Journal articles on the topic 'Proteins Bioinformatics. Computational biology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Proteins Bioinformatics. Computational biology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
G. Hawley, Robert, Yuzhong Chen, Irene Riz, and Chen Zeng. "An Integrated Bioinformatics and Computational Biology Approach Identifies New BH3-Only Protein Candidates." Open Biology Journal 5, no. 1 (2012): 6–16. http://dx.doi.org/10.2174/1874196701205010006.
Full textMih, Nathan, Elizabeth Brunk, Ke Chen, et al. "ssbio: a Python framework for structural systems biology." Bioinformatics 34, no. 12 (2018): 2155–57. http://dx.doi.org/10.1093/bioinformatics/bty077.
Full textCameron, J. M., T. Hurd, and B. H. Robinson. "Computational identification of human mitochondrial proteins based on homology to yeast mitochondrially targeted proteins." Bioinformatics 21, no. 9 (2005): 1825–30. http://dx.doi.org/10.1093/bioinformatics/bti280.
Full textGabaldón, Toni. "Computational approaches for the prediction of protein function in the mitochondrion." American Journal of Physiology-Cell Physiology 291, no. 6 (2006): C1121—C1128. http://dx.doi.org/10.1152/ajpcell.00225.2006.
Full textLikić, Vladimir A., Malcolm J. McConville, Trevor Lithgow, and Antony Bacic. "Systems Biology: The Next Frontier for Bioinformatics." Advances in Bioinformatics 2010 (February 9, 2010): 1–10. http://dx.doi.org/10.1155/2010/268925.
Full textPERES LOPES, GRAZIELA MIÊ, and SANDRO JOSÉ DE SOUZA. "DISSECTING THE HUMAN SPLICEOSOME THROUGH BIOINFORMATICS AND PROTEOMICS APPROACHES." Journal of Bioinformatics and Computational Biology 01, no. 04 (2004): 743–50. http://dx.doi.org/10.1142/s0219720004000405.
Full textSegura, Joan, Ruben Sanchez-Garcia, C. O. S. Sorzano, and J. M. Carazo. "3DBIONOTES v3.0: crossing molecular and structural biology data with genomic variations." Bioinformatics 35, no. 18 (2019): 3512–13. http://dx.doi.org/10.1093/bioinformatics/btz118.
Full textSimoncini, David, Kam Y. J. Zhang, Thomas Schiex, and Sophie Barbe. "A structural homology approach for computational protein design with flexible backbone." Bioinformatics 35, no. 14 (2018): 2418–26. http://dx.doi.org/10.1093/bioinformatics/bty975.
Full textBensmail, Halima, and Abdelali Haoudi. "Postgenomics: Proteomics and Bioinformatics in Cancer Research." Journal of Biomedicine and Biotechnology 2003, no. 4 (2003): 217–30. http://dx.doi.org/10.1155/s1110724303209207.
Full textOrlando, Gabriele, Daniele Raimondi, Francesco Tabaro, Francesco Codicè, Yves Moreau, and Wim F. Vranken. "Computational identification of prion-like RNA-binding proteins that form liquid phase-separated condensates." Bioinformatics 35, no. 22 (2019): 4617–23. http://dx.doi.org/10.1093/bioinformatics/btz274.
Full textMorse, Thomas M. "Article Commentary: Neuroinformatics: From Bioinformatics to Databasing the Brain." Bioinformatics and Biology Insights 2 (January 2008): BBI.S540. http://dx.doi.org/10.4137/bbi.s540.
Full textCollins, Kodi, and Tandy Warnow. "PASTA for proteins." Bioinformatics 34, no. 22 (2018): 3939–41. http://dx.doi.org/10.1093/bioinformatics/bty495.
Full textLiu, Zhi-Ping. "Predicting lncRNA-protein Interactions by Machine Learning Methods: A Review." Current Bioinformatics 15, no. 8 (2021): 831–40. http://dx.doi.org/10.2174/1574893615666200224095925.
Full textPagès, Guillaume, and Sergei Grudinin. "DeepSymmetry: using 3D convolutional networks for identification of tandem repeats and internal symmetries in protein structures." Bioinformatics 35, no. 24 (2019): 5113–20. http://dx.doi.org/10.1093/bioinformatics/btz454.
Full textMiotto, Mattia, Pier Paolo Olimpieri, Lorenzo Di Rienzo, et al. "Insights on protein thermal stability: a graph representation of molecular interactions." Bioinformatics 35, no. 15 (2018): 2569–77. http://dx.doi.org/10.1093/bioinformatics/bty1011.
Full textCui, Juan, Qi Liu, David Puett, and Ying Xu. "Computational prediction of human proteins that can be secreted into the bloodstream." Bioinformatics 24, no. 20 (2008): 2370–75. http://dx.doi.org/10.1093/bioinformatics/btn418.
Full textGoncearenco, Alexander, and Igor N. Berezovsky. "Computational reconstruction of primordial prototypes of elementary functional loops in modern proteins." Bioinformatics 27, no. 17 (2011): 2368–75. http://dx.doi.org/10.1093/bioinformatics/btr396.
Full textZhu, Q., Y. Deng, P. Vanka, S. J. Brown, S. Muthukrishnan, and K. J. Kramer. "Computational identification of novel chitinase-like proteins in the Drosophila melanogaster genome." Bioinformatics 20, no. 2 (2004): 161–69. http://dx.doi.org/10.1093/bioinformatics/bth020.
Full textAszói, A., and W. R. Taylor. "Connection topology of proteins." Bioinformatics 9, no. 5 (1993): 523–29. http://dx.doi.org/10.1093/bioinformatics/9.5.523.
Full textRamakrishnan, Reshmi, Bert Houben, Frederic Rousseau, and Joost Schymkowitz. "Differential proteostatic regulation of insoluble and abundant proteins." Bioinformatics 35, no. 20 (2019): 4098–107. http://dx.doi.org/10.1093/bioinformatics/btz214.
Full textIqbal, Muhammad Javed, Ibrahima Faye, Brahim Belhaouari Samir, and Abas Md Said. "Efficient Feature Selection and Classification of Protein Sequence Data in Bioinformatics." Scientific World Journal 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/173869.
Full textDinkel, Holger, and Heinrich Sticht. "A computational strategy for the prediction of functional linear peptide motifs in proteins." Bioinformatics 23, no. 24 (2007): 3297–303. http://dx.doi.org/10.1093/bioinformatics/btm524.
Full textJain, Aashish, and Daisuke Kihara. "Phylo-PFP: improved automated protein function prediction using phylogenetic distance of distantly related sequences." Bioinformatics 35, no. 5 (2018): 753–59. http://dx.doi.org/10.1093/bioinformatics/bty704.
Full textSverud, O., and R. M. MacCallum. "Towards optimal views of proteins." Bioinformatics 19, no. 7 (2003): 882–88. http://dx.doi.org/10.1093/bioinformatics/btg100.
Full textSARAI, AKINORI, JORG SIEBERS, SAMUEL SELVARAJ, M. MICHAEL GROMIHA, and HIDETOSHI KONO. "INTEGRATION OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY TO UNDERSTAND PROTEIN-DNA RECOGNITION MECHANISM." Journal of Bioinformatics and Computational Biology 03, no. 01 (2005): 169–83. http://dx.doi.org/10.1142/s0219720005000965.
Full textOrlov, Yuriy L., Ancha V. Baranova, and Tatiana V. Tatarinova. "Bioinformatics Methods in Medical Genetics and Genomics." International Journal of Molecular Sciences 21, no. 17 (2020): 6224. http://dx.doi.org/10.3390/ijms21176224.
Full textPruess, Manuela, and Rolf Apweiler. "Bioinformatics Resources for In Silico Proteome Analysis." Journal of Biomedicine and Biotechnology 2003, no. 4 (2003): 231–36. http://dx.doi.org/10.1155/s1110724303209219.
Full textKhan, Abdul Arif, and Zakir Khan. "COVID-2019-associated overexpressed Prevotella proteins mediated host–pathogen interactions and their role in coronavirus outbreak." Bioinformatics 36, no. 13 (2020): 4065–69. http://dx.doi.org/10.1093/bioinformatics/btaa285.
Full textTiwari, Arvind Kumar, and Rajeev Srivastava. "A Survey of Computational Intelligence Techniques in Protein Function Prediction." International Journal of Proteomics 2014 (December 11, 2014): 1–22. http://dx.doi.org/10.1155/2014/845479.
Full textLong, Wei, Yang Yang, and Hong-Bin Shen. "ImPLoc: a multi-instance deep learning model for the prediction of protein subcellular localization based on immunohistochemistry images." Bioinformatics 36, no. 7 (2019): 2244–50. http://dx.doi.org/10.1093/bioinformatics/btz909.
Full textContreras-Moreira, B., and J. Collado-Vides. "Comparative footprinting of DNA-binding proteins." Bioinformatics 22, no. 14 (2006): e74-e80. http://dx.doi.org/10.1093/bioinformatics/btl215.
Full textBannen, R. M., V. Suresh, G. N. Phillips, S. J. Wright, and J. C. Mitchell. "Optimal design of thermally stable proteins." Bioinformatics 24, no. 20 (2008): 2339–43. http://dx.doi.org/10.1093/bioinformatics/btn450.
Full textGoffard, N., V. Garcia, F. Iragne, A. Groppi, and A. de Daruvar. "IPPRED: server for proteins interactions inference." Bioinformatics 19, no. 7 (2003): 903–4. http://dx.doi.org/10.1093/bioinformatics/btg091.
Full textArnold, R., T. Rattei, P. Tischler, M. D. Truong, V. Stumpflen, and W. Mewes. "SIMAP--The similarity matrix of proteins." Bioinformatics 21, Suppl 2 (2005): ii42—ii46. http://dx.doi.org/10.1093/bioinformatics/bti1107.
Full textLeluk, J., L. Konieczny, and I. Roterman. "Search for structural similarity in proteins." Bioinformatics 19, no. 1 (2003): 117–24. http://dx.doi.org/10.1093/bioinformatics/19.1.117.
Full textCounsell, Damian. "Workshop—Predicting the Structure of Biological Molecules." Comparative and Functional Genomics 5, no. 6-7 (2004): 480–90. http://dx.doi.org/10.1002/cfg.414.
Full textDai, Bowen, and Chris Bailey-Kellogg. "Protein interaction interface region prediction by geometric deep learning." Bioinformatics 37, no. 17 (2021): 2580–88. http://dx.doi.org/10.1093/bioinformatics/btab154.
Full textZhang, Zheng, Fen Yu, Yuanqiang Zou, et al. "Phage protein receptors have multiple interaction partners and high expressions." Bioinformatics 36, no. 10 (2020): 2975–79. http://dx.doi.org/10.1093/bioinformatics/btaa123.
Full textSuplatov, D. А., and V. К. Švedas. "Study of Functional and Allosteric Sites in Protein Superfamilies." Acta Naturae 7, no. 4 (2015): 34–45. http://dx.doi.org/10.32607/20758251-2015-7-4-34-45.
Full textLafita, Aleix, Pengfei Tian, Robert B. Best, and Alex Bateman. "TADOSS: computational estimation of tandem domain swap stability." Bioinformatics 35, no. 14 (2018): 2507–8. http://dx.doi.org/10.1093/bioinformatics/bty974.
Full textKhaldi, Nora. "Bioinformatics approaches for identifying new therapeutic bioactive peptides in food." Functional Foods in Health and Disease 2, no. 10 (2012): 325. http://dx.doi.org/10.31989/ffhd.v2i10.80.
Full textXu, Ying-Ying, Hong-Bin Shen, and Robert F. Murphy. "Learning complex subcellular distribution patterns of proteins via analysis of immunohistochemistry images." Bioinformatics 36, no. 6 (2019): 1908–14. http://dx.doi.org/10.1093/bioinformatics/btz844.
Full textModi, M., N. G. Jadeja, and K. Zala. "FMFinder: A Functional Module Detector for PPI Networks." Engineering, Technology & Applied Science Research 7, no. 5 (2017): 2022–25. http://dx.doi.org/10.48084/etasr.1347.
Full textRao, Allam Appa, Hanuman Thota, Ramamurthy Adapala, et al. "Proteomic Analysis in Diabetic Cardiomyopathy using Bioinformatics Approach." Bioinformatics and Biology Insights 2 (January 2008): BBI.S313. http://dx.doi.org/10.4137/bbi.s313.
Full textWang, Kai, Nan Lyu, Hongjuan Diao, et al. "GM-DockZn: a geometry matching-based docking algorithm for zinc proteins." Bioinformatics 36, no. 13 (2020): 4004–11. http://dx.doi.org/10.1093/bioinformatics/btaa292.
Full textChen, Muhao, Chelsea J. T. Ju, Guangyu Zhou, et al. "Multifaceted protein–protein interaction prediction based on Siamese residual RCNN." Bioinformatics 35, no. 14 (2019): i305—i314. http://dx.doi.org/10.1093/bioinformatics/btz328.
Full textChen, Lifan, Xiaoqin Tan, Dingyan Wang, et al. "TransformerCPI: improving compound–protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments." Bioinformatics 36, no. 16 (2020): 4406–14. http://dx.doi.org/10.1093/bioinformatics/btaa524.
Full textDurairaj, Janani, Mehmet Akdel, Dick de Ridder, and Aalt D. J. van Dijk. "Geometricus represents protein structures as shape-mers derived from moment invariants." Bioinformatics 36, Supplement_2 (2020): i718—i725. http://dx.doi.org/10.1093/bioinformatics/btaa839.
Full textQuadeer, Ahmed A., David Morales-Jimenez, and Matthew R. McKay. "RocaSec: a standalone GUI-based package for robust co-evolutionary analysis of proteins." Bioinformatics 36, no. 7 (2019): 2262–63. http://dx.doi.org/10.1093/bioinformatics/btz890.
Full textZervou, Michaela Areti, Effrosyni Doutsi, Pavlos Pavlidis, and Panagiotis Tsakalides. "Structural classification of proteins based on the computationally efficient recurrence quantification analysis and horizontal visibility graphs." Bioinformatics 37, no. 13 (2021): 1796–804. http://dx.doi.org/10.1093/bioinformatics/btab407.
Full text