Academic literature on the topic 'Proteostasis Deficiencies'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Proteostasis Deficiencies.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Proteostasis Deficiencies"

1

Ruan, Linhao, Yuhao Wang, Xi Zhang, Alexis Tomaszewski, Joshua T. McNamara, and Rong Li. "Mitochondria-Associated Proteostasis." Annual Review of Biophysics 49, no. 1 (May 6, 2020): 41–67. http://dx.doi.org/10.1146/annurev-biophys-121219-081604.

Full text
Abstract:
Mitochondria are essential organelles in eukaryotes. Most mitochondrial proteins are encoded by the nuclear genome and translated in the cytosol. Nuclear-encoded mitochondrial proteins need to be imported, processed, folded, and assembled into their functional states. To maintain protein homeostasis (proteostasis), mitochondria are equipped with a distinct set of quality control machineries. Deficiencies in such systems lead to mitochondrial dysfunction, which is a hallmark of aging and many human diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancer. In this review, we discuss the unique challenges and solutions of proteostasis in mitochondria. The import machinery coordinates with mitochondrial proteases and chaperones to maintain the mitochondrial proteome. Moreover, mitochondrial proteostasis depends on cytosolic protein quality control mechanisms during crises. In turn, mitochondria facilitate cytosolic proteostasis. Increasing evidence suggests that enhancing mitochondrial proteostasis may hold therapeutic potential to protect against protein aggregation–associated cellular defects.
APA, Harvard, Vancouver, ISO, and other styles
2

Hulleman, John D., Shalesh Kaushal, William E. Balch, and Jeffery W. Kelly. "Compromised mutant EFEMP1 secretion associated with macular dystrophy remedied by proteostasis network alteration." Molecular Biology of the Cell 22, no. 24 (December 15, 2011): 4765–75. http://dx.doi.org/10.1091/mbc.e11-08-0695.

Full text
Abstract:
An Arg345Trp (R345W) mutation in epidermal growth factor–containing, fibulin-like extracellular matrix protein 1 (EFEMP1) causes its inefficient secretion and the macular dystrophy malattia leventinese/Doyne honeycomb retinal dystrophy (ML/DHRD). To understand the influence of the protein homeostasis (or proteostasis) network in rescuing mutant EFEMP1 misfolding and inefficient secretion linked to ML/DHRD, we developed a convenient and sensitive cell-based luminescence assay to monitor secretion versus intracellular accumulation. Fusing EFEMP1 to Gaussia luciferase faithfully recapitulates mutant EFEMP1 secretion defects observed previously using more cumbersome methodology. To understand what governs mutant intracellular retention, we generated a series of R345 mutants. These mutants revealed that aromatic residue substitutions (i.e., Trp, Tyr, and Phe) at position 345 cause significant EFEMP1 secretion deficiencies. These secretion defects appear to be caused, in part, by reduced native disulfide bonding in domain 6 harboring the 345 position. Finally, we demonstrate that mutant EFEMP1 secretion and proper disulfide formation are enhanced by adaptation of the cellular environment by a reduced growth temperature and/or translational attenuation. This study highlights the mechanisms underlying the inefficient secretion of R345W EFEMP1 and demonstrates that alteration of the proteostasis network may provide a strategy to alleviate or delay the onset of this macular dystrophy.
APA, Harvard, Vancouver, ISO, and other styles
3

Cuanalo-Contreras, Karina, Abhisek Mukherjee, and Claudio Soto. "Role of Protein Misfolding and Proteostasis Deficiency in Protein Misfolding Diseases and Aging." International Journal of Cell Biology 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/638083.

Full text
Abstract:
The misfolding, aggregation, and tissue accumulation of proteins are common events in diverse chronic diseases, known as protein misfolding disorders. Many of these diseases are associated with aging, but the mechanism for this connection is unknown. Recent evidence has shown that the formation and accumulation of protein aggregates may be a process frequently occurring during normal aging, but it is unknown whether protein misfolding is a cause or a consequence of aging. To combat the formation of these misfolded aggregates cells have developed complex and complementary pathways aiming to maintain protein homeostasis. These protective pathways include the unfolded protein response, the ubiquitin proteasome system, autophagy, and the encapsulation of damaged proteins in aggresomes. In this paper we review the current knowledge on the role of protein misfolding in disease and aging as well as the implication of deficiencies in the proteostasis cellular pathways in these processes. It is likely that further understanding of the mechanisms involved in protein misfolding and the natural defense pathways may lead to novel strategies for treatment of age-dependent protein misfolding disorders and perhaps aging itself.
APA, Harvard, Vancouver, ISO, and other styles
4

Grabowski, Gregory A. "Gaucher disease and other storage disorders." Hematology 2012, no. 1 (December 8, 2012): 13–18. http://dx.doi.org/10.1182/asheducation.v2012.1.13.3797921.

Full text
Abstract:
Abstract In 1882, Philippe Gaucher described a 32-year-old woman with massive splenomegaly and unusually large cells in the spleen, which he called a “primary epithelioma of the spleen.” The systemic nature and inheritance of the disease and its variants involving the viscera and CNS were described over the next century. The delineation of the causal enzymatic defects, genetics, molecular pathology, and genomics have provided pathogenic insights into the phenotypic spectrum and the bases for development of specific therapies for what is now known as Gaucher disease. As a prototype, the clinically and economically successful intracellular enzyme therapy provided the impetus for the expansion of similar research and therapeutic developments for other lysosomal storage diseases (LSDs) and orphan diseases, including Fabry, Pompe, and Niemann-Pick diseases, as well as several mucopolysaccharidoses. Continuing studies of such LSDs, which occur as a group in more than 7000 live births, have revealed the complex molecular interdigitation with the autophagy and apoptotic pathways and proteostasis and the impact of disruptions of the lysosomal/autophagy and proteostasis systems on more common diseases has been recognized. Examples include age-related neurodegenerative diseases (eg, Parkinson disease and Gaucher disease), idiopathic hypertrophic myocardiopathies, stroke and renal failure (eg, Fabry disease), and Nonalcoholic Fatty Liver Disease/Nonalcoholic SteatoHepatitis (NAFLD/NASH) and atherosclerosis (eg, lysosomal acid lipase deficiencies). Although perceived as rare, the availability of treatment and the impact of the LSDs on more common diseases require their integration into routine clinical practice.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Proteostasis Deficiencies"

1

Mackness, Brian C. "The Identification and Targeting of Partially-Folded Conformations on the Folding Free-Energy Landscapes of ALS-Linked Proteins for Therapeutic Intervention: A Dissertation." eScholarship@UMMS, 2016. https://escholarship.umassmed.edu/gsbs_diss/826.

Full text
Abstract:
The hallmark feature of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), is the accumulation of cytoplasmic inclusions of key disease-linked proteins. Two of these proteins, TDP-43 and SOD1, represent a significant proportion of sporadic and familial ALS cases, respectively. The population of potentially aggregation-prone partially-folded states on the folding free-energy landscape may serve as a common mechanism for ALS pathogenesis. A detailed biophysical understanding of the folding and misfolding energy landscapes of TDP-43 and SOD1 can provide critical insights into the design of novel therapeutics to delay onset and progression in ALS. Equilibrium unfolding studies on the RNA recognition motif (RRM) domains of TDP-43 revealed the population of a stable RRM intermediate in RRM2, with residual structure localized to the N-terminal half of the domain. Other RRM domains from FUS/TLS and hnRNP A1 similarly populate RRM intermediates, suggesting a possible connection with disease. Mutations, which enhance the population of the RRM2 intermediate, could serve as tools for deciphering the functional and misfolding roles of this partially-folded state in disease models, leading to the development of new biomarkers to track ALS progression. ALS mutations in SOD1 have been shown to destabilize the stable homodimer to result in increased populations of the monomeric and unfolded forms of SOD1. Mechanistic insights into the misfolding of SOD1 demonstrated that the unfolded state is a key species in the initiation and propagation of aggregation, suggesting that limiting these populations may provide therapeutic benefit to ALS patients. An in vitro time-resolved Förster Resonance Energy Transfer assay to screen small molecules that stabilize the native state of SOD1 has identified several lead compounds, providing a pathway to new therapeutics to treat ALS.
APA, Harvard, Vancouver, ISO, and other styles
2

Mackness, Brian C. "The Identification and Targeting of Partially-Folded Conformations on the Folding Free-Energy Landscapes of ALS-Linked Proteins for Therapeutic Intervention: A Dissertation." eScholarship@UMMS, 2004. http://escholarship.umassmed.edu/gsbs_diss/826.

Full text
Abstract:
The hallmark feature of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), is the accumulation of cytoplasmic inclusions of key disease-linked proteins. Two of these proteins, TDP-43 and SOD1, represent a significant proportion of sporadic and familial ALS cases, respectively. The population of potentially aggregation-prone partially-folded states on the folding free-energy landscape may serve as a common mechanism for ALS pathogenesis. A detailed biophysical understanding of the folding and misfolding energy landscapes of TDP-43 and SOD1 can provide critical insights into the design of novel therapeutics to delay onset and progression in ALS. Equilibrium unfolding studies on the RNA recognition motif (RRM) domains of TDP-43 revealed the population of a stable RRM intermediate in RRM2, with residual structure localized to the N-terminal half of the domain. Other RRM domains from FUS/TLS and hnRNP A1 similarly populate RRM intermediates, suggesting a possible connection with disease. Mutations, which enhance the population of the RRM2 intermediate, could serve as tools for deciphering the functional and misfolding roles of this partially-folded state in disease models, leading to the development of new biomarkers to track ALS progression. ALS mutations in SOD1 have been shown to destabilize the stable homodimer to result in increased populations of the monomeric and unfolded forms of SOD1. Mechanistic insights into the misfolding of SOD1 demonstrated that the unfolded state is a key species in the initiation and propagation of aggregation, suggesting that limiting these populations may provide therapeutic benefit to ALS patients. An in vitro time-resolved Förster Resonance Energy Transfer assay to screen small molecules that stabilize the native state of SOD1 has identified several lead compounds, providing a pathway to new therapeutics to treat ALS.
APA, Harvard, Vancouver, ISO, and other styles
3

Rotunno, Melissa S. "Identifying, Targeting, and Exploiting a Common Misfolded, Toxic Conformation of SOD1 in ALS: A Dissertation." eScholarship@UMMS, 2015. http://escholarship.umassmed.edu/gsbs_diss/781.

Full text
Abstract:
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by a loss of voluntary movement over time, leading to paralysis and death. While 10% of ALS cases are inherited or familial (FALS), the majority of cases (90%) are sporadic (SALS) with unknown etiology. Approximately 20% of FALS cases are genetically linked to a mutation in the anti-oxidizing enzyme, superoxide dismutase (SOD1). SALS and FALS are clinically indistinguishable, suggesting a common pathogenic mechanism exists for both types. Since such a large number of genetic mutations in SOD1 result in FALS (>170), it is reasonable to suspect that non-genetic modifications to SOD1 induce structural perturbations that result in ALS pathology as well. In fact, misfolded SOD1 lacking any genetic mutation was identified in end stage spinal cord tissues of SALS patients using misfolded SOD1-specific antibodies. In addition, this misfolded WT SOD1 found in SALS tissue inhibits axonal transport in vitro, supporting the notion that misfolded WT SOD1 exhibits toxic properties like that of FALS-linked SOD1. Indeed, aberrant post-translational modifications, such as oxidation, cause WT SOD1 to mimic the toxic properties of FALS-linked mutant SOD1. Based on these data, I hypothesize that modified, misfolded forms of WT SOD1 contribute to SALS disease progression in a manner similar to FALS linked mutant SOD1 in FALS. The work presented in this dissertation supports this hypothesis. Specifically, one common misfolded form of SOD1 is defined and exposure of this toxic region is shown to enhance SOD1 toxicity. Preventing exposure, or perhaps stabilization, of this “toxic” region is a potential therapeutic target for a subset of both familial and sporadic ALS patients. Further, the possibility of exploiting this misfolded SOD1 species as a biomarker is explored. For example, an over-oxidized SOD1 species was identified in peripheral blood mononuclear cells (PBMCs) from SALS patients that is reduced in controls. Moreover, 2-dimensional gel electrophoresis revealed a more negatively charged species of SOD1 in PBMCs of healthy controls greatly reduced in SALS patients. This species is hypothesized to be involved in the degradation of SOD1, further implicating both misfolded SOD1 and altered protein homeostasis in ALS pathogenesis.
APA, Harvard, Vancouver, ISO, and other styles
4

Kayatekin, Can. "The Coupling Between Folding, Zinc Binding, and Disulfide Bond Status of Human Cu, Zn Superoxide Dismutase: A Dissertation." eScholarship@UMMS, 2010. https://escholarship.umassmed.edu/gsbs_diss/515.

Full text
Abstract:
Cu, Zn superoxide dismutase (SOD1) is a dimeric, β-sandwich, metalloenzyme responsible for the dismutation of superoxide. Mutations covering nearly 50% of the amino acid sequence of SOD1 have been found to acquire a toxic gain-of-function leading to amyotrophic lateral sclerosis. A hallmark of this disease is the presence of insoluble aggregates containing SOD1 found in the brain and spinal cord. While it is unclear how these aggregates or smaller, precursor oligomeric species may be the source of the toxicity, mutations leading to increased populations of unstable, partially folded species along the folding pathway of SOD1 may be responsible for seeding and propagating aggregation. In an effort to determine the responsible species, we have systematically characterized the stability and folding kinetics of five well studied ALS variants: A4V, L38V, G93A, L106V and S134N. The effect of the amino acid substitutions was determined on a variety of different constructs characterizing the various post-translational maturation steps of SOD1: folding, disulfide bond formation and Zn binding. Zn was found to bind progressively tighter along the folding pathway of SOD1, minimizing populations of monomeric species. In contrast, ALS variants were found to have the greatest perturbation in the equilibrium populations of the folded and unfolded state for the most immature, disulfide-reduced metal-free SOD1. In this species, at physiological temperature, four out of five ALS variants were >50% unfolded. Finally the energetic barriers in the folding and unfolding reaction were studied to investigate the unusually slow folding of SOD1. These results reveal that both unfolding and refolding are dominated by enthalpic barriers which may be explained by the desolvation of the chain and provide insights into the role of sequence in governing the folding pathway and rate.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Proteostasis Deficiencies"

1

Protein Quality Control in Neurodegenerative Diseases Research and Perspectives in Alzheimers Disease. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Uversky, Vladimir N., and Yuri Lyubchenko. Bio-Nanoimaging: Protein Misfolding and Aggregation. Elsevier Science & Technology Books, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Uversky, Vladimir, and Yuri Lyubchenko. Bio-Nanoimaging: Protein Misfolding and Aggregation. Elsevier Science & Technology Books, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography