Academic literature on the topic 'Proteus'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Proteus.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Proteus"

1

Pal, Rimesh, Rajsmita Bhattacharjee, and Anil Bhansali. "Protean manifestations of Proteus syndrome." Postgraduate Medical Journal 94, no. 1113 (April 6, 2018): 416. http://dx.doi.org/10.1136/postgradmedj-2018-135731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kraus, Carolyn. "Proteus." Antioch Review 61, no. 3 (2003): 516. http://dx.doi.org/10.2307/4614512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Borges, Jorge Luis. "Proteus." Iowa Review 22, no. 3 (October 1992): 69. http://dx.doi.org/10.17077/0021-065x.4185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ostwal, K., P. Shah, L. Rebecca, N. Shaikh, and K. Inole. "A Tale of Two Novel Proteus Species-Proteus hauseri and Proteus penneri." International Journal of Current Microbiology and Applied Sciences 5, no. 5 (May 10, 2016): 84–89. http://dx.doi.org/10.20546/ijcmas.2016.505.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Krishna, S., Swati Sagarika, Mariraj Jeer, Y. A. Surekha, S. Shafiyabi, H. Pushpalatha, and U. Shruthi. "A Tale of Two Novel Proteus Species-Proteus hauseri and Proteus penneri." International Journal of Current Microbiology and Applied Sciences 5, no. 6 (June 10, 2016): 72–78. http://dx.doi.org/10.20546/ijcmas.2016.506.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

KATAYAMA, Mariko, Shinichi IMAFUKU, Shuhei IMAYAMA, Juichiro NAKAYAMA, and Yoshiaki HORI. "Proteus Syndrome." Nishi Nihon Hifuka 54, no. 6 (1992): 1065–66. http://dx.doi.org/10.2336/nishinihonhifu.54.1065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Debi, Basanti, Surajit Nayak, RajendraPrasad Da, and Basanti Acharjya. "Proteus syndrome." Indian Journal of Dermatology, Venereology and Leprology 71, no. 5 (2005): 357. http://dx.doi.org/10.4103/0378-6323.16791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rocha, Ritha de Cássia Capelato, Mariani Paulino Soriano Estrella, Danielle Mechereffe do Amaral, Angela Marques Barbosa, and Marilda Aparecida Milanez Morgado de Abreu. "Proteus syndrome." Anais Brasileiros de Dermatologia 92, no. 5 (October 2017): 717–20. http://dx.doi.org/10.1590/abd1806-4841.20174496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

AL-BITTAR, YASSER, and SAMEER ZIMMO. "Proteus Syndrome." Journal of King Abdulaziz University-Medical Sciences 6, no. 1 (1998): 67–71. http://dx.doi.org/10.4197/med.6-1.9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Harris, John. "Proteus Surrenders." Renascence 49, no. 2 (1997): 121–38. http://dx.doi.org/10.5840/renascence199749214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Proteus"

1

Söderquist, Fredrik. "Proteus : A new predictor for protean segments." Thesis, Linköpings universitet, Teknisk biologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-121260.

Full text
Abstract:
The discovery of intrinsically disordered proteins has led to a paradigm shift in protein science. Many disordered proteins have regions that can transform from a disordered state to an ordered. Those regions are called protean segments. Many intrinsically disordered proteins are involved in diseases, including Alzheimer's disease, Parkinson's disease and Down's syndrome, which makes them prime targets for medical research. As protean segments often are the functional part of the proteins, it is of great importance to identify those regions. This report presents Proteus, a new predictor for protean segments. The predictor uses Random Forest (a decision tree ensemble classifier) and is trained on features derived from amino acid sequence and conservation data. Proteus compares favourably to state of the art predictors and performs better than the competition on all four metrics: precision, recall, F1 and MCC. The report also looks at the differences between protean and non-protean regions and how they differ between the two datasets that were used to train the predictor.
APA, Harvard, Vancouver, ISO, and other styles
2

Charles, Ian George. "Proteus mirabilis and cat." Thesis, University of Leicester, 1986. http://hdl.handle.net/2381/35192.

Full text
Abstract:
Proteus mirabilis PM13 is a well characterized chloramphenicol-sensitive isolate which spontaneously gives rise to resistant colonies on solid media containing chloramphenicol (50ug/ml) at a plating efficiency of between 10-4 and 10-5 per cell per generation. When a chloramphenicol resistant colony is grown in liquid medium in the absence of the antibiotic for I50 generations a population of predominantly sensitive cells arises. The cat gene responsible for the phenomenon is chromosomal, and has been cloned from P.mirabilis PMI3 with DNA prepared from cells grown in the absence or the presence of chloramphenicol. Recombinant plasmids which confer resistance to chloramphenicol carry an 8.5-kb PstI fragment irrespective of the source of host DNA. The location of The cat gene within the PstI fragment was determined by Southern blotting with a cat consensus 'active - site' oligonucleotide (5'-CCATCACAGACGGCATGATG-3') corresponding to the expected amino acid sequence of the active site region of chloramphenicol acetyltransferase. DNA sequence analysis has revealed a high degree of homology between the P. mirabllls cat -gene and the type I ca-t variant (Tn9), 76% at the amino acid level and 73% when nucleotides in the coding sequence are compared. The mechanism for the appearance and disappearance of chloramphenicol resistance in P. mirabilis appears to be associated with a host-specific trans-acting element which controls cat gene expression. A precedent for such a control network is given by phase variation in Salmonella typhimurium, where an invertible DNA segment controls the transcription of a trans-acting regulatory element. A comparison of the 5' regions of the S.typhimurium flagellin genes in and H2, which are alternately expressed by a flip-flop control mechanism with the 5' region of P.mirabilis cat show blocks of homology. Whether or not this homology is significant in the regulation of cat gene expression has not been determined.
APA, Harvard, Vancouver, ISO, and other styles
3

Toptchieva, Anna A. "Tellurite resistance of Proteus mirabilis." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0016/NQ49293.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Michelim, Lessandra. "Abordagem biotecnológica em Proteus mirabilis." reponame:Repositório Institucional da UCS, 2008. https://repositorio.ucs.br/handle/11338/364.

Full text
Abstract:
O gênero Proteus é caracterizado pela rápida mobilidade, fenômeno denominado swarming . Quanto à homologia de seu DNA, apresenta apenas uma discreta relação com o da Escherichia coli. Freqüentemente relacionado com infecções urinárias, facilitadas pela sua capacidade em degradar uréia, tem sido encontrado colonizando cateteres e sondas vesicais, principalmente a espécie Proteus mirabilis. Devido a sua crescente importância na prática clínica, tanto como agente infeccioso de difícil erradicação, quanto como microrganismo com possibilidade de produzir β-lactamases de espectro expandido, seu controle no ambiente hospitalar tornou-se essencial. A necessidade da correta identificação dessa bactéria estimulou com que métodos de identificação molecular sejam constantemente estudados e aprimorados para essa finalidade. Métodos baseados em PCR têm se mostrado úteis, mas precisam ser validados para a rotina laboratorial. Diversos fatores de patogenicidade, ou seja, características biológicas de Proteus que favorecem a sua participação em processos infecciosos têm sido identificados, tais como: a capacidade de mobilidade e fixação celular, produção de protease, urease e hemolisina. Diversos autores inferem que a correta co-regulação desses fatores de virulência durante a diferenciação de swarming está relacionada com a capacidade de colonizar e invadir o tecido do hospedeiro. Vários estudos sugerem que extratos vegetais podem ser importantes produtos no controle de P. mirabilis ao interferir em sinais de quorum sensing , e consequentemente, na diferenciação celular e expressão de fatores de virulência. Neste sentido, os terpenos, compostos presentes em óleos essenciais, podem representar uma alternativa viável no controle de infecções por esses microrganismos. As proteases microbianas vêm se destacando como importantes fatores de virulência devido a ação direta sobre proteínas do hospedeiro, particularmente imunoglobulinas. O estudo em P. mirabilis tem sido focalizado na protease ZapA (mirabilisina), enzima capaz de degradar IgA, IgG, entre outras proteínas. Trabalhos relatam que não somente ZapA é regulada durante o swarming , mas também hemolisinas, fatores ligados à diferenciação celular e hiperprodução do flagelo. Assim sendo, na presente tese foram avaliados distintos sistemas via PCR (RAPD, ERIC-PCR, REP-PCR, BOX-PCR e ISSR) para caracterização molecular de isolados clínicos de P. mirabilis, o efeito de monoterpenos sobre a diferenciação celular e a produção de fatores de patogenicidade dessas bactérias, e realizado um estudo bioinformático sobre o complexo de metaloproteases com base no recentemente publicado genoma de P. mirabilis.
Submitted by Marcelo Teixeira (mvteixeira@ucs.br) on 2014-05-22T17:39:53Z No. of bitstreams: 1 Dissertacao Lessandra Michelim.pdf: 1136815 bytes, checksum: 25bc56ba17160011b1aba3b4e7732643 (MD5)
Made available in DSpace on 2014-05-22T17:39:53Z (GMT). No. of bitstreams: 1 Dissertacao Lessandra Michelim.pdf: 1136815 bytes, checksum: 25bc56ba17160011b1aba3b4e7732643 (MD5)
O gênero Proteus é caracterizado pela rápida mobilidade, fenômeno denominado swarming . Quanto à homologia de seu DNA, apresenta apenas uma discreta relação com o da Escherichia coli. Freqüentemente relacionado com infecções urinárias, facilitadas pela sua capacidade em degradar uréia, tem sido encontrado colonizando cateteres e sondas vesicais, principalmente a espécie Proteus mirabilis. Devido a sua crescente importância na prática clínica, tanto como agente infeccioso de difícil erradicação, quanto como microrganismo com possibilidade de produzir β-lactamases de espectro expandido, seu controle no ambiente hospitalar tornou-se essencial. A necessidade da correta identificação dessa bactéria estimulou com que métodos de identificação molecular sejam constantemente estudados e aprimorados para essa finalidade. Métodos baseados em PCR têm se mostrado úteis, mas precisam ser validados para a rotina laboratorial. Diversos fatores de patogenicidade, ou seja, características biológicas de Proteus que favorecem a sua participação em processos infecciosos têm sido identificados, tais como: a capacidade de mobilidade e fixação celular, produção de protease, urease e hemolisina. Diversos autores inferem que a correta co-regulação desses fatores de virulência durante a diferenciação de swarming está relacionada com a capacidade de colonizar e invadir o tecido do hospedeiro. Vários estudos sugerem que extratos vegetais podem ser importantes produtos no controle de P. mirabilis ao interferir em sinais de quorum sensing , e consequentemente, na diferenciação celular e expressão de fatores de virulência. Neste sentido, os terpenos, compostos presentes em óleos essenciais, podem representar uma alternativa viável no controle de infecções por esses microrganismos. As proteases microbianas vêm se destacando como importantes fatores de virulência devido a ação direta sobre proteínas do hospedeiro, particularmente imunoglobulinas. O estudo em P. mirabilis tem sido focalizado na protease ZapA (mirabilisina), enzima capaz de degradar IgA, IgG, entre outras proteínas. Trabalhos relatam que não somente ZapA é regulada durante o swarming , mas também hemolisinas, fatores ligados à diferenciação celular e hiperprodução do flagelo. Assim sendo, na presente tese foram avaliados distintos sistemas via PCR (RAPD, ERIC-PCR, REP-PCR, BOX-PCR e ISSR) para caracterização molecular de isolados clínicos de P. mirabilis, o efeito de monoterpenos sobre a diferenciação celular e a produção de fatores de patogenicidade dessas bactérias, e realizado um estudo bioinformático sobre o complexo de metaloproteases com base no recentemente publicado genoma de P. mirabilis.
APA, Harvard, Vancouver, ISO, and other styles
5

Thiffault, Isabelle. "Toward a molecular description of proteus syndrome." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=80885.

Full text
Abstract:
Proteus Syndrome is a rare overgrowth syndrome in which tumors are a prominent feature. Proteus syndrome comprises an association of asymmetrical gigantism, verrucous epidermal naevi, vascular malformations, hamartomas and hyperostosis. There is no known molecular basis for this overgrowth syndrome but several reports have suggested abnormalities of chromosome 1 could play a role and the abnormal regulation of growth factors could also be important.
We obtained paired and unpaired DNA samples from seven cases of Proteus syndrome from Montreal and Greenwood Genetics Center, South Carolina. In all analyses, we compared simultaneously DNA from affected and unaffected areas from these children. Direct sequencing was used to look at somatic mutation or other alterations in growth, apoptosis or tumor suppressor genes, such as PTEN, GPC3 and CDKN1C.
A genome-wide, 10cM 388 marker microsatellite screen were performed to uncover putative somatic genomic microdeletions or other rearrangements by comparing the allelotype of the affected and unaffected tissues from Proteus syndrome patients.
APA, Harvard, Vancouver, ISO, and other styles
6

Aquilini, Eleonora. "Lipopolysaccharide (LPS) core biosynthesis in "Proteus mirabilis" / Estudio de la biosíntesis del núcleo de lipopolisacarido (LPS) en "Proteus mirabilis"." Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/98348.

Full text
Abstract:
Urinary tract infection (UTIs) is an extremely common disease. Proteus mirabilis is a common cause of UTI in individuals with functional or structural abnormalities or with long-term catheterization, it forms bladder and kidney stones as a consequence of urease-mediated urea hydrolysis. Known virulence factors, besides urease, are flagella, fimbriae, outer membrane proteins, hemolysins, amino acid deaminase, protease, capsule and lipopolysaccharide (LPS). Study of LPS core is particularly relevant for several reasons: it is a conserved region, although it is increasingly clear that there is some variability at the genus or groups of similar genera, its chemical structure modulates the endotoxic activity of lipid A, alteration of the LPS core, which generates less virulent bacteria, encourages the search of substances that interfere with the biosynthesis of this region, and conserved regions of the core LPS could be useful as antigens in preventing diseases caused by pathogens that contain these conserved regions. The specific aims of this project have been to identify and functionally characterize genes involved in core LPS biosynthesis in P. mirabilis, to elucidate the mechanism of incorporation of galactosamine (GalN) to the core LPS, to identify genes coding for phosphoethanolamine (PEtN) modifications, and to characterize and to study the biological effects of the gene encoding the PEtN transferase involved in the modification of the second heptose residue (L,D-HepII). We found that P. mirabilis has most of the genes for the biosynthesis of LPS core grouped in the waa cluster in the chromosome. Despite this, additional genes required for core LPS biosynthesis are found outside the waa cluster. The pentasaccharide of the inner core, shared by all Enterobacteriaceae, is biosynthesized in P. mirabilis, by the sequential activity of a bifunctional transferase (WaaA) and three heptosyltransferases (WaaC, WaaF, and WaaQ). These enzymes are transcribed from genes located inside the waa cluster, and are conserved in P. mirabilis strains analyzed; for more, they show a high identity and similarity level to homologues proteins of Escherichia coli, Klebsiella penumoniae and Serratia marcescens. The waaL gene, coding for the O-antigen polymerase ligase, is found adjacent to the classic waa cluster. Downstream this gene, four genes encoding enzymes belonging to the 4 (walM, walN, and WalR), and 9 (walO) glycosyltransferase family were found. Even if members of these families were related to LPS core biosynthesis in several Gram-negative bacteria, in P. mirabilis they do not appear to be involved in the biosynthesis of the reported core LPS structures. The presence of the disaccharide hexosamine (HexN)-1,4-galacturonic acid (GalA) is a feature of P. mirabilis LPS outer core. Depending on the nature of the HexN outer core residue, two different homologues for N-acetyl-hexosamine transferases are present in the waa cluster: wabH or wabP. Altought the incorporation of glucosamine into LPS core requires an acetylglucosaminyltransferase (WabH) and a deacetilase (WabN), the incorporation of GalN requires three enzymes: an acetylgalactosaminyltransferase (WabP), a deacetilase (WabN) and an epimerase (gne). An amplification test with specific primers for this two different homologues can be used to predict the HexN nature in P. mirabilis LPS cores. The strain-specific genes wamB and wamC code for a galactosyltransferase and a heptosyltransferase respectively in strain R110 of P. mirabilis. The enzyme encoded by gene wamD is a N-acetylglucosaminyltransferase, and it is found in strain 51/57 of P. mirabilis. WamA, coded by wamA gene in the waa cluster of strains R110, 50/57, TG83 and HI4320, is a heptosyltransferase responsible for the incorporation of a quarter residue of heptose (Hep), in DD configuration, to the GalA II of the outer core. In P. mirabilis strain 51/57, a gene coding a protein of the Mig-14 family was identified inside the waa cluster, this localization appears to be an exception in the Enterobacteriaceae family. Inspection of the whole genome of P. mirabilis HI4320 did not allow the identification of a mig-14 similar gene. There are three putative PEtN transferases in the genome of P. mirabilis: PMI3040, PMI3576, and PMI3104. The gene identified as eptC (PMI3104) transfers the moiety of PEtN to the O-6 position of L,D-Hep II (HepII6PEtN). The absence of the positive charge due to PEtN residue doesn't affect the bacterial growth kinetics in lab conditions in rich or defined media, but causes a moderate destabilization of the outer-membrane. Despite the lack of the PEtN residue on the Hep II in P. mirabilis LPS core, has no statistically effects during urinary tract infection assays in mouse model, the absence of this modification causes an increase sensitivity to complement in non-immune human sera.
P. mirabilis no es una causa frecuente de infecciones urinarias en el huésped normal, más bien infecta el tracto urinario con alteraciones funcionales o anatómicas, o instrumentación crónica como el cateterismo. P. mirabilis está a menudo asociado con cálculos urinarios e incrustaciones de los catéteres y es, particularmente importante, en pacientes con cateterización prolongada. Las infecciones del tracto urinario asociadas a cateterización son mundialmente reconocidas como la causa más común de infección asociada a tratamientos en ambiente hospitalario. El LPS es un factor de virulencia importante en bacterias Gram negativas patógenas. También conocido como endotoxina, es una molécula glicolipídica que constituye la estructura mayoritaria de la cara externa de la membrana externa (OM). En Proteus mirabilis la mayoría de los genes responsables de la biosíntesis de núcleo de LPS están localizados en el cromosoma, en el agrupamiento génico waa. A pesar de esto, algunos genes adicionales, necesarios para la biosíntesis del núcleo de LPS, se encuentran ubicados fuera del agrupamiento génico waa. El pentasacárido del núcleo interno, común a todas las Enterobacteriáceae, se biosintetiza en P. mirabilis, por la actividad secuencial de una transferasa bifunciona (WaaA) y tres heptosiltransferasas (WaaC, WaaF, y WaaQ). La presencia del disacárido HexN‐1,4‐GalA es característica del núcleo externo de LPS en P. mirabilis. Dependiendo de la naturaleza del residuo de HexN, se encuentran, en el agrupamiento génico waa, dos HexNAc transferasas diferentes: wabH o wabP. El gen eptC (PMI3104) codifica para la enzima que transfiere el residuo de fosfoetanolamina a la posición O-6 de la L,D-Hep II (HepII6PEtN), en el núcleo de LPS de P. mirabilis. La ausencia de la carga positiva del residuo de fosfoetanolamina no afecta a la cinética de crecimiento de las bacterias en condiciones standard de laboratorio sea en medios ricos o definidos. La ausencia del residuo fosfoetanolamina provoca una desestabilización moderada de la membrana externa que se traduce en una disminución de la MIC para SDS.
APA, Harvard, Vancouver, ISO, and other styles
7

Schultz-Ascensio, Eliette. "Diffusion d'îlots génomiques de multirésistance aux antibiotiques chez Proteus mirabilis." Thesis, Tours, 2018. http://www.theses.fr/2018TOUR3302/document.

Full text
Abstract:
La résistance aux antibiotiques est une menace non négligeable pour la santé publique. Ces résistances peuvent être portées par différents supports dont les îlots génomiques. Il a été démontré que les îlots génomiques Salmonella Genomic Island 1 (SGI1) et Proteus Genomic Island 1 (PGI1) sont des acteurs importants de la multirésistance aux antibiotiques. Quelques variants de SGI1 et PGI1 ont déjà été décrits au sein de l’espèce P. mirabilis. Dans ce contexte, ce projet de thèse se proposait d’approfondir notre connaissance de la situation épidémiologique de la diffusion de SGI1 et PGI1 chez P. mirabilis chez l’homme et l’animal en France, en ce qui concerne la diversité des isolats, mais aussi celles des variants de SGI1/PGI1. En parallèle, une autre volonté a été d’identifier d’autres facteurs et acteurs permettant l’acquisition de gènes de résistances d’intérêt au sein des Morganellaceae (β-Lactamases à Spectre Etendu, céphalosporinase AmpC, Plasmid-mediated Quinolone Resistance...). Au final, cette étude a permis en outre de révéler les premiers cas de SGI1 et PGI1 chez P. mirabilis chez l’animal en France. De nouveaux variants de SGI1 ont également été mis en évidence. Et pour la première fois, SGI1 a été décrit chez M. morganii, une autre espèce d’entérobactérie
The antibiotic resistance is a major treat for public health. These resistances can be hold by different element and genomic islands are one of them. Salmonella Genomic Island 1 (SGI1) and Proteus Genomic Island 1 (PGI1) are important genetic elements for the antibiotic resistance. A few SGI1 and PGI1 variants were already described in P. mirabilis. It is in this context that this thesis project aimed to improve our knowledge about the epidemiological spread of SGI1 and PGI1 in P. mirabilis in humans but also in animals in France (diversity of isolates and SGI1/PGI1 variants). Moreover, another wish was to identify other factors and actors for the acquisition of antibiotic resistance in the Morganellaceae tribe (Extended-Spectrum β-Lactamases, AmpC cephalosporinase, Plasmid-mediated Quinolone Resistance…). Finally, this study revealed the first cases of SGI1 and PGI1 in P. mirabilis in animals in France. New SGI1 variants were also described. And for the very first time, SGI1 was found in M. morganii, another entrobacterial species
APA, Harvard, Vancouver, ISO, and other styles
8

Hashimoto, Sanae. "Search for receptor mediated processes in Amoeba proteus /." Connect to online version, 2006. http://ada.mtholyoke.edu/setr/websrc/pdfs/www/2006/142.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Andres, Roxane Virginie. "Ars proteus. Fables et pratiques d’un design organoplastique." Thesis, Saint-Etienne, 2013. http://www.theses.fr/2013STET2169.

Full text
Abstract:
Les porosités dont témoigne le design contemporain en font un champ ouvert où viennent s’imprimer et s’entrelacer les enjeux d’autres domaines, aujourd’hui prédominés par la science. Situé à la croisée des territoires, le designer exerce un art de la protéiformité — un ars proteus — révélant, par les objets qu’il conçoit, les métamorphoses et les questionnements que suscite la science — et plus particulièrement la médecine et ses conséquences sur une pensée du corps.Le design aurait-il le pouvoir de rendre visibles les enjeux les plus imperceptibles qui se trament à des échelles qui dépassent la mesure humaine ? Le design contemporain questionne l’échelle du corps dans les objets : peuvent-ils contribuer à faire émerger ou à matérialiser un imaginaire corporel que notre époque ferait subrepticement éclore ? L’organoplastie dans le design est cette possible formulation d’un glissement de territoire qui se produit entre le corps et l’objet, entre la genesis et la technè. Que cette organoplastie soit réelle (comme avec les objets à croissance spontanée de François Azambourg ou de Tobie Kerridge), ou bien métaphorique, elle engendre de nouvelles conceptions de l’objet mais aussi des moyens de production et de création, tout en accompagnant l’émergence d’un imaginaire biologique de nos artefacts. Le designer serait-il le pourvoyeur d’une seconde genèse, d’une néogenèse dont les formes organiques autonomes se constitueraient sur le modèle naturel de la croissance, donnant une nouvelle consistance à l’élaboration d’un monde artificiel ?
Porosity highlighted by the contemporary design makes of this one an open field where issues ofother areas, dominated by science, are intertwined. Placed at the crossroads of different territories, thedesigner creates a protean art- an ars proteus- revealing by the objects, the metamorphosis andproblematics elicited by science- and more particularly by medicine and its impact on our bodyconception.Could the design have the power to detect the most imperceptible issues which are plotted beyondhuman measure? The contemporary design questions the scale of the body in the objects: can itcontribute to show or materialize a body imaginary that our time would have secretly create?The organoplastie in design is a word which could express a sliding that occurs between the bodyand objects, between genesis and technè. The organoplastie, either real (like François Azambourg orTobie Kerridge's spontaneous growth objects) or metaphorical, generates new designs of the objectand, moreover, new ways of production and creation, while supporting the advent of a biologicalimaginary of our artifacts. Could the designer be the purveyor of a second genesis, or a neogenesiswhose autonomous organic forms would be based on the natural growth mode!, giving a newconsistencv in the development of an artificial world?
APA, Harvard, Vancouver, ISO, and other styles
10

Prest, Andrew Graham. "A biochemical and molecular characterisation of Obersumbacterium proteus." Thesis, University of Nottingham, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Proteus"

1

1942-, Caenberghs Jacqueline, ed. Proteus. [Amsterdam]: A.W. Bruna Uitgevers, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

West, Morris. Proteus. London: Heinemann, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pearson, Melanie M., ed. Proteus mirabilis. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9601-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sheffield, Charles. Proteus Unbound. New York: Del Rey, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sheffield, Charles. Proteus manifest. New York: Guild America Books, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sheffield, Charles. Proteus Combined. Riverdale,New York: Baen Books, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1935-2000, Mickel Karl, ed. Peregrinus Proteus. München: C.H. Beck, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hogan, James P. The Proteus operation. Toronto: Bantam Books, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zahn, Timothy. Judgment at Proteus. New York: Tor, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hogan, James P. The Proteus operation. London: Arrow Books, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Proteus"

1

Ullmann, Uwe. "Proteus mirabilis, Proteus vulgaris." In Lexikon der Infektionskrankheiten des Menschen, 676–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-39026-8_894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

González, María José, Pablo Zunino, and Paola Scavone. "Proteus." In Handbook of Foodborne Diseases, 387–96. Boca Raton : Taylor & Francis, [2019] | Series: Food microbiology series | “A CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa plc.”: CRC Press, 2018. http://dx.doi.org/10.1201/b22030-36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Scavone, Paola, Victoria Iribarnegaray, and Pablo Zunino. "Proteus." In Laboratory Models for Foodborne Infections, 355–71. Boca Raton : CRC Press/Taylor & Francis, 2017. | Series: Food microbiology series: CRC Press, 2017. http://dx.doi.org/10.1201/9781315120089-24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Biesecker, Leslie G. "Proteus Syndrome." In Management of Genetic Syndromes, 651–60. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470893159.ch43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Harper, John, Kathrin Giehl, and Raoul Hennekam. "Proteus Syndrome." In Harper's Textbook of Pediatric Dermatology, 111.1–111.10. Oxford, UK: Wiley-Blackwell, 2011. http://dx.doi.org/10.1002/9781444345384.ch111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mundlos, Stefan, and Denise Horn. "Proteus Syndrome." In Limb Malformations, 260–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-540-95928-1_102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ruggieri, Martino, and Ignacio Pascual-Castroviejo. "Proteus Syndrome." In Neurocutaneous Disorders Phakomatoses and Hamartoneoplastic Syndromes, 527–46. Vienna: Springer Vienna, 2008. http://dx.doi.org/10.1007/978-3-211-69500-5_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kaltofen, Heike, Uta Emmig, Dierk A. Vagts, and Peter Biro. "Proteus-Syndrom." In Anästhesie bei seltenen Erkrankungen, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-44368-2_33-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Panteliadis, Christos P., and Reinhard E. Friedrich. "Proteus Syndrome." In Neurocutaneous Disorders, 247–53. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87893-1_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Blank, G. Kim. "‘Proteus Wordsworth’." In Wordsworth’s Influence on Shelley, 45–78. London: Palgrave Macmillan UK, 1988. http://dx.doi.org/10.1007/978-1-349-19020-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Proteus"

1

Singla, Ankit, Atul Singh, Kishore Ramachandran, Lei Xu, and Yueping Zhang. "Proteus." In the Ninth ACM SIGCOMM Workshop. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1868447.1868455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Xu, Qiang, Sanjeev Mehrotra, Zhuoqing Mao, and Jin Li. "PROTEUS." In Proceeding of the 11th annual international conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2462456.2464453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shin, Seunghee, Satish Kumar Tirukkovalluri, James Tuck, and Yan Solihin. "Proteus." In MICRO-50: The 50th Annual IEEE/ACM International Symposium on Microarchitecture. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3123939.3124539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ren, Jie, Xiaoming Wang, Jianbin Fang, Yansong Feng, Dongxiao Zhu, Zhunchen Luo, Jie Zheng, and Zheng Wang. "Proteus." In CoNEXT '18: The 14th International Conference on emerging Networking EXperiments and Technologies. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3281411.3281422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Anckaert, Bertrand, Mariusz Jakubowski, and Ramarathnam Venkatesan. "Proteus." In the ACM workshop. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1179509.1179521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Harlap, Aaron, Alexey Tumanov, Andrew Chung, Gregory R. Ganger, and Phillip B. Gibbons. "Proteus." In EuroSys '17: Twelfth EuroSys Conference 2017. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3064176.3064182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Judd, Patrick, Jorge Albericio, Tayler Hetherington, Tor M. Aamodt, Natalie Enright Jerger, and Andreas Moshovos. "Proteus." In ICS '16: 2016 International Conference on Supercomputing. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2925426.2926294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Meng, Tong, Neta Rozen Schiff, P. Brighten Godfrey, and Michael Schapira. "PCC Proteus." In SIGCOMM '20: Annual conference of the ACM Special Interest Group on Data Communication on the applications, technologies, architectures, and protocols for computer communication. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3387514.3405891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Grishman, Ralph, and Lynette Hirschman. "Proteus and Pundit." In the workshop. Morristown, NJ, USA: Association for Computational Linguistics, 1986. http://dx.doi.org/10.3115/1077146.1077149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Graham, Susan L., Michael A. Harrison, and Ethan V. Munson. "The Proteus presentation system." In the fifth ACM SIGSOFT symposium. New York, New York, USA: ACM Press, 1992. http://dx.doi.org/10.1145/142868.143762.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Proteus"

1

Jung, Yeon Sang, Changho Lee, and Micheal A. Smith. PROTEUS-MOC User Manual. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1483947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jung, Yeon Sang, Changho Lee, and Micheal A. Smith. PROTEUS-NODAL User Manual. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1490693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shemon, E., M. Smith, C. Lee, and A. Marin-Lafleche. PROTEUS-SN User Manual. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1149681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shemon, Emily R., Micheal A. Smith, and Changho Lee. Proteus-SN user manual. Office of Scientific and Technical Information (OSTI), July 2015. http://dx.doi.org/10.2172/1212706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shemon, Emily R., Micheal A. Smith, and Changho Lee. PROTEUS-SN User Manual. Office of Scientific and Technical Information (OSTI), February 2016. http://dx.doi.org/10.2172/1240157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shemon, E., M. Smith, and C. Lee. PROTEUS-SN Methodology Manual. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1150205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Marin-Lafleche, A., M. A. Smith, E. E. Lewis, and C. H. Lee. Development status of PROTEUS-MOC. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1054500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wolters, E., and M. A. Smith. Pseudo-transient demonstration with PROTEUS-SN. Office of Scientific and Technical Information (OSTI), May 2013. http://dx.doi.org/10.2172/1079136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shemon, E., C. Lee, and M. Smith. Verification and Validation Plan for PROTEUS. Office of Scientific and Technical Information (OSTI), October 2014. http://dx.doi.org/10.2172/1159797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Smith, M. A., V. Mahadevan, and E. R. Wolters. Continued Research for Improvement of PROTEUS-SN. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1128671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography