie, ainsi que la capacité de fixation du fer chez des moutons infectés par Trypanosoma congolense. Les résultats ont montré que l'infection n'avait pas d'effet significatif sur les concentrations plasmatiques de zinc, cuivre, calcium, magnésium et phosphate inorganique. Les sidérémies des animaux infectés étaient plus élevées que celles des animaux témoins, mais pas de manière significative. Les
APA, Harvard, Vancouver, ISO, and other styles
5

Kahn, A. "Transport des protéines vers... et à travers les membranes." médecine/sciences 2, no. 6 (1986): 341. http://dx.doi.org/10.4267/10608/3525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sabbagh, Yves, Hector Giral, Yupanqui Caldas, Moshe Levi, and Susan C. Schiavi. "Intestinal Phosphate Transport." Advances in Chronic Kidney Disease 18, no. 2 (2011): 85–90. http://dx.doi.org/10.1053/j.ackd.2010.11.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wagner, Carsten A. "Renal Phosphate Transport." Nephrology Self-Assessment Program 19, no. 3 (2020): 186–94. http://dx.doi.org/10.1681/nsap.2020.19.3.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Raghothama, K. "Phosphate transport and signaling." Current Opinion in Plant Biology 3, no. 3 (2000): 182–87. http://dx.doi.org/10.1016/s1369-5266(00)00062-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Burchell, Ann. "Endoplasmic reticulum phosphate transport." Kidney International 49, no. 4 (1996): 953–58. http://dx.doi.org/10.1038/ki.1996.134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Levi, Moshe, Enrico Gratton, Ian C. Forster, et al. "Mechanisms of phosphate transport." Nature Reviews Nephrology 15, no. 8 (2019): 482–500. http://dx.doi.org/10.1038/s41581-019-0159-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Smith, Frank W., Stephen R. Mudge, Anne L. Rae, and Donna Glassop. "Phosphate transport in plants." Plant and Soil 248, no. 1/2 (2003): 71–83. http://dx.doi.org/10.1023/a:1022376332180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Belmin, J., and A. Tedgui. "Transport des protéines plasmatiques à travers la paroi arterielle et athérogenèse." médecine/sciences 5, no. 1 (1989): 48. http://dx.doi.org/10.4267/10608/3896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Cartron, Jean-Pierre. "Protéines de la famille Rh et transport membranaire du gaz NH3." médecine/sciences 21, no. 4 (2005): 344–46. http://dx.doi.org/10.1051/medsci/2005214344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Booth, James W., and Guido Guidotti. "Phosphate Transport in Yeast Vacuoles." Journal of Biological Chemistry 272, no. 33 (1997): 20408–13. http://dx.doi.org/10.1074/jbc.272.33.20408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Yashphe, Jacob, Hemant Chikarmane, Maria Iranzo, and Harlyn O. Halvorson. "Inorganic phosphate transport inAcinetobacter lwoffi." Current Microbiology 24, no. 5 (1992): 275–80. http://dx.doi.org/10.1007/bf01577332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Reshkin, Stephan J., Judith Forgo, and Heini Murer. "Functional asymmetry of phosphate transport and its regulation in opossum kidney cells: Phosphate transport." Pfl�gers Archiv European Journal of Physiology 416, no. 5 (1990): 554–60. http://dx.doi.org/10.1007/bf00382689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

MIMURA, Tetsuro. "Inorganic Phosphate Transport and Phosphate Homeostasis in Plant Cells." Root Research 2, no. 3 (1993): 89–92. http://dx.doi.org/10.3117/rootres.2.89.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Sadowska-Bartosz, Izabela, Ireneusz Stefaniuk, Bogumił Cieniek, and Grzegorz Bartosz. "Tempo-phosphate as an ESR tool to study phosphate transport." Free Radical Research 52, no. 3 (2017): 335–38. http://dx.doi.org/10.1080/10715762.2017.1400163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Caverzasio, J., C. D. Brown, J. Biber, J. P. Bonjour, and H. Murer. "Adaptation of phosphate transport in phosphate-deprived LLC-PK1 cells." American Journal of Physiology-Renal Physiology 248, no. 1 (1985): F122—F127. http://dx.doi.org/10.1152/ajprenal.1985.248.1.f122.

Full text
Abstract:
Sodium-dependent transport of phosphate was studied in LLC-PK1 cells that had been deprived of phosphate (Pi). Compared with control cells (fed with 2 mM Pi) a twofold increase in the rate of Na-Pi cotransport was observed in cells incubated for 15 h in a phosphate-free medium, whereas transport of L-alanine and the specific activity of alkaline phosphatase were not changed. The same adaptive response was observed with apical membrane vesicles isolated from Pi-deprived cells. In both experimental systems Pi deprivation caused a change in the Vmax but not in the apparent Km (for Pi) of the cotr
APA, Harvard, Vancouver, ISO, and other styles
20

Marks, Joanne, Linda J. Churchill, Edward S. Debnam, and Robert J. Unwin. "Matrix Extracellular Phosphoglycoprotein Inhibits Phosphate Transport." Journal of the American Society of Nephrology 19, no. 12 (2008): 2313–20. http://dx.doi.org/10.1681/asn.2008030315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

LIM, A. L. L., and Y. K. IP. "MEMBRANE TRANSPORT OF PHOSPHATE BYHYMENOLEPIS DIMINUTA." Biological Bulletin 172, no. 3 (1987): 337–49. http://dx.doi.org/10.2307/1541713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Sanghvi, A. N., D. K. Steenbergen, S. A. Seifert, S. A. Kempson, and D. E. Peavy. "Vanadate Action on Renal Phosphate Transport." Experimental Biology and Medicine 207, no. 1 (1994): 110–16. http://dx.doi.org/10.3181/00379727-207-43799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Blaine, Judith, Edward J. Weinman, and Rochelle Cunningham. "The Regulation of Renal Phosphate Transport." Advances in Chronic Kidney Disease 18, no. 2 (2011): 77–84. http://dx.doi.org/10.1053/j.ackd.2011.01.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Roling, B., and K. Funke. "Polaronic transport in vanadium phosphate glasses." Journal of Non-Crystalline Solids 212, no. 1 (1997): 1–10. http://dx.doi.org/10.1016/s0022-3093(96)00557-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Karandashov, Vladimir, and Marcel Bucher. "Symbiotic phosphate transport in arbuscular mycorrhizas." Trends in Plant Science 10, no. 1 (2005): 22–29. http://dx.doi.org/10.1016/j.tplants.2004.12.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Friedlander, Gérard. "Transport de phosphate et lithiase rénale." Bulletin de l'Académie Nationale de Médecine 189, no. 2 (2005): 309–19. http://dx.doi.org/10.1016/s0001-4079(19)33586-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Quamme, Gary A., and R. Jean Shapiro. "Membrane controls of epithelial phosphate transport." Canadian Journal of Physiology and Pharmacology 65, no. 3 (1987): 275–86. http://dx.doi.org/10.1139/y87-049.

Full text
Abstract:
Phosphate homeostasis involves efficient intestinal absorption of dietary phosphate and sensitive renal conservation of filtered phosphate. Phosphate transport occurs by similar mechanisms across the intestinal and renal epithelium. This includes secondary active uptake across the brush-border membrane, movement of phosphate across the cytosol or into the metabolic phosphate pool, and finally the passive exit from the basolateral membrane. Active transport across the brush-border membrane involves cotransport of phosphate with sodium, which moves down its electrochemical gradient. As this proc
APA, Harvard, Vancouver, ISO, and other styles
28

ATKINSON, PETER G. P., and PETER J. BUTTERWORTH. "Control of phosphate transport in liver." Biochemical Society Transactions 18, no. 4 (1990): 625. http://dx.doi.org/10.1042/bst0180625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Labotka, R. J., and A. Omachi. "Erythrocyte anion transport of phosphate analogs." Journal of Biological Chemistry 262, no. 1 (1987): 305–11. http://dx.doi.org/10.1016/s0021-9258(19)75927-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Poirier, Yves, and Marcel Bucher. "Phosphate Transport and Homeostasis in Arabidopsis." Arabidopsis Book 1 (January 2002): e0024. http://dx.doi.org/10.1199/tab.0024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Weinstock, Joseph. "Inhibitors of sodium-dependent phosphate transport." Expert Opinion on Therapeutic Patents 14, no. 1 (2004): 81–84. http://dx.doi.org/10.1517/13543776.14.1.81.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

ILLINGWORTH, JOHN A., GLORIA MEDINA-RAMIREZ, and JOHN O'REILLY. "Sodium phosphate transport in rat ventricle." Biochemical Society Transactions 13, no. 1 (1985): 271. http://dx.doi.org/10.1042/bst0130271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

ILLINGWORTH, JOHN A., and W. JOHN O'REILLY. "Hormonal control of hepatic phosphate transport." Biochemical Society Transactions 13, no. 4 (1985): 701–2. http://dx.doi.org/10.1042/bst0130701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Hernando, Nati, Jurg Biber, Ian Forster, and Heini Murer. "Recent Advances in Renal Phosphate Transport." Therapeutic Apheresis and Dialysis 9, no. 4 (2005): 323–27. http://dx.doi.org/10.1111/j.1744-9987.2005.00290.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Prié, Dominique, and Gérard Friedlander. "Genetic Disorders of Renal Phosphate Transport." New England Journal of Medicine 362, no. 25 (2010): 2399–409. http://dx.doi.org/10.1056/nejmra0904186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Murer, H., and M. Kerstin. "How Renal Phosphate Transport Is Regulated." Physiology 2, no. 2 (1987): 45–48. http://dx.doi.org/10.1152/physiologyonline.1987.2.2.45.

Full text
Abstract:
Transcellular transport of inorganic phosphate (Pi) in the renal proximal tubule is sodium dependent. The entry step across the apical membrane involves a Na-Pi cotransport system and is subject to short-term and long-term regulation. This regulation can be protein synthesis independent (short term) as well as protein synthesis dependent (long term).
APA, Harvard, Vancouver, ISO, and other styles
37

Tenenhouse, H. S. "Disorders of Renal Tubular Phosphate Transport." Journal of the American Society of Nephrology 14, no. 1 (2003): 240–47. http://dx.doi.org/10.1097/01.asn.0000045045.47494.71.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Levi, M., S. A. Kempson, M. Lötscher, J. Biber, and H. Murer. "Molecular Regulation of Renal Phosphate Transport." Journal of Membrane Biology 154, no. 1 (1996): 1–9. http://dx.doi.org/10.1007/s002329900127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wehrle, Janna P., and Peter L. Pedersen. "Phosphate transport processes in eukaryotic cells." Journal of Membrane Biology 111, no. 3 (1989): 199–213. http://dx.doi.org/10.1007/bf01871006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Wykoff, Dennis D., and Erin K. O'Shea. "Phosphate Transport and Sensing in Saccharomyces cerevisiae." Genetics 159, no. 4 (2001): 1491–99. http://dx.doi.org/10.1093/genetics/159.4.1491.

Full text
Abstract:
Abstract Cellular metabolism depends on the appropriate concentration of intracellular inorganic phosphate; however, little is known about how phosphate concentrations are sensed. The similarity of Pho84p, a high-affinity phosphate transporter in Saccharomyces cerevisiae, to the glucose sensors Snf3p and Rgt2p has led to the hypothesis that Pho84p is an inorganic phosphate sensor. Furthermore, pho84Δ strains have defects in phosphate signaling; they constitutively express PHO5, a phosphate starvation-inducible gene. We began these studies to determine the role of phosphate transporters in sign
APA, Harvard, Vancouver, ISO, and other styles
41

Hernando, Nati, Kenneth Gagnon, and Eleanor Lederer. "Phosphate Transport in Epithelial and Nonepithelial Tissue." Physiological Reviews 101, no. 1 (2021): 1–35. http://dx.doi.org/10.1152/physrev.00008.2019.

Full text
Abstract:
Phosphate is an essential nutrient for life and is a critical component of bone formation, a major signaling molecule, and structural component of cell walls. Phosphate is also a component of high-energy compounds (i.e., AMP, ADP, and ATP) and essential for nucleic acid helical structure (i.e., RNA and DNA). Phosphate plays a central role in the process of mineralization, normal serum levels being associated with appropriate bone mineralization, while high and low serum levels are associated with soft tissue calcification. The serum concentration of phosphate and the total body content of phos
APA, Harvard, Vancouver, ISO, and other styles
42

Tenenhouse, Harriet S. "Phosphate transport: Molecular basis, regulation and pathophysiology." Journal of Steroid Biochemistry and Molecular Biology 103, no. 3-5 (2007): 572–77. http://dx.doi.org/10.1016/j.jsbmb.2006.12.090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

HARLEY, G., R. YU, and L. DEJONGHE. "Proton transport paths in lanthanum phosphate electrolytes." Solid State Ionics 178, no. 11-12 (2007): 769–73. http://dx.doi.org/10.1016/j.ssi.2007.03.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Pavić, Luka, Željko Skoko, Andreja Gajović, Dangsheng Su, and Andrea Moguš-Milanković. "Electrical transport in iron phosphate glass-ceramics." Journal of Non-Crystalline Solids 502 (December 2018): 44–53. http://dx.doi.org/10.1016/j.jnoncrysol.2018.02.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Harrison, M. J. "Phosphate transport in roots and arbuscular mycorrhizas." Biochemical Society Transactions 28, no. 3 (2000): A56. http://dx.doi.org/10.1042/bst028a056b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Mary, P. L., and J. Prakasa Rao. "DOES PHOSPHORYLATION AFFECT TRANSPORT OF INORGANIC PHOSPHATE?" Clinical and Experimental Pharmacology and Physiology 21, no. 1 (1994): 63–66. http://dx.doi.org/10.1111/j.1440-1681.1994.tb02437.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Candeal, Eduardo, Yupanqui A. Caldas, Natalia Guillén, Moshe Levi, and Víctor Sorribas. "Na+-independent phosphate transport in Caco2BBE cells." American Journal of Physiology-Cell Physiology 307, no. 12 (2014): C1113—C1122. http://dx.doi.org/10.1152/ajpcell.00251.2014.

Full text
Abstract:
Pi transport in epithelia has both Na+-dependent and Na+-independent components, but so far only Na+-dependent transporters have been characterized in detail and molecularly identified. Consequently, in the present study, we initiated the characterization and analysis of intestinal Na+-independent Pi transport using an in vitro model, Caco2BBE cells. Only Na+-independent Pi uptake was observed in these cells, and Pi uptake was dramatically increased when cells were incubated in high-Pi DMEM (4 mM) from 1 day to several days. No response to low-Pi medium was observed. The increased Pi transport
APA, Harvard, Vancouver, ISO, and other styles
48

Lichá, I., I. Benes, S. Janda, Z. Hogst'álek, and K. Janácek. "Characterization of phosphate transport in Strephtomyces granaticor." IUBMB Life 41, no. 3 (1997): 431–37. http://dx.doi.org/10.1080/15216549700201451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Knöpfel, Thomas, Nina Himmerkus, Dorothee Günzel, Markus Bleich, Nati Hernando, and Carsten A. Wagner. "Paracellular transport of phosphate along the intestine." American Journal of Physiology-Gastrointestinal and Liver Physiology 317, no. 2 (2019): G233—G241. http://dx.doi.org/10.1152/ajpgi.00032.2019.

Full text
Abstract:
Inorganic phosphate (Pi) is crucial for many biological functions, such as energy metabolism, signal transduction, and pH buffering. Efficient systems must exist to ensure sufficient supply for the body of Pi from diet. Previous experiments in humans and rodents suggest that two pathways for the absorption of Pi exist, an active transcellular Pi transport and a second paracellular pathway. Whereas the identity, role, and regulation of active Pi transport have been extensively studied, much less is known about the properties of the paracellular pathway. In Ussing chamber experiments, we charact
APA, Harvard, Vancouver, ISO, and other styles
50

Caverzasio, J., T. Selz, and J. P. Bonjour. "Characteristics of phosphate transport in osteoblastlike cells." Calcified Tissue International 43, no. 2 (1988): 83–87. http://dx.doi.org/10.1007/bf02555151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!