Journal articles on the topic 'Proteolysis targeting chimera (PROTAC)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Proteolysis targeting chimera (PROTAC).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wan, Yichao, Chunxing Yan, Han Gao, and Tingting Liu. "Small-molecule PROTACs: novel agents for cancer therapy." Future Medicinal Chemistry 12, no. 10 (2020): 915–38. http://dx.doi.org/10.4155/fmc-2019-0340.
Full textSmalley, Joshua P., Grace E. Adams, Christopher J. Millard, et al. "PROTAC-mediated degradation of class I histone deacetylase enzymes in corepressor complexes." Chemical Communications 56, no. 32 (2020): 4476–79. http://dx.doi.org/10.1039/d0cc01485k.
Full textRobb, Caroline M., Jacob I. Contreras, Smit Kour, et al. "Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC)." Chemical Communications 53, no. 54 (2017): 7577–80. http://dx.doi.org/10.1039/c7cc03879h.
Full textXia, Li-Wen, Meng-Yu Ba, Wei Liu, et al. "Triazol: a privileged scaffold for proteolysis targeting chimeras." Future Medicinal Chemistry 11, no. 22 (2019): 2919–73. http://dx.doi.org/10.4155/fmc-2019-0159.
Full textCimas, Francisco J., Enrique Niza, Alberto Juan, et al. "Controlled Delivery of BET-PROTACs: In Vitro Evaluation of MZ1-Loaded Polymeric Antibody Conjugated Nanoparticles in Breast Cancer." Pharmaceutics 12, no. 10 (2020): 986. http://dx.doi.org/10.3390/pharmaceutics12100986.
Full textKoravović, Mladen, Gordana Tasić, Milena Rmandić, and Bojan Marković. "Photocontrollable PROTAC molecules: Structure and mechanism of action." Arhiv za farmaciju 71, no. 3 (2021): 161–76. http://dx.doi.org/10.5937/arhfarm71-30785.
Full textLiu, Jing, He Chen, Leina Ma, et al. "Light-induced control of protein destruction by opto-PROTAC." Science Advances 6, no. 8 (2020): eaay5154. http://dx.doi.org/10.1126/sciadv.aay5154.
Full textWang, Pingyuan, and Jia Zhou. "Proteolysis Targeting Chimera (PROTAC): A Paradigm-Shifting Approach in Small Molecule Drug Discovery." Current Topics in Medicinal Chemistry 18, no. 16 (2018): 1354–56. http://dx.doi.org/10.2174/1568026618666181010101922.
Full textCao, Fangyuan, Sander de Weerd, Deng Chen, Martijn R. H. Zwinderman, Petra E. van der Wouden, and Frank J. Dekker. "Induced protein degradation of histone deacetylases 3 (HDAC3) by proteolysis targeting chimera (PROTAC)." European Journal of Medicinal Chemistry 208 (December 2020): 112800. http://dx.doi.org/10.1016/j.ejmech.2020.112800.
Full textZeng, Shenxin, Wenhai Huang, Xiaoliang Zheng, et al. "Proteolysis targeting chimera (PROTAC) in drug discovery paradigm: Recent progress and future challenges." European Journal of Medicinal Chemistry 210 (January 2021): 112981. http://dx.doi.org/10.1016/j.ejmech.2020.112981.
Full textDu, M., G. Wang, T. M. Ismail, et al. "Proteolysis-targeting chimera (PROTAC) compounds to degrade S100A4 and inhibit breast cancer metastasis." Annals of Oncology 29 (November 2018): ix20. http://dx.doi.org/10.1093/annonc/mdy428.020.
Full textKang, Chung Hyo, Dong Ho Lee, Chong Ock Lee, Jae Du Ha, Chi Hoon Park, and Jong Yeon Hwang. "Induced protein degradation of anaplastic lymphoma kinase (ALK) by proteolysis targeting chimera (PROTAC)." Biochemical and Biophysical Research Communications 505, no. 2 (2018): 542–47. http://dx.doi.org/10.1016/j.bbrc.2018.09.169.
Full textKrajcovicova, S., R. Jorda, D. Hendrychova, V. Krystof, and M. Soural. "Solid-phase synthesis for thalidomide-based proteolysis-targeting chimeras (PROTAC)." Chemical Communications 55, no. 7 (2019): 929–32. http://dx.doi.org/10.1039/c8cc08716d.
Full textWeng, Gaoqi, Chao Shen, Dongsheng Cao, et al. "PROTAC-DB: an online database of PROTACs." Nucleic Acids Research 49, no. D1 (2020): D1381—D1387. http://dx.doi.org/10.1093/nar/gkaa807.
Full textChen, Yilin, and Jianping Jin. "The application of ubiquitin ligases in the PROTAC drug design." Acta Biochimica et Biophysica Sinica 52, no. 7 (2020): 776–90. http://dx.doi.org/10.1093/abbs/gmaa053.
Full textKim, Ga Yeong, Chae Won Song, Yo-Sep Yang, et al. "Chemical Degradation of Androgen Receptor (AR) Using Bicalutamide Analog–Thalidomide PROTACs." Molecules 26, no. 9 (2021): 2525. http://dx.doi.org/10.3390/molecules26092525.
Full textZhang, Hao, Hong-Yi Zhao, Xiao-Xiao Xi, et al. "Discovery of potent epidermal growth factor receptor (EGFR) degraders by proteolysis targeting chimera (PROTAC)." European Journal of Medicinal Chemistry 189 (March 2020): 112061. http://dx.doi.org/10.1016/j.ejmech.2020.112061.
Full textManda, Sudhakar, Na Keum Lee, Dong-Chan Oh, and Jeeyeon Lee. "Design, Synthesis, and Biological Evaluation of Proteolysis Targeting Chimeras (PROTACs) for the Dual Degradation of IGF-1R and Src." Molecules 25, no. 8 (2020): 1948. http://dx.doi.org/10.3390/molecules25081948.
Full textGütschow, Michael, Christian Steinebach, Sabine Anna Voell, et al. "A Facile Synthesis of Ligands for the von Hippel–Lindau E3 Ligase." Synthesis 52, no. 17 (2020): 2521–27. http://dx.doi.org/10.1055/s-0040-1707400.
Full textGaldeano, Carles. "Expanding the Toolbox of E3 Ligases for Protein Degradation: Targeting the “Undruggable” Fbw7 E3 Ligase." Proceedings 22, no. 1 (2019): 101. http://dx.doi.org/10.3390/proceedings2019022101.
Full textZagidullin, Almaz, Vasili Milyukov, Albert Rizvanov, and Emil Bulatov. "Novel approaches for the rational design of PROTAC linkers." Exploration of Targeted Anti-tumor Therapy 1, no. 5 (2020): 381–90. http://dx.doi.org/10.37349/etat.2020.00023.
Full textSun, B., W. Fiskus, Y. Qian, et al. "BET protein proteolysis targeting chimera (PROTAC) exerts potent lethal activity against mantle cell lymphoma cells." Leukemia 32, no. 2 (2017): 343–52. http://dx.doi.org/10.1038/leu.2017.207.
Full textHu, Mingxing, Weilin Zhou, Yijie Wang, et al. "Discovery of the first potent proteolysis targeting chimera (PROTAC) degrader of indoleamine 2,3-dioxygenase 1." Acta Pharmaceutica Sinica B 10, no. 10 (2020): 1943–53. http://dx.doi.org/10.1016/j.apsb.2020.02.010.
Full textXiang, Wang, Qiwei Wang, Kai Ran, Jing Ren, Yaojie Shi, and Luoting Yu. "Structure-guided discovery of novel potent and efficacious proteolysis targeting chimera (PROTAC) degrader of BRD4." Bioorganic Chemistry 115 (October 2021): 105238. http://dx.doi.org/10.1016/j.bioorg.2021.105238.
Full textSaenz, Dyana T., Warren Fiskus, Kanak Raina, et al. "Superior Lethal Activity of Novel BET Protein Proteolysis Targeting Chimera (BETP-PROTACs) Versus Betp Bromodomain Inhibitor (BETi) Against Post-Myeloproliferative Neoplasm (MPN) Secondary (s) AML Cells." Blood 128, no. 22 (2016): 747. http://dx.doi.org/10.1182/blood.v128.22.747.747.
Full textXia, Liwen, Wei Liu, Yinsen Song, Hailiang Zhu, and Yongtao Duan. "The Present and Future of Novel Protein Degradation Technology." Current Topics in Medicinal Chemistry 19, no. 20 (2019): 1784–88. http://dx.doi.org/10.2174/1568026619666191011162955.
Full textHu, Jiantao, Biao Hu, Mingliang Wang, et al. "Discovery of ERD-308 as a Highly Potent Proteolysis Targeting Chimera (PROTAC) Degrader of Estrogen Receptor (ER)." Journal of Medicinal Chemistry 62, no. 3 (2019): 1420–42. http://dx.doi.org/10.1021/acs.jmedchem.8b01572.
Full textSemenova, Elizaveta, Maria Luisa Guerriero, Bairu Zhang, et al. "Flexible Fitting of PROTAC Concentration–Response Curves with Changepoint Gaussian Processes." SLAS DISCOVERY: Advancing the Science of Drug Discovery 26, no. 9 (2021): 1212–24. http://dx.doi.org/10.1177/24725552211028142.
Full textGiardina, Sarah F., Elena Valdambrini, J. David Warren, and Francis Barany. "PROTACs: Promising Approaches for Epigenetic Strategies to Overcome Drug Resistance." Current Cancer Drug Targets 21, no. 4 (2021): 306–25. http://dx.doi.org/10.2174/1568009621666210203110857.
Full textBao, Shui-Ming, Qing-Hui Hu, Wen-Ting Yang, Yao Wang, Yin-Ping Tong, and Wen-Dai Bao. "Targeting Epidermal Growth Factor Receptor in Non-Small-Cell-Lung Cancer: Current State and Future Perspective." Anti-Cancer Agents in Medicinal Chemistry 19, no. 8 (2019): 984–91. http://dx.doi.org/10.2174/1871520619666190313161009.
Full textPorazzi, Patrizia, Marco De Dominici, Joseph Salvino, and Bruno Calabretta. "Targeting the CDK6 Dependence of Ph+ Acute Lymphoblastic Leukemia." Genes 12, no. 9 (2021): 1355. http://dx.doi.org/10.3390/genes12091355.
Full textWei, Mingming, Rui Zhao, Yuting Cao, et al. "First orally bioavailable prodrug of proteolysis targeting chimera (PROTAC) degrades cyclin-dependent kinases 2/4/6 in vivo." European Journal of Medicinal Chemistry 209 (January 2021): 112903. http://dx.doi.org/10.1016/j.ejmech.2020.112903.
Full textXiao, Zhangping, Shanshan Song, Deng Chen, et al. "Proteolysis Targeting Chimera (PROTAC) for Macrophage Migration Inhibitory Factor (MIF) Has Anti‐Proliferative Activity in Lung Cancer Cells." Angewandte Chemie International Edition 60, no. 32 (2021): 17514–21. http://dx.doi.org/10.1002/anie.202101864.
Full textXiao, Zhangping, Shanshan Song, Deng Chen, et al. "Proteolysis Targeting Chimera (PROTAC) for Macrophage Migration Inhibitory Factor (MIF) Has Anti‐Proliferative Activity in Lung Cancer Cells." Angewandte Chemie 133, no. 32 (2021): 17655–62. http://dx.doi.org/10.1002/ange.202101864.
Full textHe, Yonghan, Raphael Koch, Vivekananda Budamagunta, et al. "DT2216, a BCL-XL Proteolysis Targeting Chimera (PROTAC), Is a Potent Anti T-Cell Lymphoma Agent That Does Not Induce Significant Thrombocytopenia." Blood 134, Supplement_1 (2019): 303. http://dx.doi.org/10.1182/blood-2019-125820.
Full textNeklesa, Taavi, Lawrence B. Snyder, Ryan R. Willard, et al. "An oral androgen receptor PROTAC degrader for prostate cancer." Journal of Clinical Oncology 36, no. 6_suppl (2018): 381. http://dx.doi.org/10.1200/jco.2018.36.6_suppl.381.
Full textNeklesa, Taavi K., Lawrence B. Snyder, Mark Bookbinder, et al. "An oral androgen receptor PROTAC degrader for prostate cancer." Journal of Clinical Oncology 35, no. 6_suppl (2017): 273. http://dx.doi.org/10.1200/jco.2017.35.6_suppl.273.
Full textFuchs, Ota, and Radka Bokorova. "Preclinical Studies of PROTACs in Hematological Malignancies." Cardiovascular & Hematological Disorders-Drug Targets 21, no. 1 (2021): 7–22. http://dx.doi.org/10.2174/1871529x21666210308111546.
Full textSchiedel, Matthias, Daniel Herp, Sören Hammelmann, et al. "Chemically Induced Degradation of Sirtuin 2 (Sirt2) by a Proteolysis Targeting Chimera (PROTAC) Based on Sirtuin Rearranging Ligands (SirReals)." Journal of Medicinal Chemistry 61, no. 2 (2017): 482–91. http://dx.doi.org/10.1021/acs.jmedchem.6b01872.
Full textChen, Linrong, Liuquan Han, Shujun Mao, et al. "Discovery of A031 as effective proteolysis targeting chimera (PROTAC) androgen receptor (AR) degrader for the treatment of prostate cancer." European Journal of Medicinal Chemistry 216 (April 2021): 113307. http://dx.doi.org/10.1016/j.ejmech.2021.113307.
Full textPiya, Sujan, Hong Mu, Seemana Bhattacharya, et al. "BRD4 Proteolysis Targeting Chimera (PROTAC) ARV-825 Targets Both NOTCH1-MYC Regulatory Circuit and Leukemia-Microenvironment in T-ALL." Blood 130, Suppl_1 (2017): 716. http://dx.doi.org/10.1182/blood.v130.suppl_1.716.716.
Full textBollu, Lakshmi, Derek Wainwright, Lijie Zhai, et al. "DDRE-09. DEVELOPING IDO-PROTACS TO IMPROVE IMMUNOTHERAPEUTIC EFFICACY IN PATIENTS WITH GLIOBLASTOMA." Neuro-Oncology 22, Supplement_2 (2020): ii63. http://dx.doi.org/10.1093/neuonc/noaa215.254.
Full textZorba, Adelajda, Chuong Nguyen, Yingrong Xu, et al. "Delineating the role of cooperativity in the design of potent PROTACs for BTK." Proceedings of the National Academy of Sciences 115, no. 31 (2018): E7285—E7292. http://dx.doi.org/10.1073/pnas.1803662115.
Full textMárquez-Cantudo, Laura, Ana Ramos, Claire Coderch, and Beatriz de Pascual-Teresa. "Proteasomal Degradation of Zn-Dependent Hdacs: The E3-Ligases Implicated and the Designed Protacs that Enable Degradation." Molecules 26, no. 18 (2021): 5606. http://dx.doi.org/10.3390/molecules26185606.
Full textLim, Shuhui, Regina Khoo, Khong Ming Peh, et al. "bioPROTACs as versatile modulators of intracellular therapeutic targets including proliferating cell nuclear antigen (PCNA)." Proceedings of the National Academy of Sciences 117, no. 11 (2020): 5791–800. http://dx.doi.org/10.1073/pnas.1920251117.
Full textHuang, Xiaohu, Yan Liu, Yin Wang, Christopher Bailey, Pan Zheng та Yang Liu. "Dual Targeting Oncoproteins MYC and HIF1α Regresses Tumor Growth of Lung Cancer and Lymphoma". Cancers 13, № 4 (2021): 694. http://dx.doi.org/10.3390/cancers13040694.
Full textSun, Baohua, Warren Fiskus, Liang Zhang, et al. "Novel BET Protein Proteolysis Targeting Chimeras (BETP-PROTACs) Exert Potent Single Agent and Synergistic Activity with Ibrutinib and Venetoclax Against Human Mantle Cell Lymphoma Cells." Blood 128, no. 22 (2016): 1058. http://dx.doi.org/10.1182/blood.v128.22.1058.1058.
Full textWang, Yubo, Yuanyuan Zhou, Sheng Cao, et al. "In vitro and in vivo degradation of programmed cell death ligand 1 (PD-L1) by a proteolysis targeting chimera (PROTAC)." Bioorganic Chemistry 111 (June 2021): 104833. http://dx.doi.org/10.1016/j.bioorg.2021.104833.
Full textMologni, Luca, Giovanni Marzaro, Sara Redaelli, and Alfonso Zambon. "Dual Kinase Targeting in Leukemia." Cancers 13, no. 1 (2021): 119. http://dx.doi.org/10.3390/cancers13010119.
Full textPang, Xiao-Jing, Xiu-Juan Liu, Yuan Liu, et al. "Drug Discovery Targeting Focal Adhesion Kinase (FAK) as a Promising Cancer Therapy." Molecules 26, no. 14 (2021): 4250. http://dx.doi.org/10.3390/molecules26144250.
Full text