Dissertations / Theses on the topic 'Protéines transmembranaires'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Protéines transmembranaires.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Paulet, Damien. "Variation d'hydrophobicité et structure secondaire des protéines transmembranaires." Thesis, Montpellier 1, 2010. http://www.theses.fr/2010MON13518/document.
Full textBackground. Few high-resolution structures of integral membranes proteins are available, as crystallization of such proteins needs yet to overcome too many technical limitations. Nevertheless, prediction oftheir transmembrane (TM) structure by bioinformatics tools provides interesting insights on the topology of these proteins.Method. We describe here how to extract new information from the analysis of hydrophobicity variations or hydrophobic pulses (HPulses) in the sequence of integral membrane proteins using the Hydrophobic Pulse Predictor, a new tool we developed for this purpose. To analyze the primary sequence of 70 integralmembrane proteins we defined two levels of analysis : G1-HPulses for sliding windows of n=2 to 6 andG2-HPulses for sliding windows of n=12 to 16.Results. The G2-HPulse analysis of 541 transmembrane helices allowed the definition of the new conceptof transmembrane unit (TMU) that groups together transmembrane helices and segments with potentialadjacent structures. In addition, the G1-HPulse analysis identified helix irregularities that correspondedto kinks, partial helices or unannotated structural events. These irregularities could represent key dynamicelements that are alternatively activated depending on the channel status as illustrated by the crystalstructures of the lactose permease in different conformations. Our results open a new way in the understanding of transmembrane secondary structures : hydrophobicity through hydrophobic pulses stronglyimpacts on such embedded structures and is not confined to define the transmembrane status of aminoacids
Tran, Van-Du Thuong. "Modélisation et prédictionde la structure super-secondaire des protéines transmembranaires canaux-beta." Palaiseau, Ecole polytechnique, 2011. http://www.theses.fr/2011EPXX0104.
Full textTran, Thuong Van Du. "Modélisation et prédiction de la structure super-secondaire des protéines transmembranaires canaux-beta." Phd thesis, Ecole Polytechnique X, 2011. http://pastel.archives-ouvertes.fr/pastel-00711285.
Full textPerret, Jason. "Clonage, expression et caractérisation de récepteurs à 7 domaines transmembranaires couplés aux protéines G." Doctoral thesis, Universite Libre de Bruxelles, 1992. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212891.
Full textEspesset, David. "Formation du canal ionique de la colicine A et inhibition par la protéine d'immunité : une affaire d'hélices transmembranaires." Aix-Marseille 1, 1995. http://www.theses.fr/1995AIX11033.
Full textGidon-Jeangirard, Carole. "Etude des relations entre les mouvements transmembranaires de phosphatidylserine, la vésiculation membranaire et l'apoptose." Paris 11, 1999. http://www.theses.fr/1999PA11T032.
Full textGiguère, Patrick. "La [bêta]-arrestine plus qu'une simple protéine adaptatrice dans la signalisation des récepteurs à sept segments transmembranaires couplés aux protéines G hétérotrimériques (RCPGs)." Thèse, Université de Sherbrooke, 2006. http://savoirs.usherbrooke.ca/handle/11143/4224.
Full textGaffet, Patrick. "Mouvements transmembranaires des phospholipides au cours de l'activation plaquettaire "in vitro"." Montpellier 2, 1995. http://www.theses.fr/1995MON20018.
Full textGalvagnion, Céline. "Etude structurale de la protéine de translocation et de ses domaine hélice - boucle - hélice transmembranaires par RMN en solution." Paris 6, 2011. http://www.theses.fr/2011PA066085.
Full textBassé, François. "Mouvements phospholipidiques transmembranaires et formation de vésicules au cours de l'activation plaquettaire." Montpellier 2, 1992. http://www.theses.fr/1992MON20267.
Full textCiczora, Yann. "Rôles fonctionnels des domaines transmembranaires des glycoprotéines d'enveloppe E1 et E2 du virus de l'hépatite C." Lille 2, 2006. http://www.theses.fr/2006LIL2S064.
Full textHepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2 associated as heterodimers. These proteins are essential for virus infectivity. The two charged residues (Asp728 and Arg 730) of transmembrane domain (TMD) of E2 do not contribute equally in the glycoprotein functions. The two charged residues are required for ER retention, but only the aspartic acid is necessary for heterodimerization. Moreover the mutation of this charged residues affects the entry functions of these proteins. We have done a tryptophane scanning mutagenesis of each residue of these segments. The Asp728 and the two glycine residues (Gly354 and Gly358) are required for the formation of the heterodimer. Moreover other residues (Lys370, Leu726, Ala727, Ala729) are also implicated in these interactions. Finally, our observations indicate that the TMDs are also involved in virus entry. Indeed, some mutants of the TMDs of E1 and E2 affected an early step of the fusion between the viral and cell membrane
Gendrin, Claire. "Étude de l’adressage des protéines GRAs transmembranaires de Toxoplasma gondii aux granules denses et de leur insertion membranaire post-sécrétoire." Grenoble 1, 2007. http://www.theses.fr/2007GRE10285.
Full textThe success of many intracellular pathogens relies on the export of both soluble and membrane-bound proteins that are destined to modify various compartments of the host cell. In Toxoplasma gondii, it is well established that the dense granules (DG) constitute the default constitutive pathway for soluble proteins. By contrast, the mechanism by which transmembrane proteins are sorted to the DG and are maintained in a soluble state while adopting a transmembrane topology after secretion is not known. The GRA5 DG protein of T. Gondii is targeted to the parasitophorous vacuole membrane (PVM) after soluble secretion. Expression of GRA5 in mammalian cells revealed that the protein is targeted to the cell surface with a type I topology, providing evidence that soluble trafficking of GRA5 within the parasite is peculiar. By using chimeric proteins containing specific domains of GRA5 and of a parasite plasma membrane (PPM) targeted transmembrane protein, we investigated which are the determinant(s) of PPM versus PVM targeting. We demonstrated that the GRA5 Nt domain is involved in soluble targeting within the DG and is essential for insertion into the PVM. These results, that were extented to another transmembrane GRA protein (GRA6), contrast with the broad acceptance that sorting signals are present within the cytoplasmic tail of membranous proteins and/or depend on the size of their transmembrane domain
Yaqub, Tahir. "Étude de l'interaction entre les domaines transmembranaires du récepteur du polypeptide insulinotrope glucose-dépendant (GIP) et la région amino terminale du peptide." Toulouse 3, 2009. http://www.theses.fr/2009TOU30314.
Full textGlucose-dependent insulinotropic polypeptide receptor (GIP-R), a member of subfamily B of G-protein coupled receptor (GPCR), modulates the regulation of important physiologic and metabolic functions in the body such as glucose and lipid homeostasis that make it a potentially attractive therapeutic target for new pharmacological agents such as non-peptide ligands for the treatment of diabetes mellitus and obesity. However, the molecular mechanisms responsible for receptor activation are poorly understood in receptors belonging to family B. Although a general two step activation mechanism has been postulated for family B receptors yet the precise residues of the receptor that participate in the process remain to be delineated. One of the principal objectives of my research project was to identify the binding site of human GIP-R by precisely recognizing the residues that are implicated in interactions with the amino acids of the critically important N-terminal bioactive domain of the hormone that has been shown to be responsible for receptor activation. GIP. GIP-R complex models were constructed, based on multiple sequence alignments of both receptors and the ligands and the in-silico docking of the peptide using Adenosine A2a receptor as template for transmembrane domain of receptor while also taking X-ray structural data on the interaction of GIP and GIP-R ECD into consideration. Residues of the receptor identified to be involved in interaction with the ligand were subjected to site-directed mutagenesis. The pharmacological activity assays of the mutants demonstrated that Arg183 and Arg190 in TMH2, Arg300 in TMH5 and Phe357 in TMH6 were important determinants for receptor activation as demonstrated by their significant decrease in potency to induce cAMP formation, a measure of ligand induce receptor activation. Further characterization of these mutants, including tests with alanine substituted GIP analogues, demonstrated interaction of Glu3 in GIP with Arg183 in GIP-R. Furthermore, they strongly supported a binding mode of GIP to GIP-R in which the N-terminal moiety of GIP was sited within transmembrane helices 2, 3, 5, and 6 with biologically crucial Tyr1 interacting with Gln224 (TMH3), Arg300 (TMH5) and Phe357 (TMH6) of the receptor. We also prepared and ascertained the ability of GIP (1-30)-Alexa- F-647 to stimulate the receptor in comparison to GIP (1-30) and found that both activated the receptor with equal potency. The fluorescent peptide was then used to demonstrate that all the mutated receptors were expressed at HEK293 cell surface at levels similar to that of the WT-GIP-R by performing Flow cytometery and Confocal microscopy. We therefore present a model for GIP. GIP-R pin pointing the exact residues and the helixes involved of the receptor involved in activation process and the interactions with their partner amino acids in the N-terminal of the peptide. This experimentally validated model represents an important step towards understanding activation mechanism of GIP-R which should facilitate the rational design of therapeutic agents
Arpel, Alexia. "Développement préclinique de peptides thérapeutiques transmembranaires appliqués au traitement du cancer du sein." Thesis, Strasbourg, 2013. http://www.theses.fr/2013STRAJ050/document.
Full textThe role of transmembrane domains (TMD) in membrane receptor activation and regulation is nowadays appearing as a key step of cell signaling. This has been indeed evaluated for neuropilin-1 and -2 (NRP1/2) and ErbB2 receptors, three membrane receptors whose signaling has clearly been implicated in tumorigenesis. Our team had demonstrated that a synthetic peptide blocking the transmembrane domain of NRP1 blocked NRP1-dependent signaling leading to the inhibition of glioma cell proliferation/migration and tumor associated angiogenesis in vivo. The major goal of this thesis project was to extend this novel strategy to NRP2 and ErbB2 in the breast cancer context. Thus, I was able to demonstrate for the first time that the use of peptides, inhibiting the TMD of these receptors, was able to inhibit tumor growth and related metastases in vivo, in three different breast cancer mouse models that I have developed in the laboratory. These results were supported by in vitro experiments demonstrating anti-proliferative and anti-angiogenic properties of these peptides. Besides, I was able to dissect the mechanism of action of the peptide targeting ErbB2 receptor in vitro and in vivo, and I provided data excluding NRP2 as a target because of an unexpected promotion of bone metastasis. Altogether, my data offer convincing evidences to further develop MTP-ErbB2 and MTP-NRP1 peptides as novel therapeutic compounds for patients suffering metastatic cancers. From terra incognita to the exploration of a world of hope, the heart of the membrane is becoming a new promising estate for drug design
Sawma, Paul. "Rôle des domaines transmembraires dans les interactions helice-helice des protéines membranaires bitopiques." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4031.
Full textMany cellular and biochemical processes/activities are actually carried out by the complexome, which is defined as a set of protein complexes. Identification and characterization of the complexome are essential for a comprehensive understanding and global visioning of cell functions since protein-protein interactions are the core of an entire interactomics system of any living cell. Membrane proteins make up to 30% of proteomes in eukaryotes and prokaryotes. They form a major class of proteins that are essentially involved in vital processes including bioenergetics, signal transduction, cell adhesion, catalysis and so on. Thus, they also represent more than 50% of all currently available drug targets. The function of most membrane proteins is inextricably linked to the proper packing and assembly of their transmembrane (TM) segments in the lipid bilayer. So, deciphering the contribution of TM domains interaction in the assembly of protein complexes will help to understand the dynamic assembly of membrane proteins complexes which are most important in cell signaling. For this reason, qualitative interactions between the TM domains of different bitopic proteins have been characterized using the bacterial adenylate cyclase complementation assay (BACTH). This system has been successfully adapted in the lab to study the homo- and heteromeric associations of selected TM sequences, using well characterized interactions as controls. Moreover, BACTH has revealed TM interactions of two major classes of mammalian membrane receptors, the family of epidermal growth factor receptors (EGFRs) which belongs to receptor tyrosine kinases (RTKs) superfamily and the neuropilins
Chadli, Meriem. "Développement de la technologie "transMembraChip" : biopuces à membranes pour la réinsertion et le criblage d'agonistes / antagonistes de protéines membranaires." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1118.
Full textThis thesis presents the development of a membrane biochip allowing to functionally reincorporate a transmembrane protein of the G-protein coupled receptor (GPCR) family, CXCR4, in a peptide-tethered bilayer lipid membrane (pep-tBLM), in a miniaturized and parallelized format. The peptide tether used, P19-4H, possesses a cysteine in its N-terminal extremity for covalent grafting onto the gold surface and four Histidine residues in its C-terminal extremity for attachment of proteoliposomes integrating CXCR4 by metal-chelate interaction in the presence of nickel. The synthesis of CXCR4 was carried out by cell-free expression in the form of proteoliposomes, in a suitable lipid composition and in the presence of a chelating lipid, DOGS-NTA, at 2% molar ratio. The AH peptide, a fusogenic peptide, was employed in a last step to fuse the attached proteoliposomes. The thorough characterization of proteoliposomes and the optimization of experimental conditions led to the robust attachment of proteoliposomes with sufficient lipid density to perform their fusion by the AH peptide and the formation of a pep-tBLM integrating CXCR4. Fluorescence recovery after photobleaching (FRAP) studies have shown that the pep-tBLM reinserting CXCR4 was fluid, homogeneous and continuous, with a diffusion coefficient of 2 x 10-7 cm2/s. Ligand binding studies between CXCR4 and T22, an antagonist, revealed that the protein was functional and well-oriented in the peptBLM. The formation process of the pep-tBLM was miniaturized by support microstructuration, consisting in covering the gold surface with polystyrene and then, forming microwells exposing the gold surface at their bottom. The P19-4H peptide was spotted in a controlled manner into the microwells to form microspots of pep-tBLM incorporating CXCR4. The functionality of CXCR4 reinserted into these membrane microspots was confirmed by T22 ligand binding studies. All the steps of formation, optimization and miniaturization of the pep-tBLM were monitored, visualized and characterized by surface plasmon resonance imaging (SPRi), a real time and label-free technique for the detection of interactions. The "TransMembraChip" technology developed in this work represents a method of choice for the reincorporation and functional study of transmembrane proteins in a suitable lipid composition. Transmembrane proteins, particularly GPCRs, form interesting therapeutic targets. Thus, in the context of pharmaceutical research of drug candidates for the treatment of pathologies involving transmembrane proteins, this new generation of membrane biochip is a promising tool for screening agonist or antagonist ligands of these proteins
Jacob, Laurent. "Propriétés anti-angiogéniques et anti-migratoires de peptides transmembranaires ciblant le complexe neuropiline-1/plexine-A1 dans le glioblastome." Thesis, Strasbourg, 2013. http://www.theses.fr/2013STRAJ064/document.
Full textThis thesis work continues the exploration of the therapeutic potential using peptides targeting transmembrane (TM) domains of receptors involved in tumor growth. I showed the anti-angiogenic effect of MTP-NRP1, a peptide targeting Neuropilin-1 and confirmed its capability to impact proliferation, migration and in vivo growth of a human glioblastoma (GBM) cell line. Then, I demonstrated that the expression of Plexin-A1 is correlated with glioma aggressiveness and seems to be a bad prognosis marker for GBM patients. We described the importance of PlexA1 TM domain in the control of their interactions. The peptide MTP-PlexA1 inhibits complex formation and signaling of NRP1-PlexA1, impacts tumor growth in vivo and cancer stem cells engrafting and development. I demonstrated the pro-angiogenic role of PlexA1 with in vitro angiogenesis assays and CAM assay in which MTP-PlexA1 is able to block this function
Duban, Matthieu. "Clonage et caractérisation de deux gènes codant des récepteurs transmembranaires à activité kinase chez Cichorium intybus L. : expression au cours des phases précoces de l'embryogenèse somatique et du développement de la graine." Lille 1, 2004. https://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupversions/fbe870e9-e5ad-4add-8e69-85beb3d4c600.
Full textL'étude de l'expression des produits de ces gènes au cours de l'embryogenèse somatique de génotypes embryogène et non embryogène ainsi que lors de l'embryogenèse zygotique a été réalisée selon deux approches. Une analyse de la variation des niveaux. De transcrits a été réalisée par RT-PCR en temps réel. Parallèlement, l'accumulation de protéines a été suivie après obtention et purification d'anticorps polyclonaux dirigés contre le domaine kinase de CiSERK1. Les résultats indiquent que l'expression des gènes identifiés chez la chicorée n'est pas induite au cours des phases précoces de l'embryogenèse somatique. Le gène CiSERK2 ne présente pas de variation de son profil d'expression quel que soit le type d'embryogenèse. Le niveau de transcrits de CiSERK1 diminue au cours de la première demi-journée de culture en conditions embryogènes indépendamment du génotype. Au cours de l'embryogenèse zygotique, le niveau de transcrits de CiSERK1 augmente au stade cotylédonaire. L'approche immunologique a permis de détecter plusieurs protéines au cours de l'induction de l'embryogenèse somatique dont 2 (75 kDa et 62 kDa) sont accumulées de façon corrélée à des états cellulaires caractéristiques de l'induction de l'embryogenèse somatique. Au cours de l'embryogenèse zygotique, plusieurs protéines ont été détectées. Dont une de 62 kDa qui s'accumule au cours du développement de l'embryon.
Bonaccorsi, Marta. "Protein dynamics with fast magic-angle spinning NMR." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEN090.
Full textThe aim of my thesis is to develop Magic-Angle Spinning Nuclear Magnetic Resonance (MAS NMR) to characterize structure and dynamics in complex biological samples, with a particular focus on the role of metal ions in enzymes and channels.MAS NMR is a powerful technique that allows to extract atomic level information, characterize broad timescales of motions, and investigate functional states in native-like sample conditions, a particularly important requirement e.g. for transmembrane proteins in lipid bilayers. Nonetheless, a number of bottlenecks prevents its widespread application in structural biology.In my work I developed and applied tailored techniques based on high magnetic fields (800 MHz and 1 GHz 1H Lamor frequency) and MAS probes with sub-mm diameter rotors spinning at rates above 100 kHz, which contributed to push forward the capability of this technique: i) by enlarging the molecular size of the systems that can be investigated with site specificity; ii) by reducing the requirements in terms of isotopic labeling, notably deuteration; iii) by speeding up the tedious processes of resonance assignment and acquisition of dynamical parameters; iv) by enriching the palette of measurable parameters connected to dynamics.All along this thesis, the methods were benchmarked on microcrystalline samples of the model domain GB1, and applied to Cu,Zn-superoxide dismutase (a dimeric 2x16 kDa Cu metalloenzyme) in functional microcrystalline form, as well as to two transmembrane channels reconstituted in lipid bilayers, bacterial CorA (a pentameric 5x40 kDa cation channel) and human Aqp-1 (tetrameric 4x25 kDa aquaporin-1 water channel). The data obtained shed new light on the relation between internal dynamics and function
De, Keukeleire Béatrice. "Identification d'une voie de dégradation dépendante du GTP dans le réticulum endoplasmique : cas de la protéine CFTR-F508del." Grenoble 1, 2007. http://www.theses.fr/2007GRE10122.
Full textL". F508-CFTR, the most frequent mutation found in patients with cystic fibrosis (CF), was among the first misfolded membrane proteins for which a role of ubiquitin and proteasome in ERAD was described. However, proteasome-mediated ERAD of membrane proteins is a challenging process because substrate and degradation machinery are located in different cellular compartments. Luminal domains and transmembrane segments of membrane proteins not only need to be unfolded, but should also undergo retrograde translocation and/or extraction from lipid bilayer in order to reach proteolytic sites within the 20S particle. However in the absence of A TP and in the presence of protéasome inhibitors, the degradation of L". F508-CFTR is only modestly inhibited, suggesting that other proteolytic system may contribute to the degradation of the mutant CFTR. To date, no other proteases or proteolytic systems have been demonstrated to contribute to the L". F508-CFTR elimination. Our present study represents the initial attempt to characterize the proteasome-independent proteolytic pathway of L". F508-CFTR. For the first time, we point out the role of GTP and heterotrimeric G proteins in the disposaI of the mutant CFTR. Through our results, we demonstrate that this proteolytic pathway is restricted to RE. Ln parallel, we also investigated the role of protéasome and A TP in the degradation of L". F508-CFTR and showed the absence of correlation between proteasomal activity and the elimination of the mutant CFTR. AIl together our results suggest that the ER-GTP dependent degradation pathway may be a complementary system that contributes to the disposaI of ER-misfolded membrane proteins
Le, Marchand Tanguy. "Protein Dynamics by Solid-State NMR with Ultra-Fast Magic-Angle Spinning : from Microcrystals to Amyloid Fibrils and Membrane Proteins." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEN023/document.
Full textSolid-state NMR with magic angle spinning (MAS) has emerged as a powerful technique for investigating structure and dynamics of insoluble or poorly soluble biomolecules. A number of approaches has been designed for reconstructing molecular structures from the accurate measurement of internuclear proximities, and for probing motions at atomic resolution over timescales spanning several orders of magnitude. Despite this impressive progress, however, MAS NMR studies are still far from routine. Complete determinations, which are often demonstrated on model microcrystalline preparations, are still rare when it comes to more complex systems such as non-crystalline amyloid fibrils or transmembrane proteins in lipid bilayers. My work aimed at extending the possibilities of MAS NMR for applications on complex biomolecular systems in different aggregation states. For this, I exploited the unique possibilities provided by high magnetic fields (700, 800 and 1000 MHz 1H Larmor frequency) in combination with the newest MAS probes capable of spinning rates exceeding 60 kHz. These experimental conditions al- low to boost the sensitivity of MAS NMR through 1H detection at high resolution and to enrich the palette of probes for protein dynamics. The first part of the thesis reports on my contribution to the development of new strategies for backbone resonance assignment, for structure elucidation, and for investigation of backbone and side-chain dynamics. These methodologies significantly reduce the requirements in terms of experimental time, sample quantities and isotopic labeling, and enlarge the molecular size of systems amenable to NMR analysis. The second part describes the application of 1H detected MAS NMR to evaluate the role of protein dynamics in problems such as amyloid fibril formation and membrane protein function. I first addressed the amyloid fibril formation propensity of human beta-2 microglobulin, the light chain of the major histocompatibility complex I. I performed comparative studies of backbone dynamics of the wild type protein as well as a D76N mutant in crystals, and determined some of the structural features of the fibrillar form. This allowed to identify the presence of pathological folding intermediates and to formulate hypotheses on the mechanism of fibrils formation. Finally, I studied the local and global dynamics of membrane proteins in lipid bilayers. In particular, I investigated the mechanism of action of the alkane trans- porter AlkL from P. putida in lipid bilayers. The measurement of parameters for fast (ps-ns) and slow (μs-ms) backbone dynamics of the protein in presence or in absence of a substrate highlights possible routes for molecular uptake and lays the basis for a more detailed mechanistic understanding of the process
Ziani, Widade. "Interactions des protéines du complexe de transduction du signal transmembranaire CnrYXH chez Cupriavidus metallidurans CH34." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENV059/document.
Full textThe CnrYXH complex contributes to regulate the expression of the regulatory genes and resistance genes involved in cobalt and nickel resistance in Cupriavidus metallidurans CH34. The binding of nickel or cobalt to CnrX in the periplasm induces conformational modifications that could trigger transmembrane signal transduction. As a result, CnrH is made available in cytoplasm for binding to RNA polymerase. The CnrH:RNA polymerase complex binds specifically the cnr promoters and initiates transcription of both the regulatory genes (cnrYXH) and resistance genes (cnrCBAT). In order to delineate the mechanism of signal transduction through the membrane, I studied the interactions between the three partners in the different cellular compartments: periplasm, plasmic membrane and cytoplasm. The identification of the interaction determinants between CnrX, CnrY and CnrH allowed us to propose a structural and functional model for the CnrYXH complex and its homologues. This model brings up new hypothesis on the function of Cnr system
Zoonens, Manuela. "Caractérisation des complexes formés entre le domaine transmembranaire de la protéine OMPA et des polymères amphiphiles, les amphipols : application à l'étude structurale des protéines membranaires par RMN à haute résolution." Paris 6, 2004. http://www.theses.fr/2004PA066415.
Full textHastoy, Benoit. "Structure et dynamique fonctionnelle du domaine transmembranaire de la protéine SNARE VAMP2 lors de l’exocytose." Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14467/document.
Full textThe hormonal secretion plays a key role in the maintenance of homeostasis. For example, the maintenance of normoglycaemia requires insulin exocytosis from the pancreatic beta cells. The SNARE membrane family protein has been described as the core machinery of fusion between the vesicle containing hormones and the plasma membrane. This family consists of 3 different membrane proteins that are essential during exocytosis. VAMP2 is localized on the vesicle and Syntaxin 1A - on the plasma membrane. They both are transmembrane protein whereas SNAP25 is linked to the plasma membrane by palmitoylation. The SNAREs appear to be essential as they form the cytosolic SNARE complex to dock the vesicle to the plasma membrane. Even though the role of this cytosolic domain has been studied in depth, much less is known on the role of their transmembrane domain during the fusion. Their study remains necessary to establish a complete model of membrane fusion mediated by the SNARE proteins.Here, we have studied the behavior and the role of the SNARE transmembrane domain during exocytosis. In a multidisciplinary project, we have combined a structural approach with a biological study to evaluate the role of this domain. Using mutagenesis in the transmembrane domain of VAMP2 and a cellular system with a clean background, we have assessed the effect of mutations on the secretion and exocytosis in two different cell lines (INS1E and PC12). The biological system is based on the silencing of endogenous VAMP2 and reconstitution of the expression of VAMP2 wt or mutated in the transmembrane domain. Using biochemistry assay and TIRF microscopy we have shown that mutations in this domain can lead to a missorting of the Golgi apparatus or a reduction of the stimulated secretion and exocytosis. This effect can be correlated to a modification of the structural dynamics of this domain.The obtained results clearly demonstrate the role of the transmembrane domain of VAMP2 during exocytosis probably sustained by its unique structural dynamics observed by physico-chemistry
Zhang, Xiang. "Organisation fonctionnelle des segments transmembranaires d'un moteur moléculaire Tol et d'une protéine active conte une toxine bactérienne." Thesis, Aix-Marseille 2, 2010. http://www.theses.fr/2010AIX22109/document.
Full textThe Tol-Pal system is a protein complex of the Escherichia coli cell envelope. It consists offive proteins. The ToIQ, TolR, TolA proteins form a complex in the inner membrane, the lipoproteinPal interacts with the peptidoglycan and with the periplasmic protein TolB. This system is conservedin most Gram-negative bacteria. It plays an important role in maintaining the integrity of the outermembrane and in the late stage of cell division. The interaction between Pal and TolA connects innerand outer membranes and depends on ToIQ, TolR and the proton motive force (pmf). The ToIQ-R-Aproteins are suspected to form a molecular motor using pmf to connect the inner and outermembranes and the peptidoglycan. The first aim of my work was to study the organization of thetransmembrane helices (TMHs) of E. coli TolQ and TolR using the cysteine scanning approaches. Weidentified residues involved in the interactions between the TMHs and improved the knowledge ofthe molecular organization of this system. We have also demonstrated the dimerization of the TMHof TolR and the importance of its dynamic movement in the system. The second aim of my work wasto analyze the structural organization of the immunity protein to colicin A. The colicins are producedby certain strains of E. coli and are active against other Enterobacteriaceae. The colicin A forms anion channel in the bacterial inner membrane which kill the bacteria. It hijacks the Tol system to enterin the cell. Cells producing colicin A also synthesize the colicin A immunity protein (Cai) whichprotects the producing cells against the action of colicin A. The approaches combining "cysteinescanning" and "anti-cysteine-scanning”, we found that Cai form a dimer in the membrane whichdissociates upon contact with its target, the colicin A
Chenal, Alexandre. "Mécanisme d'insertion dans les membranes du domaine transmembranaire de la toxine diphtérique et conception d'ancres membranaires par ingénierie du domaine T." Paris, Muséum national d'histoire naturelle, 2001. http://www.theses.fr/2001MNHN0037.
Full textFloch, Aurélie. "Mécanismes d'adressage de Pom33, protéine transmembranaire associée aux pores nucléaires chez la levure Saccharomyces cerevisiae levure Saccharomyces cerevisiae." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112182.
Full textIn eukaryotic cells, nucleocytoplasmic exchanges take place through the nuclear pores complexes (NPCs). These conserved macromolecular assemblies are embedded in the nuclear envelope (NE) and composed of ~30 distinct proteins called nucleoporins (Nups), each presents in multiple copies. In the budding yeast Sacharomyces cerevisiae, there are only four transmembrane Nups, including Pom33. A previous study leds to the characterization of Pom33 and revealed that pom33∆ mutant cells, although viable and without apparent alteration in nucleocytoplasmic transport, display NPCs distribution defect. Pom33 also contributes to the biogenesis of NPCs into the intact NE (de novo biogenesis). Pom33 is highly conserved among species and has a paralogue in S. cerevisiae, Per33, which can associate with NPCs but is mainly localized at the endoplasmic reticulum (ER) and NE. Unlike Pom33, Per33 is not involved in NPCs distribution and biogenesis. In mammalian cells, there is a unique homologue of Pom33/Per33, named TMEM33. In the context of this thesis, we aimed to identify the determinants involved in the specific targeting of Pom33 to NPCs and in its function in pore biogenesis. To characterize these determinants, we first performed affinity-purification experiments followed by mass spectrometry analyses. This identified a novel Pom33 partner, the nuclear import factor Kap123. In vitro experiments revealed a direct interaction between Pom33 C-terminal domain (CTD) and Kap123 that involves positively-charged residues within Pom33-CTD and is altered in the presence of Ran-GTP. Moreover, in silico analyses predicted the presence of two evolutionarily-conserved amphipathic ~-helices within Pom33-CTD. Circular dichroism studies and liposome co-floatation assays confirmed that this CTD domain is able to fold into ~-helices in the presence of liposomes and revealed its preferential binding to highly curved lipid membranes. When expressed in yeast, under conditions abolishing Pom33-CTD membrane association, Pom33-CTD behaves as a Kap123-dependent nuclear localization domain. While deletion of Pom33 C-terminal domain (Pom33-∆CTD-GFP) impairs Pom33 NPC targeting and stability and leads to a NPC distribution phenotype, mutants affecting either Kap123 binding or the amphipathic properties of the ~-helices do not display any detectable defect. However, combined impairment of lipid and Kap123 binding affects Pom33 targeting to NPCs and leads to an altered NPC distribution and a genetic interaction with the deletion of NUP133, a gene coding for a nucleoporin involved in NPCs biogenesis. Together, these results indicate that Pom33 targeting to NPCs is an active and multifactorial process that requires at least two determinants within its CTD. They also suggest a role of Pom33-CTD in the de novo NPCs biogenesis process, which could however only be an indirect consequence of its requirement for Pom33 targeting to NPCs. Our mass spectrometry analysis also identified other partners of Pom33, in particular Myo2, a molecular motor required for the cell cycle-regulated transport of various organelles and proteins and for correct alignment of the spindle during mitosis. Our studies also revealed a specific localization of Pom33 at the bud tip during mitosis and a genetic interaction between POM33 and KAP123. Taken together, these preliminary observations open new perspectives regarding additional functions of Pom33 during cell division
Yu, Huifeng. "Interaction de la protéine transmembranaire gp-41 d'enveloppe du virus de l'immunodéficience humaine avec les cellules cibles muqueuses." Paris 6, 2008. http://www.theses.fr/2008PA066693.
Full textThe mucosal surface, as the major site for HIV-1 entry, plays an important role in early HIV-1 transmission. The initial target cells for HIV-1 at mucosal sites include epithelial cells in simple monostratified mucosa and dendritic cells in pluristratified mucosa. Formation of a virological synapse between HIV-1 infected mononuclear cells and epithelial cells at the monostratified mucosa is required for efficient HIV-1 transcytosis. Peptide P1 (a. A. 649-683) derived from the membrane proximal region (MPR) of gp41 acts as a galactose-specific lectin to bind Galactosylceramide (GalCer), the HIV-1 mucosal receptor expressed on both epithelial and dendritic cells, mediating HIV-1 endocytosis/transcytosis in a raft dependent pathway. P1 contains continuous epitopes, ELDKWA and NWFDIT, recognized by the neutralizing IgG antibodies 2F5 and 4E10. The structural studies by circular dichroism (CD) of gp41 MPR derived peptides such as P1, P5 (a. A. 628-683), P6 (a. A. 628-667) and T20 (a. A. 637-673) in relation to their binding affinity to GalCer suggested that this affinity is dependent on their secondary and tertiary structure. The structural studies of peptide P1 by NMR at acidic and near physiological pH in the presence of DPC micelles indicated that the conformation of P1 undergoes a change from a well-defined helix at pH 3. 3 to the progressive loss of helical structure in the N-terminal region Q650-D665 at near physiological pH. It is interesting that the structures of the two epitopes ELDKWA, NWFDIT recognized by neutralizing antibodies 2F5 and 4E10 within peptide P1, which are close to observed by crystallography those in antibody-peptide complexes. Moreover, observation of the MPR-gp41 derived peptides P1, P5 in different environments, such as in the presence of liposomes, as well as function of ion concentration, namely Ca2+ and H+, allowed us to define novel characteristics of gp41 and might represent a new step in the characterization of immunogenic epitopes able to elicit HIV-1-neutralizing antibodies. Studying of the antiviral properties of peptides P5, P1 as compared to T20 suggested that peptide P5 has strong anti-HIV-1 activities and could possibly serve as a new generation of fusion inhibitor
Blot, Guillaume. "Caractérisation de deux nouveaux partenaires du domaine cytoplasmique de la glycoprotéine d'enveloppe du VIH-1 : tIP47 et Luman." Paris 7, 2003. http://www.theses.fr/2003PA077202.
Full textBijani, Christian. "Les lipoamino acides : des vecteurs d'absorption pour l'administration transmembranaire de biomécules." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14006/document.
Full textThe aim of this thesis is to develop less constraining administration pathways than the injectable way traditionnaly used for the delivery of therapeutic peptides and proteins. In this work we focus in the formulation of these peptides and proteins by formation of colloidal system with amphiphilic vectors, the lipoamino acids (LAAs). These colloidal systems proteins/LAAs are intended for the administration of peptides and proteins by nasal and cutaneous pathways. This work was completed in collaboration with an industry located in Bordeaux and in the formulation of active ingredients. The first part of the thesis describes the colloidal formation of LAAs and therapeutic proteins for an administration by nasal route. Studies with circular dichroism gave information on the secondary structure of proteins in the colloid. Analysis using dynamic light scattering brought information on the size of the protein-LAAs colloidal complexes. Molecular modeling enabled us to study the atomic structure of these colloidal complexes. Finally, to evaluate the membrane permeability of these colloids, in vitro studies on nasal cells and preclinical studies were performed. In the second part, we developed a colloidal formulation containing LAAs and cyclosporine for treatment of psoriasis by local/topical administration. The effectiveness of the formulation was tested by solid state deuterium NMR on original lipidic models of healthy and psoriatic skin developed in the laboratory
Toutain, Christine. "Etude structure/fonction de DjlA, une protéine membranaire de la famille des chaperons DnaJ/Hsp40." Paris 11, 2001. http://www.theses.fr/2001PA112268.
Full textBacteria, such as Escherchia coli, must constantly deal with changes in their environment and their survival depends upon their ability to adapt. They have therefore developed numerous signal transduction systems including, amongst others, the RcsC/B system, which regulates the cps operon responsible for the production of a component of the bacterial capsule, colanic acid. Only signals which are linked to envelope modification, in laboratory conditions, are known to turn on the RcsC/B system, and notably a slight overexpression of the inner membrane chaperone DjlA. DjlA belongs to the DnaJ family of chaperones, which are themselves members of the DnaK-DnaJ-GrpE system. This chaperone system is not only found in all cell types, but is also implicated in many cellular processes. DjlA is a rather interesting member because it is inserted into the internal membrane, a rare characteristic of proteins in the DnaJ family. .
Roth, Lise. "Importance du segment transmembranaire dans la dimérisation de la neuropiline 1 : Implications physiopathologiques dans la régénération nerveuse et la croissance tumorale." Strasbourg 1, 2008. https://publication-theses.unistra.fr/restreint/theses_doctorat/2008/ROTH_Lise_2008.pdf.
Full textNeuropilin 1 (NRP1) is a bitopic receptor for the Vascular Endothelial Growth Factor (VEGF) and for class 3 semaphorins, and dimerization of NRP1 is essential for intracellular signalling. We discovered that NRP1 exhibits a transmembrane dimerization motif named GxxxGxxxG. Hence, we decided to study the role of the transmembrane domain in NRP1 dimerization. We first demonstrated the dimerization capacity of this domain, which relies on the GxxxGxxxG motif. We were not able to detect any functional effect with NRP1 mutated in its transmembrane domain, which confirmed the biological importance of the GxxxGxxxG motif. Moreover, a synthetic peptide mimicking the TM domain allowed us to inhibit selectively Sema3A functions in three different cellular models. Centrifugations in sucrose gradients revealed that this inhibitory effect is due to receptor complex destabilization. Taken together, these results show the crucial role of the transmembrane domain in NRP1 dimerization, and thereby in NRP1 signal transduction. Moreover, NRP1 is involved in axonal guidance and in angiogenesis in normal (vascular system and central nervous system development) and pathological (neurodegenerative diseases and tumour growth) conditions. Hence, the synthetic peptide may constitute a new way to inhibit pathological phenomenon in vivo
Marchetti, Gino. "Modélisation moléculaire du phénomène du transport du calcium dans la protéine ATPase-Ca2+ (SERCA1a) : une première étude." Paris 6, 2006. http://www.theses.fr/2006PA066382.
Full textJoubert, Jane-Eileen. "Etude des mécanismes d'activation des récepteurs chimiotactiques couplés aux protéines G : biais de signalisation et rôle d'une proline dans le deuxième domaine transmembranaire." Rouen, 2016. http://www.theses.fr/2016ROUES064.
Full textPotelle, Sven. "TMEM165 : un nouvel acteur de la régulation de l’homéostasie golgienne du Mn2+, impliqué dans les anomalies congénitales de la glycosylation." Thesis, Lille 1, 2017. http://www.theses.fr/2017LIL10149/document.
Full textCongenital Disorders of Glycosylation (CDG) are severe inherited diseases in which aberrant protein glycosylation is a hallmark. From this genetically and clinically heterogeneous group, a significant subgroup due to Golgi homeostasis defects is emerging. Our team previously identified TMEM165 as a Golgi protein involved in CDG. But despite strong efforts, the biological and cellular functions of TMEM165 were not known so far. During my thesis, we highlighted that Golgi Mn2+ homeostasis was impaired due to TMEM165 deficiency. While strong glycosylation defects, especially galactosylation defects, were observed in TMEM165 depleted cells, we discovered that Mn2+ supplementation was sufficient to fully restore a normal glycosylation. Interestingly, we also demonstrated that the observed glycosylation defects in mammalian cells could be overcome by galactose supplementation. Strong of this observation, oral galactose supplementation in TMEM165 deficient patients was assayed and this treatment was proven to significantly improve biochemical and clinical parameters. Moreover, we highlighted TMEM165 as a novel Golgi protein whose stability is altered in the presence of high manganese concentration. Indeed, we showed that exposure to high Mn2+ concentrations led to a rapid lysosomal degradation of TMEM165. Altogether, our study points TMEM165 as (i) a key player in Golgi glycosylation by finely regulating Golgi Mn2+ homeostasis and (ii) a novel Golgi protein sensitive to manganese
Pouliot, Benoît. "Abc3, un transporteur vacuolaire exprimé en carence de fer chez la levure à fission." Mémoire, Université de Sherbrooke, 2010. http://savoirs.usherbrooke.ca/handle/11143/4028.
Full textBoukadida, Célia. "Analyses structurales et fonctionnelles comparées de la protéine non structurale NS2 des hepacivirus : topologie transmembranaire, activité protéolytique et rôle dans la morphogenèse des particules virales." Paris 7, 2013. http://www.theses.fr/2013PA077154.
Full textHepatitis C virus (HCV) chronically infects approximately 150 million persons worldwide and is associated with cirrhosis and hepatocellular carcinoma. The objective of this work was to gain insight into the role of HCV nonstructural protein 2 (NS2) in the viral life cycle. With this aim, we undertook to determine whether structural and functional features of NS2 were conserved between HCV and two phylogenetically related viruses, GB virus B (GBV-B) and the non-primate hepacivirus (NPHV) that infect small primates and horses, respectively. Our membrane association and structural analyses revealed that despite limited sequence similarity, HCV and GBV-B NS2 proteins share a similar topological organization, with three transmembrane segments located in their N-terminal region and a cytosolic C-terminal domain. We further demohstrated that GBV-B and NPHV NS2 are cysteine auto-proteases responsible for the cleavage at the NS2/NS3 junction and that GBV-B NS2 is a dimeric protease containing a composite catalytic triad, as previously shown for HCV NS2. However, unlike for HCV and NPHV NS2, the transmembrane region of GBV-B NS2 is required for its proteolytic activity. Chimeric and trans-complementation approaches revealed that the role of HCV NS2 in particle assembly is virus and genotype specific. Moreover, our data suggested that functional interactions between the N- and C-terminal subdomains of HCV NS2 are critically involved in virion morphogenesis. Finally, we developed a fluorescent microscopy approach to follow HCV NS2 trafficking in live infected cells in order to gain further insight into the mechanisms of action of this protein during HCV life cycle
Suréna, Anne-Laure. "Contrôle de l'activité du couple TGFα-EGFR dans les gliomes via la formation de complexes protéiques autour du précuseur transmembranaire du TGFα." Paris 6, 2009. http://www.theses.fr/2009PA066760.
Full textLallemand, Mathilde. "Dissection des interactions entre les composants du système de sécrétion de type II chez la bacterie phytopathogène Erwinia chrysanthemi (Dickeya dadantii)." Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00665584.
Full textFurois-Corbin, Sylvie. "Contribution à l'étude théorique des biopolymères : acides nucléiques et protéines membranaires." Paris 6, 1987. http://www.theses.fr/1987PA066384.
Full textLebredonchel, Elodie. "Etude de la fonction de TMEM165 dans la glycosylation golgienne et de sa dégradation induite par le manganèse." Thesis, Lille 1, 2020. http://www.theses.fr/2020LIL1S103.
Full textCongenital Disorders of Glycosylation (CDG) are a group of rare genetic diseases affecting the process of glycans biosynthesis. In 2012, a new subtype of CDG type II was discovered, TMEM165-CDG, resulting from mutations in the gene encoding TMEM165, a transmembrane protein. This protein is localized in the Golgi apparatus and might be the major Golgi manganese importer. The glycosylation defect observed in TMEM165-CDG results of a lack of manganese in this compartment, that is restored by manganese supplementation. Interestingly, high manganese concentrations lead to the degradation of TMEM165 in the lysosomes.During my PhD, we have identified the amino acids of TMEM165 implied in the function in glycosylation and its manganese sensitivity, essentially the two signature motifs of the UPF0016 family. We also demonstrated the first evidence of a functional link between TMEM165 and SPCA1, a Golgi calcium/manganese pump. The absence of SPCA1 targets TMEM165 to the lysosomes for degradation
Damm, Alicia. "Interplay between the conformational dynamics of a transmembrane protein and the mechanical properties of its surrounding membrane." Thesis, Sorbonne université, 2019. https://tel.archives-ouvertes.fr/tel-03330142.
Full textCell membranes are composed of a lipid bilayer, crowded with transmembrane proteins that mediate nearly all of the membrane functions, such as detoxification and communication. There is a tight interaction between lipids and transmembrane proteins. Membrane can apply mechanical stress and impact transmembrane proteins shape and function. Reciprocally, the inclusion of a transmembrane protein can bend or stretch the membrane. In particular, this interplay might play a crucial role for proteins that change conformation to mediate cargoes transport. We study BmrA, a bacterial ABC exporter from B.subtillis. ABC (ATP Binding Cassette) transporters represent one of the largest families of membrane proteins. Some ABC exporters lead to a phenotype of multi-drug resistance, such as human P-glycoprotein (P-gp) which transports anti-cancer agents out the cell. BmrA shares high homology with P-gp and is expected to undergo a large conformational change between “open” and “closed” conformations. The objective is to characterize the interplay between the conformation cycle of BmrA and membrane curvature, at the single molecule level. BmrA is purified in detergent, labelled with dyes suitable for FRET experiments, and incorporated in small liposomes. Conformations of BmrA are probed by single-molecule FRET in TIRF microscopy: a low (resp. high) FRET efficiency corresponds to a protein in open (resp. closed) conformation. Three different liposome sizes are used in order to vary the membrane curvature: diameter 140, 60 and 40nm. We have found a different protein behavior in 40nm liposomes as compared to larger ones, indicating an effect of the membrane curvature on BmrA conformations
Paik, Su-Jin. "Couplages entre un transporteur membranaire de type ABC, BmrA et son environnement membranaire." Electronic Thesis or Diss., Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLET010.
Full textABCs (ATP binding cassettes) transporters constitute a large family of transmembrane proteins present in all organisms. ABC transporters hydrolyze ATP to translocate an immense quantity of amphiphilic substrates, such as lipids, steroids, peptides... Some ABCs confer a multiresistance cellular phenotype to drugs from bacteria against antibiotics to humans against anticancer agents, antivirals...A fundamental question for understanding drug transport at the molecular level is how the properties of membranes modulate the function and spatial temporal organization of ABCs. We studied in detail these coupling with BmrA, a bacterial ABC of B. subtillis using different in vitro membrane systems and different biochemical and membrane biophysical approaches. Firstly, after expression and purification of proteins in detergent, we characterized the hydrolysis of ATP of BmrA according to its membrane environment, solubilized in detergent micelles and in mixed lipid/detergent micelles. Proteoliposomes were characterized according to protein orientation, incorporation rate, size and lamellarity. This allowed us to modulate in a controlled manner lipid composition, protein density and conformation and membrane curvature to quantitatively determine the respective contributions of these membrane parameters. Thus, we show that ATP hydrolysis is sensitive to lipid specificity when the protein is embedded in a bilayer. This lipid specificity is provided by negative lipids and phosphatidylethanolamine type lipids that synergistically stimulate hydrolytic activity. However, ATP hydrolysis was decreased in high positive membrane curvature. Secondly, we determined the conditions of reconstitution of BmrA in Giant Unilamellar Vesicles, which then allowed our collaborator to study the respective roles of membrane curvature and tension in the spatial organization of BmrA. Nanotube pulling experiments performed in collaboration show that BmrA has a strong preference for highly curved membrane regions leading to protein cluster formation and that this preference varies according to the catalytic state of the protein. Finally, we developed a method to study the dynamics of NBDs by Förster resonance energy transfer at the single molecule level in reconstituted system via fluorescence cross-correlation spectroscopy.The data set suggest that spatial organizations of ABC transporters in bacterial and eukaryotic cells are different with the possibility of sorting during membrane remodeling of eukaryotic membranes in areas of strong membrane curvatures but without significant change in function
Doisy, Anne. "Analyse de la migration et de la déformation cellulaires : application à l'étude du rôle de la protéine CD9/MRP1 dans le carcinome colorectal." Université Joseph Fourier (Grenoble), 1999. http://www.theses.fr/1999GRE10229.
Full textRoy, Anne-Sophie. "Etude du lien fonctionnel entre deux régulateurs de l'homéostasie golgienne du Ca2+ et du Mn2+, TMEM165 et SPCA1, dans un modèle pathologique, la maladie de Hailey-Hailey." Thesis, Lille 1, 2020. http://www.theses.fr/2020LIL1S110.
Full textSPCA1 is a P-type ATPase that transports a Ca2+ ion or a Mn2+ ion from the cytosol to the Golgi lumen by hydrolyzing one molecule of ATP. Another protein seems to be involved in the regulation of Ca2+ and Mn2+ homeostasis, namely TMEM165. Mutations in the ATP2C1 gene, encoding SPCA1 protein, and in the TMEM165 gene, encoding the protein of the same name, cause two different pathologies : a skin disease called Hailey-Hailey and a congenital disorder of glycosylation (CDG), respectively. While nothing seemed to link these two proteins, our results suggest a functional link. We have demonstrated, in two different cell lines (HeLa cells and fibroblasts), that SPCA1 and TMEM165 are close to each other within the Golgi apparatus. In addition, the function of SPCA1 appears to govern the expression of TMEM165. The latter is sensitive to cytosolic Mn2+ concentrations. In fibroblasts and keratinocytes of patients with Hailey-Hailey disease, in the presence of high concentrations of extracellular Mn2+, the expression of TMEM165 is much more sensitive to Mn2+ than in control cells. Using ICP-MS, we measured cellular Mn levels and found greater Mn accumulation in patient cells compared to control cells. Thanks to GPP130, a protein sensitive to the concentrations of Golgi Mn2+ concentrations, we have linked this higher accumulation of Mn2+ in the cells of patients with an increase of the Mn2+ concentration in the cytosol of these cells. In addition, SPCA1 also interacts with Cab45, a protein that binds Ca2+ in the Golgi, and both are involved in a novel way of proteins sorting at the TGN. We have shown, for the first time that the subcellular localization of Cab45 is disturbed in presence of higher concentration of MnCl2 in the culture medium of HHD fibroblasts compared to control fibroblasts. To date, we don’t know the molecular mechanism involved in this loss of Cab45 localization induced by Mn2+.Another evidence is the observation of the increase in the amount of SPCA1 which is concomitant with the degradation of TMEM165 in the presence of high concentrations of MnCl2 in the culture medium of HeLa cells and fibroblasts. This increase is probably due to a transcriptional increase in the ATP2C1 gene. In addition, we have shown that when the expression of one of these proteins is reduced by the CRISPR/Cas9 technique, the expression of the other is disrupted. All of these data tend to suggest a functional link between SPCA1 and TMEM165, two regulators of Mn2+ and Ca2+ homeostasis
Robil, Noemie. "Recherche d'antigènes spécifiques de tumeurs et analyse des cellules souches de glioblastomes." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAJ057/document.
Full textGlioblastoma are the most common and aggressive nervous system tumors. With a median overall survival smaller than 2 years, usual therapies remain inefficient. This failure could be explained in part by the existence of cancer stem cells. These cells share several properties with stem cells which make them resistant to glioblastoma treatments. This is why it is important to identify and target them to suppress the whole tumor.The goal of this thesis work is to identify glioblastoma stem cells (gCSCs) biomarkers. To this end, we first developed a global method predicting cancer antigens from microarray data. Then, by studying gCSCs we identified several putative biomarkers and generated insights concerning the calcium signals which are deregulated in numerous cancers
Tran, Thuong Van Du. "Modeling and predicting super-secondary structures of transmembrane beta-barrel proteins." Phd thesis, Ecole Polytechnique X, 2011. http://tel.archives-ouvertes.fr/tel-00647947.
Full textHoudou, Marine. "Regulation of cellular Mn homeostasis : unexpected functions of TMEM165, SERCA and SPCA1." Thesis, Lille 1, 2020. https://pepite-depot.univ-lille.fr/ToutIDP/EDBSL/2020/2020LILUS111.pdf.
Full textGlycosylation is a universal cellular process in all living organisms where monosaccharides are added one by one onto an acceptor molecule, most of the time a protein, a lipid or another monosaccharide. In eukaryotes, many glycosylation pathways occur simultaneously, resulting in the biosynthesis of a broad variety of glycan structures with different functions. In humans, if one -or more- glycosylation reactions are genetically impaired, Congenital Disorders of Glycosylation (CDG) appear. One of them, TMEM165-CDG, was identified in 2012 by our group and is at the heart of this work. Pathogenic mutations in TMEM165 gene cause severe glycosylation defects mainly characterized by hypo-galactosylated N-glycan structures. While characterizing these glycosylation abnormalities, a link has rapidly been established by the team between TMEM165 deficiency and Golgi manganese (Mn2+) homeostasis disruption. Therefore, and based on previous work, TMEM165 was assumed to act as a Ca2+/Mn2+ antiporter, allowing the import of Mn2+ into the Golgi lumen in order to sustain an adequate ionic environment, required for all glycosylation reactions. Interestingly, we also found that exogenous addition of Mn2+ in the culture medium of TMEM165 deficient cells completely rescues the N-glycosylation defects observed in these cells. Moreover, TMEM165, like Gdt1p its yeast ortholog, is a protein highly sensitive to Mn2+, being rapidly degraded via the lysosomal pathway in the presence of high Mn2+ concentrations. All in all, a close link exists between TMEM165/Gdt1p, Golgi Mn2+ homeostasis and Golgi glycosylation; the three major aspects focused in my PhD research. More precisely, my thesis focuses on (i) understanding the mechanisms of Mn2+-induced glycosylation rescue in TMEM165 deficient cells and (ii) the potential links between different key players acting in the regulation of the secretory pathway ionic homeostasis which are the Sarco/Endoplasmic Reticulum calcium (Ca2+)-ATPase SERCA2, TMEM165 and SPCA1 (Secretory Pathway Ca2+/Mn2+-ATPase), the only pump of the Golgi apparatus known to import both Ca2+ and Mn2+ in the Golgi lumen. Through the use of isogenic human cell lines knockout for either TMEM165 or ATP2C1 and yeasts lacking Gdt1p and/or Pmr1p, we highlighted three main concepts that closely link these proteins: TMEM165 (Gdt1p), SPCA1 (Pmr1p) and SERCA2. On the one hand, we demonstrated that the activity of SERCA pumps is crucial to sustain Golgi glycosylation reactions in absence of TMEM165 by their contribution in Mn2+ pumping and redistribution into the Golgi lumen. On the other hand, TMEM165 was found essential for maintaining Golgi glycosylation reactions in absence of both SPCA1 and when SERCA2 are inhibited by pharmacological agents. Moreover, we also shed light on the fact that expression and stability of TMEM165 (in humans) and Gdt1p (in yeast) were directly linked to the capacities of SPCA1 and Pmr1p to import Mn2+ into the Golgi lumen. Although differences exist between humans and yeast Saccharomyces cerevisiae, all of our work illustrates the crucial importance of the ionic homeostasis of the Golgi apparatus to sustain Golgi glycosylation reactions
Simsir, Méliné. "Modélisation structurale des pompes à efflux de la famille des RND : de la résistance aux antibiotiques à la résistance à la chimiothérapie." Electronic Thesis or Diss., Université Côte d'Azur, 2020. http://www.theses.fr/2020COAZ6040.
Full textResistance to chemotherapy can be studied comparatively to the study of resistance in microorganisms. Among the protein superfamily identified as being responsible for multidrug resistance are RND. Its members are widespread in bacterial organisms, but also in Archaea and Eukaryotes. Ptch1, a transmembrane protein, receptor of morphogen Hedgehog (Hh), a member of the RND, has cholesterol efflux activity, but also of chemotherapeutic drugs which confers resistanceto chemotherapy to cancer cells. In fact, an aberrant activity of the Hh signaling pathway has been observed in nearly 25% of cancers. Among the common features of multidrug resistance in RND is the ability of these transmembrane proteins to efflux a broad spectrum of substrates and drugs using protonmotive force.The goal of this project is the structural study of the drug efflux mechanism of Ptch1.In a first step, since we did not yet have access to a structure of Ptch1, we have performed an analysis of the numerous available structures of its bacterial counterpart AcrB, the RND paradigm model responsible for antibiotic resistance in gram-negative bacteria, in order to better understand the drug efflux mechanism of these proteins. We have implemented a strategy of conformational analysis of all available structures in order to explain the complex mechanism, including the drug efflux mechanism of these proteins, as a function of the structural and dynamic properties of sub-domains. The tools developed have been made available to the community.The structures of Ptch1 published in 2018 and 2019 revealed that the drug efflux mechanism of Ptch1 was probably very different from that of AcrB. In a second step, using these structures, we studied the cholesterol efflux mechanism of Ptch1 by molecular dynamics in order to subsequently study the drug efflux mechanism. We thus identified certain characteristics of the conformational changes that cantake place to allow this efflux. Finally, the docking of chemotherapeutic agents carried by Ptch1 suggests that drugs use the same interaction sites as cholesterol and potentially the same efflux mechanism
Meyer, Lionel. "Contribution des cellules souches de glioblastome à l'hétérogénéité tumorale : aspect thérapeutique et développement d'un système d'expression mosaïque fluorescent." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAJ109/document.
Full textThe glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and includes a subpopulation of tumoral stem cells (CSG). Those cells can self-renew, proliferate and differentiate by expressing specific neural markers and/or transdifferentiate into vascular-like cells. In this context, my work consisted first to produce and characterize several CSG lines from patient biopsies to constitute a bank of cell lines with different properties. We also evaluated the impact of in house therapeutic transmembrane peptides targeting the neuropilin-1 / plexin-A1 receptor platforms overexpressed in GBM. We thus showed that both targeting peptides decrease the growth of GSC in in vitro and in vivo models. Finally, I developed an inducible mosaic expression system to track the live differentiation of CSG. This system is based on the expression of four different fluorescent reporters controlled by the activity of cell type specific promoters