To see the other types of publications on this topic, follow the link: Proton exchange fuel cells.

Journal articles on the topic 'Proton exchange fuel cells'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Proton exchange fuel cells.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Vishnyakov, V. M. "Proton exchange membrane fuel cells." Vacuum 80, no. 10 (2006): 1053–65. http://dx.doi.org/10.1016/j.vacuum.2006.03.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Swette, Larry L., Anthony B. LaConti, and Stephen A. McCatty. "Proton-exchange membrane regenerative fuel cells." Journal of Power Sources 47, no. 3 (1994): 343–51. http://dx.doi.org/10.1016/0378-7753(94)87013-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gerasimov, G. Ya. "Nanomaterials in Proton Exchange Fuel Cells." Journal of Engineering Physics and Thermophysics 88, no. 6 (2015): 1554–68. http://dx.doi.org/10.1007/s10891-015-1343-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

JIANG, ZHONGQING, YUEDONG MENG, ZHONG-JIE JIANG, and YICAI SHI. "PREPARATION OF HIGHLY SULFONATED ULTRA-THIN PROTON-EXCHANGE POLYMER MEMBRANES FOR PROTON EXCHANGE MEMBRANE FUEL CELLS." Surface Review and Letters 16, no. 02 (2009): 297–302. http://dx.doi.org/10.1142/s0218625x09012627.

Full text
Abstract:
Sulfonated ultra-thin proton-exchange polymer membrane carrying pyridine groups was made from a plasma polymerization of styrene, 2-vinylpyridine, and trifluoromethanesulfonic acid by after-glow capacitively coupled discharge technique. Pyridine groups tethered to the polymer backbone acts as a medium through the basic nitrogen for transfer of protons between the sulfonic acid groups of proton exchange membrane. It shows that the method using present technology could effectively depress the degradation of monomers during the plasma polymerization. Spectroscopic analyses reveal that the obtaine
APA, Harvard, Vancouver, ISO, and other styles
5

Rusanov, Alexander, Vladimir Tartakovskiy, Elena Bulycheva, et al. "Tnt-based sulfonated polynaphthylimides useful as proton exchange membranes for fuel cells (pemfcs)." Chemistry & Chemical Technology 4, no. 1 (2010): 17–22. http://dx.doi.org/10.23939/chcht04.01.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thimmappa, Ravikumar, Mruthyunjayachari Chattanahalli Devendrachari, Alagar Raja Kottaichamy, et al. "Stereochemistry-Dependent Proton Conduction in Proton Exchange Membrane Fuel Cells." Langmuir 32, no. 1 (2015): 359–65. http://dx.doi.org/10.1021/acs.langmuir.5b03984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sun, Baoying, Huanqiao Song, Xinping Qiu, and Wentao Zhu. "New Anhydrous Proton Exchange Membrane for Intermediate Temperature Proton Exchange Membrane Fuel Cells." ChemPhysChem 12, no. 6 (2011): 1196–201. http://dx.doi.org/10.1002/cphc.201000848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

TRAN, A. T. T., M. C. DUKE, P. G. GRAY, and J. C. DINIZ DA COSTA. "CHARACTERIZATION OF TITANIUM PHOSPHATE AS ELECTROLYTES IN FUEL CELLS." International Journal of Modern Physics B 20, no. 25n27 (2006): 4147–52. http://dx.doi.org/10.1142/s0217979206041008.

Full text
Abstract:
Titanium phosphate is currently a promising material for proton exchange membrane fuel cells applications (PEMFC) allowing for operation at high temperature conditions. In this work, titanium phosphate was synthesized from tetra iso-propoxide (TTIP) and orthophosphoric acid ( H 3 PO 4) in different ratios by a sol gel method. High BET surface areas of 271 m2.g-1 were obtained for equimolar Ti:P samples whilst reduced surface areas were observed by varying the molar ratio either way. Highest proton conductivity of 5.4×10-2 S . cm -1 was measured at 20°C and 93% relative humidity (RH). However,
APA, Harvard, Vancouver, ISO, and other styles
9

Restrepo, Carlos, Oriol Avino, Javier Calvente, Alfonso Romero, Miro Milanovic, and Roberto Giral. "Reactivation System for Proton-Exchange Membrane Fuel-Cells." Energies 5, no. 7 (2012): 2404–23. http://dx.doi.org/10.3390/en5072404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rowe, Andrew, and Xianguo Li. "Mathematical modeling of proton exchange membrane fuel cells." Journal of Power Sources 102, no. 1-2 (2001): 82–96. http://dx.doi.org/10.1016/s0378-7753(01)00798-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Dobrovol’skii, Yu A., E. V. Volkov, A. V. Pisareva, Yu A. Fedotov, D. Yu Likhachev, and A. L. Rusanov. "Proton-exchange membranes for hydrogen-air fuel cells." Russian Journal of General Chemistry 77, no. 4 (2007): 766–77. http://dx.doi.org/10.1134/s1070363207040378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Xu, Zhiqiang, Zhigang Qi, and Arthur Kaufman. "Superior Catalysts for Proton Exchange Membrane Fuel Cells." Electrochemical and Solid-State Letters 8, no. 6 (2005): A313. http://dx.doi.org/10.1149/1.1912018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Siahrostami, Samira, Mårten E. Björketun, Peter Strasser, Jeff Greeley, and Jan Rossmeisl. "Tandem cathode for proton exchange membrane fuel cells." Physical Chemistry Chemical Physics 15, no. 23 (2013): 9326. http://dx.doi.org/10.1039/c3cp51479j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Fuchs, Alan, Joko Sutrisno, Anu Adibhatla, et al. "Novel Composite Proton Exchange Membranes for Fuel Cells." ECS Transactions 19, no. 30 (2019): 33–49. http://dx.doi.org/10.1149/1.3253361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Fritz, David L., and Jeffrey S. Allen. "Evaporation Modeling for Proton Exchange Membrane Fuel Cells." ECS Transactions 25, no. 1 (2019): 49–58. http://dx.doi.org/10.1149/1.3210558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ünlü, Murat, Junfeng Zhou, and Paul A. Kohl. "Hybrid Anion and Proton Exchange Membrane Fuel Cells." Journal of Physical Chemistry C 113, no. 26 (2009): 11416–23. http://dx.doi.org/10.1021/jp903252u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Murphy, Oliver J., G. Duncan Hitchens, and David J. Manko. "High power density proton-exchange membrane fuel cells." Journal of Power Sources 47, no. 3 (1994): 353–68. http://dx.doi.org/10.1016/0378-7753(94)87014-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Barbieri, G., A. Brunetti, M. L. Di Vona, et al. "LoLiPEM: Long life proton exchange membrane fuel cells." International Journal of Hydrogen Energy 41, no. 3 (2016): 1921–34. http://dx.doi.org/10.1016/j.ijhydene.2015.10.096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Al-Rweg, Mohmad, Khaled Ahmeda, and Alhussein Albarbar. "Acoustical Characteristics of Proton Exchange Membrane Fuel Cells." IEEE Access 9 (2021): 81068–77. http://dx.doi.org/10.1109/access.2021.3083937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Tellez-Cruz, Miriam M., Jorge Escorihuela, Omar Solorza-Feria, and Vicente Compañ. "Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges." Polymers 13, no. 18 (2021): 3064. http://dx.doi.org/10.3390/polym13183064.

Full text
Abstract:
The study of the electrochemical catalyst conversion of renewable electricity and carbon oxides into chemical fuels attracts a great deal of attention by different researchers. The main role of this process is in mitigating the worldwide energy crisis through a closed technological carbon cycle, where chemical fuels, such as hydrogen, are stored and reconverted to electricity via electrochemical reaction processes in fuel cells. The scientific community focuses its efforts on the development of high-performance polymeric membranes together with nanomaterials with high catalytic activity and st
APA, Harvard, Vancouver, ISO, and other styles
21

Sun, Baoying, Huanqiao Song, Xinping Qiu, and Wentao Zhu. "Corrigendum: New Anhydrous Proton Exchange Membrane for Intermediate Temperature Proton Exchange Membrane Fuel Cells." ChemPhysChem 12, no. 13 (2011): 2366. http://dx.doi.org/10.1002/cphc.201190067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Mungkalasiri, W., and J. Mungkalasiri. "Simulation of Biomass Gasification with Proton Exchange Membrane Fuel Cell System." International Journal of Chemical Engineering and Applications 9, no. 6 (2018): 189–93. http://dx.doi.org/10.18178/ijcea.2018.9.6.725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Wafiroh, Siti, Abdulloh Abdulloh, and Alfa Akustia Widati. "Phosphorylated Zeolite-A/Chitosan Composites as Proton Exchange Membrane Fuel Cell." Chemistry & Chemical Technology 12, no. 2 (2018): 229–35. http://dx.doi.org/10.23939/chcht12.02.229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Thimmappa, Ravikumar, Mohammed Fawaz, Mruthyunjayachari Chattanahalli Devendrachari, et al. "Anisotropic amplification of proton transport in proton exchange membrane fuel cells." Chemical Physics Letters 679 (July 2017): 1–5. http://dx.doi.org/10.1016/j.cplett.2017.04.080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Majlan, E. H., D. Rohendi, W. R. W. Daud, T. Husaini, and M. A. Haque. "Electrode for proton exchange membrane fuel cells: A review." Renewable and Sustainable Energy Reviews 89 (June 2018): 117–34. http://dx.doi.org/10.1016/j.rser.2018.03.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

SIVERTSEN, B., and N. DJILALI. "CFD-based modelling of proton exchange membrane fuel cells." Journal of Power Sources 141, no. 1 (2005): 65–78. http://dx.doi.org/10.1016/j.jpowsour.2004.08.054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Yu, Dachuan, and S. Yuvarajan. "Electronic circuit model for proton exchange membrane fuel cells." Journal of Power Sources 142, no. 1-2 (2005): 238–42. http://dx.doi.org/10.1016/j.jpowsour.2004.09.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Xu, Zhiqiang, Zhigang Qi, Chunzhi He, and Arthur Kaufman. "Combined activation methods for proton-exchange membrane fuel cells." Journal of Power Sources 156, no. 2 (2006): 315–20. http://dx.doi.org/10.1016/j.jpowsour.2005.05.072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mérida, W. R., G. McLean, and N. Djilali. "Non-planar architecture for proton exchange membrane fuel cells." Journal of Power Sources 102, no. 1-2 (2001): 178–85. http://dx.doi.org/10.1016/s0378-7753(01)00818-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Reeves, Kimberly Shawn, Karren L. More, Larry R. Walker, and Jian Xie. "TEM Evaluation of Aged Proton Exchange Membrane Fuel Cells." Microscopy and Microanalysis 10, S02 (2004): 1368–69. http://dx.doi.org/10.1017/s143192760488680x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

DRENNAN, J., R. WEBB, K. NOGITA, et al. "Analytical electron microscopy of proton exchange membrane fuel cells." Solid State Ionics 177, no. 19-25 (2006): 1649–54. http://dx.doi.org/10.1016/j.ssi.2006.07.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Steiner, N. Yousfi, D. Candusso, D. Hissel, and P. Moçoteguy. "Model-based diagnosis for proton exchange membrane fuel cells." Mathematics and Computers in Simulation 81, no. 2 (2010): 158–70. http://dx.doi.org/10.1016/j.matcom.2010.02.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ramousse, Julien, Olivier Lottin, Sophie Didierjean, and Denis Maillet. "Heat sources in proton exchange membrane (PEM) fuel cells." Journal of Power Sources 192, no. 2 (2009): 435–41. http://dx.doi.org/10.1016/j.jpowsour.2009.03.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kadjo, J. J. A., J. P. Garnier, J. P. Maye, F. Relot, and S. Martemianov. "Performance and instabilities of proton exchange membrane fuel cells." Russian Journal of Electrochemistry 42, no. 5 (2006): 467–75. http://dx.doi.org/10.1134/s1023193506050041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Baschuk, J. J., and X. Li. "Carbon monoxide poisoning of proton exchange membrane fuel cells." Fuel and Energy Abstracts 43, no. 4 (2002): 260. http://dx.doi.org/10.1016/s0140-6701(02)86280-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Xiao, Fei, Gui-Liang Xu, Cheng-Jun Sun, et al. "Durable hybrid electrocatalysts for proton exchange membrane fuel cells." Nano Energy 77 (November 2020): 105192. http://dx.doi.org/10.1016/j.nanoen.2020.105192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Yan, Zeyu, Bing Li, Daijun Yang, and Jianxin Ma. "Pt nanowire electrocatalysts for proton exchange membrane fuel cells." Chinese Journal of Catalysis 34, no. 8 (2013): 1471–81. http://dx.doi.org/10.1016/s1872-2067(12)60629-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

St-Pierre, J., B. Wetton, G. S. Kim, and K. Promislow. "Limiting Current Operation of Proton Exchange Membrane Fuel Cells." Journal of The Electrochemical Society 154, no. 2 (2007): B186. http://dx.doi.org/10.1149/1.2401045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Fang, Feifei, Shixiong Zhao, Wen Zhang, Chengyi Zhang, Luofu Min, and Yuxin Wang. "Electrophoretic fabrication of proton exchange membranes in fuel cells." Journal of Membrane Science 565 (November 2018): 179–85. http://dx.doi.org/10.1016/j.memsci.2018.08.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Liu, Hongtan, Tianhong Zhou, and Ping Cheng. "Transport Phenomena Analysis in Proton Exchange Membrane Fuel Cells." Journal of Heat Transfer 127, no. 12 (2005): 1363–79. http://dx.doi.org/10.1115/1.2098830.

Full text
Abstract:
The objective of this review is to provide a summary of modeling and experimental research efforts on transport phenomena in proton exchange membrane fuel cells (PEMFCs). Several representative PEMFC models and experimental studies in macro and micro PEMFCs are selected for discussion. No attempt is made to examine all the models or experimental studies, but rather the focus is to elucidate the macro-homogeneous modeling methodologies and representative experimental results. Since the transport phenomena are different in different regions of a fuel cell, fundamental phenomena in each region ar
APA, Harvard, Vancouver, ISO, and other styles
41

Lwoya, Baraka S., and Julie N. L. Albert. "Nanostructured Block Copolymers for Proton Exchange Membrane Fuel Cells." Energy and Environment Focus 4, no. 4 (2015): 278–90. http://dx.doi.org/10.1166/eef.2015.1179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Devanathan, Ram. "Recent developments in proton exchange membranes for fuel cells." Energy & Environmental Science 1, no. 1 (2008): 101. http://dx.doi.org/10.1039/b808149m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Baschuk, J. J., and Xianguo Li. "Carbon monoxide poisoning of proton exchange membrane fuel cells." International Journal of Energy Research 25, no. 8 (2001): 695–713. http://dx.doi.org/10.1002/er.713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Chan, S. H., and W. A. Tun. "Catalyst Layer Models for Proton Exchange Membrane Fuel Cells." Chemical Engineering & Technology 24, no. 1 (2001): 51–57. http://dx.doi.org/10.1002/1521-4125(200101)24:1<51::aid-ceat51>3.0.co;2-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Song, Min-Kyu, Huiping Li, Jinhuan Li, Dan Zhao, Jenghan Wang, and Meilin Liu. "Tetrazole-based, Anhydrous Proton Exchange Membranes for Fuel Cells." Advanced Materials 26, no. 8 (2013): 1277–82. http://dx.doi.org/10.1002/adma.201304121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Gurau, Vladimir, Hongtan Liu, and Sadik Kakaç. "Two-dimensional model for proton exchange membrane fuel cells." AIChE Journal 44, no. 11 (1998): 2410–22. http://dx.doi.org/10.1002/aic.690441109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Akay, T. E., N. Abdullayeva, M. Sankir, and N. Demirci Sankir. "On-Board Hydrogen Powered Proton Exchange Membrane Fuel Cells." ECS Transactions 75, no. 14 (2016): 511–13. http://dx.doi.org/10.1149/07514.0511ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Xiao, Fei, Gui-Liang Xu, Cheng-Jun Sun, et al. "Durable Hybrid Electrocatalysts for Proton Exchange Membrane Fuel Cells." ECS Meeting Abstracts MA2020-02, no. 36 (2020): 2284. http://dx.doi.org/10.1149/ma2020-02362284mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Yang, Jingshuai, David Aili, Qingfeng Li, et al. "Benzimidazole grafted polybenzimidazoles for proton exchange membrane fuel cells." Polymer Chemistry 4, no. 17 (2013): 4768. http://dx.doi.org/10.1039/c3py00408b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Abderezzak, B., B. Khelidj, and M. Tahar Abbes. "Performances prediction study for proton exchange membrane fuel cells." International Journal of Hydrogen Energy 39, no. 27 (2014): 15206–14. http://dx.doi.org/10.1016/j.ijhydene.2014.03.262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!