Academic literature on the topic 'Proton exchange fuel cells'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Proton exchange fuel cells.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Proton exchange fuel cells"

1

Vishnyakov, V. M. "Proton exchange membrane fuel cells." Vacuum 80, no. 10 (August 2006): 1053–65. http://dx.doi.org/10.1016/j.vacuum.2006.03.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Swette, Larry L., Anthony B. LaConti, and Stephen A. McCatty. "Proton-exchange membrane regenerative fuel cells." Journal of Power Sources 47, no. 3 (January 1994): 343–51. http://dx.doi.org/10.1016/0378-7753(94)87013-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gerasimov, G. Ya. "Nanomaterials in Proton Exchange Fuel Cells." Journal of Engineering Physics and Thermophysics 88, no. 6 (November 2015): 1554–68. http://dx.doi.org/10.1007/s10891-015-1343-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

JIANG, ZHONGQING, YUEDONG MENG, ZHONG-JIE JIANG, and YICAI SHI. "PREPARATION OF HIGHLY SULFONATED ULTRA-THIN PROTON-EXCHANGE POLYMER MEMBRANES FOR PROTON EXCHANGE MEMBRANE FUEL CELLS." Surface Review and Letters 16, no. 02 (April 2009): 297–302. http://dx.doi.org/10.1142/s0218625x09012627.

Full text
Abstract:
Sulfonated ultra-thin proton-exchange polymer membrane carrying pyridine groups was made from a plasma polymerization of styrene, 2-vinylpyridine, and trifluoromethanesulfonic acid by after-glow capacitively coupled discharge technique. Pyridine groups tethered to the polymer backbone acts as a medium through the basic nitrogen for transfer of protons between the sulfonic acid groups of proton exchange membrane. It shows that the method using present technology could effectively depress the degradation of monomers during the plasma polymerization. Spectroscopic analyses reveal that the obtained membranes are highly functionalized with proton exchange groups and have higher proton conductivity. Thus, the membranes are expected to be used in direct methanol fuel cells.
APA, Harvard, Vancouver, ISO, and other styles
5

Rusanov, Alexander, Vladimir Tartakovskiy, Elena Bulycheva, Margarita Bugaenko, Jean-Yves Sanchez, Cristina Iojoiu, Vanda Voytekunas, and Marc J. M. Abadie. "Tnt-based sulfonated polynaphthylimides useful as proton exchange membranes for fuel cells (pemfcs)." Chemistry & Chemical Technology 4, no. 1 (March 20, 2010): 17–22. http://dx.doi.org/10.23939/chcht04.01.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thimmappa, Ravikumar, Mruthyunjayachari Chattanahalli Devendrachari, Alagar Raja Kottaichamy, Omshanker Tiwari, Pramod Gaikwad, Bhuneshwar Paswan, and Musthafa Ottakam Thotiyl. "Stereochemistry-Dependent Proton Conduction in Proton Exchange Membrane Fuel Cells." Langmuir 32, no. 1 (December 22, 2015): 359–65. http://dx.doi.org/10.1021/acs.langmuir.5b03984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sun, Baoying, Huanqiao Song, Xinping Qiu, and Wentao Zhu. "New Anhydrous Proton Exchange Membrane for Intermediate Temperature Proton Exchange Membrane Fuel Cells." ChemPhysChem 12, no. 6 (April 5, 2011): 1196–201. http://dx.doi.org/10.1002/cphc.201000848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

TRAN, A. T. T., M. C. DUKE, P. G. GRAY, and J. C. DINIZ DA COSTA. "CHARACTERIZATION OF TITANIUM PHOSPHATE AS ELECTROLYTES IN FUEL CELLS." International Journal of Modern Physics B 20, no. 25n27 (October 30, 2006): 4147–52. http://dx.doi.org/10.1142/s0217979206041008.

Full text
Abstract:
Titanium phosphate is currently a promising material for proton exchange membrane fuel cells applications (PEMFC) allowing for operation at high temperature conditions. In this work, titanium phosphate was synthesized from tetra iso-propoxide (TTIP) and orthophosphoric acid ( H 3 PO 4) in different ratios by a sol gel method. High BET surface areas of 271 m2.g-1 were obtained for equimolar Ti:P samples whilst reduced surface areas were observed by varying the molar ratio either way. Highest proton conductivity of 5.4×10-2 S . cm -1 was measured at 20°C and 93% relative humidity (RH). However, no correlation was observed between surface area and proton conductivity. High proton conductivity was directly attributed to hydrogen bonding in P - OH groups and the water molecules retained in the sample structure. The proton conductivity increased with relative humidity, indicating that the Grotthuss mechanism governed proton transport. Further, sample Ti/P with 1:9 molar ratio showed proton conductivity in the order of 10-1 S.cm-1 (5% RH) and ~1.6×10-2 S . cm -1 (anhydrous condition) at 200°C. These proton conductivities were mainly attributed to excess acid locked into the functionalized TiP structure, thus forming ionisable protons.
APA, Harvard, Vancouver, ISO, and other styles
9

Restrepo, Carlos, Oriol Avino, Javier Calvente, Alfonso Romero, Miro Milanovic, and Roberto Giral. "Reactivation System for Proton-Exchange Membrane Fuel-Cells." Energies 5, no. 7 (July 13, 2012): 2404–23. http://dx.doi.org/10.3390/en5072404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rowe, Andrew, and Xianguo Li. "Mathematical modeling of proton exchange membrane fuel cells." Journal of Power Sources 102, no. 1-2 (December 2001): 82–96. http://dx.doi.org/10.1016/s0378-7753(01)00798-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Proton exchange fuel cells"

1

Ion, Mihaela Florentina. "Proton transport in proton exchange membrane fuel cells /." free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p3164514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liu, Ping. "Composite proton exchange membranes for fuel cells." Diss., Connect to online resource - MSU authorized users, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ergun, Dilek. "High Temperature Proton Exchange Membrane Fuel Cells." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12610803/index.pdf.

Full text
Abstract:
It is desirable to increase the operation temperature of proton exchange membrane fuel cells above 100oC due to fast electrode kinetics, high tolerance to fuel impurities and simple thermal and water management. In this study
the objective is to develop a high temperature proton exchange membrane fuel cell. Phosphoric acid doped polybenzimidazole membrane was chosen as the electrolyte material. Polybenzimidazole was synthesized with different molecular weights (18700-118500) by changing the synthesis conditions such as reaction time (18-24h) and temperature (185-200oC). The formation of polybenzimidazole was confirmed by FTIR, H-NMR and elemental analysis. The synthesized polymers were used to prepare homogeneous membranes which have good mechanical strength and high thermal stability. Phosphoric acid doped membranes were used to prepare membrane electrode assemblies. Dry hydrogen and oxygen gases were fed to the anode and cathode sides of the cell respectively, at a flow rate of 0.1 slpm for fuel cell tests. It was achieved to operate the single cell up to 160oC. The observed maximum power output was increased considerably from 0.015 W/cm2 to 0.061 W/cm2 at 150oC when the binder of the catalyst was changed from polybenzimidazole to polybenzimidazole and polyvinylidene fluoride mixture. The power outputs of 0.032 W/cm2 and 0.063 W/cm2 were obtained when the fuel cell operating temperatures changed as 125oC and 160oC respectively. The single cell test presents 0.035 W/cm2 and 0.070 W/cm2 with membrane thicknesses of 100 µ
m and 70 µ
m respectively. So it can be concluded that thinner membranes give better performances at higher temperatures.
APA, Harvard, Vancouver, ISO, and other styles
4

Oyarce, Alejandro. "Electrode degradation in proton exchange membrane fuel cells." Doctoral thesis, KTH, Tillämpad elektrokemi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-133437.

Full text
Abstract:
The topic of this thesis is the degradation of fuel cell electrodes in proton exchange membrane fuel cells (PEMFCs). In particular, the degradation associated with localized fuel starvation, which is often encountered during start-ups and shut-downs (SUs/SDs) of PEMFCs. At SU/SD, O2 and H2 usually coexist in the anode compartment. This situation forces the opposite electrode, i.e. the cathode, to very high potentials, resulting in the corrosion of the carbon supporting the catalyst, referred to as carbon corrosion. The aim of this thesis has been to develop methods, materials and strategies to address the issues associated to carbon corrosion in PEMFC.The extent of catalyst degradation is commonly evaluated determining the electrochemically active surface area (ECSA) of fuel cell electrode. Therefore, it was considered important to study the effect of RH, temperature and type of accelerated degradation test (ADT) on the ECSA. Low RH decreases the ECSA of the electrode, attributed to re-structuring the ionomer and loss of contact with the catalyst.In the search for more durable supports, we evaluated different accelerated degradation tests (ADTs) for carbon corrosion. Potentiostatic holds at 1.2 V vs. RHE were found to be too mild. Potentiostatic holds at 1.4 V vs. RHE were found to induce a large degree of reversibility, also attributed to ionomer re-structuring. Triangle-wave potential cycling was found to irreversibly degrade the electrode within a reasonable amount of time, closely simulating SU/SD conditions.Corrosion of carbon-based supports not only degrades the catalyst by lowering the ECSA, but also has a profound effect on the electrode morphology. Decreased electrode porosity, increased agglomerate size and ionomer enrichment all contribute to the degradation of the mass-transport properties of the cathode. Graphitized carbon fibers were found to be 5 times more corrosion resistant than conventional carbons, primarily attributed to their lower surface area. Furthermore, fibers were found to better maintain the integrity of the electrode morphology, generally showing less degradation of the mass-transport losses. Different system strategies for shut-down were evaluated. Not doing anything to the fuel cell during shut-downs is detrimental for the fuel cell. O2 consumption with a load and H2 purge of the cathode were found to give around 100 times lower degradation rates compared to not doing anything and almost 10 times lower degradation rate than a simple air purge of the anode. Finally, in-situ measurements of contact resistance showed that the contact resistance between GDL and BPP is highly dynamic and changes with operating conditions.
Denna doktorsavhandling behandlar degraderingen av polymerelektrolytbränslecellselektroder. polymerelektrolytbränslecellselektroder. Den handlar särskilt om nedbrytningen av elektroden kopplad till en degraderingsmekanism som heter ”localized fuel starvation” oftast närvarande vid uppstart och nedstängning av bränslecellen. Vid start och stopp kan syrgas och vätgas förekomma samtidigt i anoden. Detta leder till väldigt höga elektrodpotentialer i katoden. Resultatet av detta är att kolbaserade katalysatorbärare korroderar och att bränslecellens livslängd förkortas. Målet med avhandlingen har varit att utveckla metoder, material och strategier för att både öka förståelsen av denna degraderingsmekanism och för att maximera katalysatorbärarens livslängd.Ett vanligt tillvägagångsätt för att bestämma graden av katalysatorns degradering är genom mätning av den elektrokemiskt aktiva ytan hos bränslecellselektroderna. I denna avhandling har dessutom effekten av temperatur och relativ fukthalt studerats. Låga fukthalter minskar den aktiva ytan hos elektroden, vilket sannolikt orsakas av en omstrukturering av jonomeren och av kontaktförlust mellan jonomer och katalysator.Olika accelererade degraderingstester för kolkorrosion har använts. Potentiostatiska tester vid 1.2 V mot RHE visade sig vara för milda. Potentiostatiska tester vid 1.4 V mot RHE visade sig däremot medföra en hög grad av reversibilitet, som också den tros vara orsakad av en omstrukturering av jonomeren. Cykling av elektrodpotentialen degraderade istället elektroden irreversibelt, inom rimlig tid och kunde väldigt nära simulera förhållandena vid uppstart och nedstängning.Korrosionen av katalysatorbäraren medför degradering av katalysatorn och har också en stor inverkan på elektrodens morfologi. En minskad elektrodporositet, en ökad agglomeratstorlek och en anrikning av jonomeren gör att elektrodens masstransportegenskaper försämras. Grafitiska kolfibrer visade sig vara mer resistenta mot kolkorrosion än konventionella kol, främst p.g.a. deras låga ytarea. Grafitiska kolfibrer visade också en förmåga att bättre bibehålla elektrodens morfologi efter accelererade tester, vilket resulterade i lägre masstransportförluster.Olika systemstrategier för nedstängning jämfördes. Att inte göra något under nedstängning är mycket skadligt för bränslecellen. Förbrukning av syre med en last och spolning av katoden med vätgas visade 100 gånger lägre degraderingshastighet av bränslecellsprestanda jämfört med att inte göra något alls och 10 gånger lägre degraderingshastighet jämfört med spolning av anoden med luft. In-situ kontaktresistansmätningar visade att kontaktresistansen mellan bipolära plattor och GDL är dynamisk och kan ändras beroende på driftförhållandena.

QC 20131104

APA, Harvard, Vancouver, ISO, and other styles
5

Shi, Jinjun. "Composite Membranes for Proton Exchange Membrane Fuel Cells." Wright State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=wright1214964058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

DeLashmutt, Timothy E. "Modeling a proton exchange membrane fuel cell stack." Ohio : Ohio University, 2008. http://www.ohiolink.edu/etd/view.cgi?ohiou1227224687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xiao, Zhiyong. "Monolithic integration of proton exchange membrane microfuel cells /." View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?ECED%202008%20XIAO.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hattenberger, Mariska. "Composite proton exchange membranes for intermediate temperature fuel cells." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/6194/.

Full text
Abstract:
Intermediate temperature (IT) proton exchange membrane fuel cells (PEMFCs) offer a future that does not rely on the burning of fossil fuels, but dictate durable and high performance component materials. At operating conditions of 120 °C and 50 % relative humidity (RH), composite proton exchange membranes (PEMs) offer increased performance due to enhanced water uptake and retention resulting from the hydrophilic filler material. This project aimed to relate measured data for composite PEMs with literature data on Nafion-graphene oxide (GO) PEMs. In order to achieve this, the membrane casting method was optimised and GO was synthesised in-house. A range of membranes were tested using a calibrated and optimised high temperature test stand. In-situ and ex-situ testing was carried out between 80°C and 120°C, and between 25 and 95 % RH. In contrast with some published data, this study found inconsistent trends between water uptake, ion exchange capacity, membrane resistance and single cell performance. Overall it was found that recast and composite membranes had higher in-plane resistance than Nafion 212, but that composite membranes with low filler loading had comparable in-situ performance to the commercial membrane. Further single cell optimisation is likely to result in further advances for composite PEMs.
APA, Harvard, Vancouver, ISO, and other styles
9

Einsla, Brian Russel. "High Temperature Polymers for Proton Exchange Membrane Fuel Cells." Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/27320.

Full text
Abstract:
Novel proton exchange membranes (PEMs) were investigated that show potential for operating at higher temperatures in both direct methanol (DMFC) and H2/air PEM fuel cells. The need for thermally stable polymers immediately suggests the possibility of heterocyclic polymers bearing appropriate ion conducting sites. Accordingly, monomers and random disulfonated poly(arylene ether) copolymers containing either naphthalimide, benzoxazole or benzimidazole moieties were synthesized via direct copolymerization. The ion exchange capacity (IEC) was varied by simply changing the ratio of disulfonated monomer to nonsulfonated monomer in the copolymerization step. Water uptake and proton conductivity of cast membranes increased with IEC. The water uptake of these heterocyclic copolymers was lower than that of comparable disulfonated poly(arylene ether) systems, which is a desirable improvement for PEMs. Membrane electrode assemblies were prepared and the initial fuel cell performance of the disulfonated polyimide and polybenzoxazole (PBO) copolymers was very promising at 80 C compared to the state-of-the-art PEM (Nafion®); nevertheless these membranes became brittle under operating conditions. Several series of poly(arylene ether)s based on disodium-3,3â -disulfonate-4,4â -dichlorodiphenylsulfone (S-DCDPS) and a benzimidazole-containing bisphenol were synthesized and afforded copolymers with enhanced stability. Selected properties of these membranes were compared to separately prepared miscible blends of disulfonated poly(arylene ether sulfone) copolymers and polybenzimidazole (PBI). Complexation of the sulfonic acid groups with the PBI structure reduced water swelling and proton conductivity. The enhanced proton conductivity of Nafion® membranes has been proposed to be due to the aggregation of the highly acidic side-chain sulfonic acid sites to form ion channels. A series of side-chain sulfonated poly(arylene ether sulfone) copolymers based on methoxyhydroquinone was synthesized in order to investigate this possible advantage and to couple this with the excellent hydrolytic stability of poly(arylene ether)s. The methoxy groups were deprotected to afford reactive phenolic sites and nucleophilic substitution reactions with functional aryl sulfonates were used to prepare simple aryl or highly acidic fluorinated sulfonated copolymers. The proton conductivity and water sorption of the resulting copolymers increased with the ion exchange capacity, but changing the acidity of the sulfonic acid had no apparent effect.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
10

Marani, Debora. "Development of hybrid proton-conducting polymers for proton exchange membrane fuel cells." Aix-Marseille 1, 2006. http://www.theses.fr/2006AIX11002.

Full text
Abstract:
Le développement d'électrolytes polymères de nouvelle génération est un pré requis essentiel pour la commercialisation à grande échelle des piles à combustibles à membrane polymérique. Ces conducteurs protoniques doivent présenter une bonne stabilité morphologique, hydrolytique, mécanique et une conductivité appropriée à une température supérieure à 100°C à basse humidité relative. Dans ce travail, diverses stratégies sont explorées pour la synthèse de polymères conducteurs hybrides organiques-inorganiques nanocomposites à partir de polymères thermoplastiques aromatiques. L'emploi de matériaux hybrides permet d'exploiter l'effet synergique dû à la présence simultanée d'une composante organique polymérique et d'une partie inorganique à base de silicium. Ces effets synergétiques s'expliquent par la possibilité de moduler et de contrôler la séparation entre les parties hydrophile et hydrophobe, dont dépendent fortement les propriétés de l'électrolyte polymère. Des matériaux hybrides de classe I à base de poly-éther-éther-kétone (PEEK) ont été synthétisés ainsi que plusieurs exemples de matériaux hybrides de classe II à base de PEEK et de poly-phényl-sulfone (PPSU) sulfonatés (SPEEK et SPPSU) et contenant comme partie inorganique des atomes de silicium diversement fonctionnalisés. La caractérisation des matériaux comporte l'analyse structurale, l'étude des propriétés physicochimiques et le comportement électrochimique. Des résultats très positifs ont été obtenus principalement avec deux des systèmes étudiés : un mélange de polymères à base de SPEEK et SPPSU silicié et un polymère interconnecté à base de PEEK sulfonaté et silicié (SOSiPEEK)
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Proton exchange fuel cells"

1

Albarbar, Alhussein, and Mohmad Alrweq. Proton Exchange Membrane Fuel Cells. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70727-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gao, Fei. Proton exchange membrane fuel cells modeling. London: ISTE, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gao, Fei, Benjamin Blunier, and Abdellatif Miraoui, eds. Proton Exchange Membrane Fuel Cells Modeling. Hoboken, NJ USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118562079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Herring, Andrew M. Fuel cell chemistry and operation. Washington, DC: American Chemical Society, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Hui. Proton exchange membrane fuel cells: Contamination and mitigation strategies. Boca Raton: Taylor & Francis, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Hui. Proton exchange membrane fuel cells: Contamination and mitigation strategies. Boca Raton: Taylor & Francis, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Herring, Andrew M. Fuel cell chemistry and operation. Washington, DC: American Chemical Society, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Herring, Andrew M. Fuel cell chemistry and operation. Washington, DC: American Chemical Society, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jemeï, Samir. Hybridization, Diagnostic and Prognostic of Proton Exchange Membrane Fuel Cells. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119563426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

International Symposium on Proton Conducting Membrane Fuel Cells (2nd 1998). Proton conducting membrane fuel cells II: Proceedings of the Second International Symposium on Proton Conducting Membrane Fuel Cells II. Edited by Gottesfeld Shimshon, Fuller Thomas Francis, Electrochemical Society. Energy technology Division., Electrochemical Society Battery Division, and Electrochemical Society. Physical Electrochemistry Division. Pennington, New Jersey: Electrochemical Society, Inc., 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Proton exchange fuel cells"

1

Larminie, James, and Andrew Dicks. "Proton Exchange Membrane Fuel Cells." In Fuel Cell Systems Explained, 67–119. West Sussex, England: John Wiley & Sons, Ltd,., 2013. http://dx.doi.org/10.1002/9781118878330.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hamrock, Steven J., and Andrew M. Herring. "Proton Exchange Membrane Fuel Cells: High-Temperature, Low-Humidity Operation." In Fuel Cells, 577–605. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5785-5_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Albarbar, Alhussein, and Mohmad Alrweq. "Proton Exchange Membrane Fuel Cells: Review." In Proton Exchange Membrane Fuel Cells, 9–29. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70727-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aricò, Antonino S., Vincenzo Baglio, Nicola Briguglio, Gaetano Maggio, and Stefania Siracusano. "Proton Exchange Membrane Water Electrolysis." In Fuel Cells : Data, Facts and Figures, 343–56. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA., 2016. http://dx.doi.org/10.1002/9783527693924.ch34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gubler, Lorenz, and Willem H. Koppenol. "Hydrocarbon Proton Exchange Membranes." In The Chemistry of Membranes Used in Fuel Cells, 107–38. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119196082.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Albarbar, Alhussein, and Mohmad Alrweq. "Introduction and Background." In Proton Exchange Membrane Fuel Cells, 1–8. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70727-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Albarbar, Alhussein, and Mohmad Alrweq. "Design and Fundamental Characteristics of PEM Fuel Cells." In Proton Exchange Membrane Fuel Cells, 31–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70727-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Albarbar, Alhussein, and Mohmad Alrweq. "Failure Modes and Mechanisms." In Proton Exchange Membrane Fuel Cells, 59–76. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70727-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Albarbar, Alhussein, and Mohmad Alrweq. "Mathematical Modelling and Numerical Simulation." In Proton Exchange Membrane Fuel Cells, 77–100. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70727-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Albarbar, Alhussein, and Mohmad Alrweq. "Experimental Set-Up, Results and Data Analysis." In Proton Exchange Membrane Fuel Cells, 101–23. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70727-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Proton exchange fuel cells"

1

Dams, R. A. J., P. Hayter, and S. C. Moore. "Fuel options For Proton Exchange Membrane Fuel Cells." In Warship 96 - Naval Submarines 5. RINA, 1996. http://dx.doi.org/10.3940/rina.warship.1996.8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Belyaev, P. V., V. S. Mischenko, D. A. Podberezkin, and R. A. Em. "Simulation modeling of proton exchange membrane fuel cells." In 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2016. http://dx.doi.org/10.1109/dynamics.2016.7818980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jalani, Nikhil H., Shivananda P. Mizar, Pyoungho Choi, Cosme Furlong, and Ravindra Datta. "Optomechanical characterization of proton-exchange membrane fuel cells." In Optical Science and Technology, the SPIE 49th Annual Meeting, edited by Wolfgang Osten and Erik Novak. SPIE, 2004. http://dx.doi.org/10.1117/12.562893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Y., G. Lin, A. J. Shih, and S. J. Hu. "Assembly and Performance Modeling of Proton Exchange Membrane Fuel Cells." In ASME 2009 International Manufacturing Science and Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/msec2009-84133.

Full text
Abstract:
Proton exchange membrane (PEM) fuel cells are favored in many applications due to their simplicity and relatively high power density. However, there has been a lack of understandings of the fundamental mechanisms of assembly and manufacturing induced phenomena and their influence on performance and durability. This paper presents a comprehensive analysis of assembly pressure induced phenomena in PEM fuel cells using multi-physics based modeling. A finite-element-based structural and mass-transfer model was developed by integrating mechanical deformation, mass transfer resistance, and electrical contact resistance to study the effects of assembly pressure and the fuel cell overall performance. Contact resistance, inhomogeneous deformation of membrane and GDL, electrochemical analysis were simulated. The fuel cell performance was predicted and an optimal assembly pressure was identified through this multi-physics model. Results show that PEM fuel cell performance first increases gradually to a maximum and then decreases with further assembly pressure increase. The influence of temperature and humidity on cell performance was also investigated.
APA, Harvard, Vancouver, ISO, and other styles
5

Reissman, Timothy, Austin Fang, Ephrahim Garcia, Brian J. Kirby, Romain Viard, and Philippe M. Fauchet. "Inorganic Proton Exchange Membranes." In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97149.

Full text
Abstract:
Direct Methanol Fuel Cells (DMFCs) offer advantages from quick refills to the elimination of recharge times. They show the most potential in efficient chemical to electrical energy conversion, but currently one major source of inefficiency within the DMFC system is the electrolyte allowing fuel to cross over from the anode to cathode. Proprietary DuPont™ Nafion® 117 has been the standard polymer electrolyte thus far for all meso-scale direct methanol power conversion systems, and its shortcomings consist primarily of slow anodic reaction rates and fuel crossover resulting in lower voltage generation or mixed potential. Porous Silicon (P-Si) is traditionally used in photovoltaic and photoluminescence applications but rarely used as a mechanical filter or membrane. This research deals with investigations into using P-Si as a functioning electrolyte to transfer ions from the anode to cathode of a DMFC and the consequences of stacking multiple layers of anodes. Porous silicon was fabricated in a standard Teflon cylindrical cell by an anodization process which varied the current density to etch and electro-polish the silicon membrane. The result was a porous silicon membrane with approximately 1.5 μm pore sizes when optically characterized by a scanning electron microscope. The porous membranes were then coated in approximately 0.2 mg/cm2 Pt-Ru catalyst with a 10% Nafion® solution binding agent onto the anode. Voltage versus current data shows an open circuit voltage (OCV) of 0.25V was achieved with one layer when operating at 20°C. When adding a second porous silicon layer, the OCV was raised to approximately 0.32V under the same conditions. The experimental data suggested that the current collected also increased with an additional identical layer of anode prepared the same way. The single difference was that the air cathode side was surface treated with 0.1 mg of Pt black catalyst combined with a 10% Nafion® binding agent to aid in the recombination of hydrogen atoms to form the water byproduct. Porous silicon endurance runs with 2ml of 3% by volume methanol (0.7425M) fuel dissolved in water showed an operating voltage was generated for approximately 3 hours before the level dropped to approximately 65% of the 0.25V maximum voltage. Endurance runs with a second layer added extended the useful cell life to approximately 5 hours under the same conditions. In an effort to quantify these layering results, Fourier Transform Infrared Spectrometry was conducted on a number of samples to verify decreased methanol concentration present in the second layer.
APA, Harvard, Vancouver, ISO, and other styles
6

Brady, Michael P., Heli Wang, Irene Paulauskas, Bing Yang, Pavlo Sachenko, Peter F. Tortorelli, John A. Turner, and Raymond A. Buchanan. "Nitride Metallic Bipolar Plates for Proton Exchange Membrane Fuel Cells." In ASME 2004 2nd International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2004. http://dx.doi.org/10.1115/fuelcell2004-2503.

Full text
Abstract:
Thermal nitridation of Ni- and Fe-base Cr-bearing alloys is under investigation as a means to enable use of metallic bipolar plates in proton exchange membrane fuel cells. Proof of principle for this approach was recently established by a successful single-cell fuel cell test using 50 cm2 active area anode and cathode plates made from a model nitrided Ni-50Cr alloy. Protection of the metal was accomplished by the formation of an electrically-conductive and corrosion-resistant CrN/Cr2N surface layer. This paper presents an overview of efforts to form similar Cr-nitride surfaces on Ni-Cr and Fe-Cr base alloys in commercially available composition ranges.
APA, Harvard, Vancouver, ISO, and other styles
7

Lavric, Alexandru, Maria Simona Raboaca, Ana-Maria Nasture, and Constantin Filote. "Proton-Exchange Membrane Fuel Cells: The Renewable Energy Era." In 2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). IEEE, 2019. http://dx.doi.org/10.1109/ecai46879.2019.9042066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rodrigues, A., J. C. Amphlett, R. F. Mann, B. A. Peppley, and P. R. Roberge. "Carbon monoxide poisoning of proton-exchange membrane fuel cells." In IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203). IEEE, 1997. http://dx.doi.org/10.1109/iecec.1997.660236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yulan Tang, Xiaowei Bi, Hong Sun, Jinxiang Fu, and Jingtao Zhao. "Investigation of proton exchange membrane microbial fuel cells performance." In 2010 International Conference on Mechanic Automation and Control Engineering (MACE). IEEE, 2010. http://dx.doi.org/10.1109/mace.2010.5535904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

CAVALIERE, S., D. J. JONES, and J. ROZIÈRE. "ADVANCES IN NANOMATERIALS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS." In Proceedings of International Conference Nanomeeting – 2011. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814343909_0136.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Proton exchange fuel cells"

1

Dhar, H. P., J. H. Lee, and K. A. Lewinski. Self-humidified proton exchange membrane fuel cells: Operation of larger cells and fuel cell stacks. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/460298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McGrath, James E. New Proton Exchange Membranes for Direct Methanol Fuel Cells. Fort Belvoir, VA: Defense Technical Information Center, June 2005. http://dx.doi.org/10.21236/ada440754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fujimoto, Cy H., Gary Stephen Grest, Michael A. Hickner, Christopher James Cornelius, Chad Lynn Staiger, and Michael R. Hibbs. Advanced proton-exchange materials for energy efficient fuel cells. Office of Scientific and Technical Information (OSTI), December 2005. http://dx.doi.org/10.2172/883478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Weisbrod, K. R., N. E. Vanderborgh, and S. A. Grot. Modeling of gaseous flows within proton exchange membrane fuel cells. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/460311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shamsuddin Ilias. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS. Office of Scientific and Technical Information (OSTI), June 2002. http://dx.doi.org/10.2172/825378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shamsuddin Ilias. DEVELOPMENT OF NOVEL ELECTROCATALYST FOR PROTON EXCHANGE MEMBRANE FUEL CELLS. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/778369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shamsuddin Ilias. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS. Office of Scientific and Technical Information (OSTI), July 2001. http://dx.doi.org/10.2172/825377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shamsuddin Ilias. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS. Office of Scientific and Technical Information (OSTI), April 2003. http://dx.doi.org/10.2172/821855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lvov, S. N., H. R. Allcock, X. Y. Zhou, M. A. Hofmann, E. Chalkova, M. V. Fedkin, J. A. Weston, and C. M. Ambler. High temperature direct methanal-fuel proton exchange membrane fuel cells. Final report. Office of Scientific and Technical Information (OSTI), October 2001. http://dx.doi.org/10.2172/820976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pintauro, Peter N., Ryszard Wycisk, H. Yoo, and J. Lee. Polyphosphazene-Based Proton-Exchange Membranes for Direct Liquid Methanol Fuel Cells. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada441576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography