Academic literature on the topic 'Proton Learning Model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Proton Learning Model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Proton Learning Model"
Dhuri, Dattaraj B., Dimitra Atri, and Ahmed AlHantoobi. "An Explainable Deep-learning Model of Proton Auroras on Mars." Planetary Science Journal 5, no. 6 (2024): 136. http://dx.doi.org/10.3847/psj/ad45ff.
Full textAsuroglu, Tunc. "Enhancing precision in proton therapy: Utilizing machine learning for predicting Bragg curve peak location in cancer treatment." Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 66, no. 2 (2024): 140–61. http://dx.doi.org/10.33769/aupse.1417403.
Full textFathul, Jannah, Fahlevi Reja, Sari Raihanah, Radiansyah, Yuda, and Azizah Ni'mah. "Improving Learning Activities and Writing Skills in Indonesian Language Content the Environmental Theme of Our Friends Using the Proton Model at Sdn Hatungun 1 Tapin." International Journal of Social Science And Human Research 05, no. 11 (2022): 5091–96. https://doi.org/10.5281/zenodo.7333040.
Full textLi, Meng, and Dong Ding. "Accelerated Discovery of Proton-Conducting Perovskites through Density Functional Theory and Machine Learning." ECS Meeting Abstracts MA2022-02, no. 49 (2022): 1913. http://dx.doi.org/10.1149/ma2022-02491913mtgabs.
Full textPastor-Serrano, Oscar, and Zoltán Perkó. "Learning the Physics of Particle Transport via Transformers." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 12071–79. http://dx.doi.org/10.1609/aaai.v36i11.21466.
Full textBall, Richard D., Alessandro Candido, Juan Cruz-Martinez, et al. "Evidence for intrinsic charm quarks in the proton." Nature 608, no. 7923 (2022): 483–87. http://dx.doi.org/10.1038/s41586-022-04998-2.
Full textKim, Jiwoong, Chang-Seong Moon, Hokyeong Nam, et al. "Multi-Jet Event classification with Convolutional neural network at Large Scale." Journal of Physics: Conference Series 2438, no. 1 (2023): 012103. http://dx.doi.org/10.1088/1742-6596/2438/1/012103.
Full textIndraniyati, Indraniyati, Abdul Hadjranul Fatah, and Nopriawan Berkat Asi. "Pemahaman Konsep Struktur Atom Setelah Pembelajaran Menggunakan Model Discovery Learning Berbantuan LKS pada Siswa Kelas X MIA-1 SMA Negeri 1 Paku." Jurnal Ilmiah Kanderang Tingang 11, no. 1 (2020): 180–92. http://dx.doi.org/10.37304/jikt.v11i1.85.
Full textMohamed Zabidi, Zubainun, Nurul Batrisyia Muhamad Suhaimy, Ahmad Nazib Alias, Nur Diyana Nazihah Fuadi, and Nur Hanisah Hamzi. "Prediction Of Carboxylic Acid Toxicity Using Machine Learning Model." Malaysian Journal of Applied Sciences 8, no. 2 (2023): 28–36. http://dx.doi.org/10.37231/myjas.2023.8.2.357.
Full textJUNG, Emrae JUNG, and Erhan ATAY. "Internationalization of the Automotive Industry by Extending IOL3 model: A Case Study of Geely Automobile." Eurasian Journal of Business and Economics 15, no. 29 (2022): 1–17. http://dx.doi.org/10.17015/ejbe.2022.029.01.
Full textDissertations / Theses on the topic "Proton Learning Model"
Pontes, Miranda James William. "Federation of heterogeneous models with machine learning-assisted model views." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2025. http://www.theses.fr/2025IMTA0454.
Full textArige, Abhaya Dhathri. "Simplification of 3D CAD models with deep learning for augmented reality." Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAS018.
Full textTahoun, Mohamed. "Object Shape Perception for Autonomous Dexterous Manipulation Based on Multi-Modal Learning Models." Electronic Thesis or Diss., Bourges, INSA Centre Val de Loire, 2021. http://www.theses.fr/2021ISAB0003.
Full textSoumm, Michaël. "Refining machine learning evaluation : statistical insights into model performance and fairness." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG094.
Full textStock, Pierre. "Efficiency and Redundancy in Deep Learning Models : Theoretical Considerations and Practical Applications." Thesis, Lyon, 2021. http://www.theses.fr/2021LYSEN008.
Full textCappuzzo, Riccardo. "Deep learning models for tabular data curation." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS047.
Full textBen-Younes, Hedi. "Multi-modal representation learning towards visual reasoning." Electronic Thesis or Diss., Sorbonne université, 2019. http://www.theses.fr/2019SORUS173.
Full textAyed, Ibrahim. "Neural Models for Learning Real World Dynamics and the Neural Dynamics of Learning." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS434.
Full textBelilovsky, Eugene. "Apprentissage de graphes structuré et parcimonieux dans des données de haute dimension avec applications à l’imagerie cérébrale." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLC027.
Full textDarwaish, Asim. "Adversary-aware machine learning models for malware detection systems." Electronic Thesis or Diss., Université Paris Cité, 2022. http://www.theses.fr/2022UNIP7283.
Full textBooks on the topic "Proton Learning Model"
Byrne, John H., ed. The Oxford Handbook of Invertebrate Neurobiology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780190456757.001.0001.
Full textIori, Giulia, and James Porter. Agent-based Modeling for Financial Markets. Edited by Shu-Heng Chen, Mak Kaboudan, and Ye-Rong Du. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199844371.013.43.
Full textYates, Jan M. Interactive Distance Learning in PreK-12 Settings. Greenwood Publishing Group, Inc., 2003. http://dx.doi.org/10.5040/9798400671012.
Full textGraves, Colleen, Aaron Graves, and Diana L. Rendina. Challenge-Based Learning in the School Library Makerspace. ABC-CLIO, LLC, 2017. http://dx.doi.org/10.5040/9798400624421.
Full textBusi, Kimberly, and Kristin Berman. Integration and Dynamic Adaptation in the Formation of a Novel 2e School Model. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190645472.003.0020.
Full textLanning, Scott, and Caitlin Gerrity. Concise Guide to Information Literacy. 3rd ed. Libraries Unlimited, 2022. http://dx.doi.org/10.5040/9798400630101.
Full textHedman, Shawn. A First Course in Logic. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780198529804.001.0001.
Full textHussain, Ibrahim, and David H. Gutmann. Familial CNS Tumor Syndromes. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199937837.003.0134.
Full textRusso, Christina T., and Cathy Swan. Your Library Is the Answer. ABC-CLIO, LLC, 2015. http://dx.doi.org/10.5040/9798216040071.
Full textGouthier, Matthias, ed. Erfolgreiche Wege zur Service Excellence. Nomos Verlagsgesellschaft mbH & Co. KG, 2022. http://dx.doi.org/10.5771/9783748928430.
Full textBook chapters on the topic "Proton Learning Model"
Zhang, Yuanyuan, Xiao Wang, Zicong Zhang, Yunhan Huang, and Daisuke Kihara. "Assessment of Protein–Protein Docking Models Using Deep Learning." In Protein-Protein Docking. Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-3985-6_10.
Full textGadekar, Aumkar, Shreya Oak, Abhishek Revadekar, and Anant V. Nimkar. "MMAP: A Multi-Modal Automated Online Proctor." In Machine Learning and Big Data Analytics (Proceedings of International Conference on Machine Learning and Big Data Analytics (ICMLBDA) 2021). Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82469-3_28.
Full textMasso, Majid, and Iosif I. Vaisman. "Structure-Based Machine Learning Models for Computational Mutagenesis." In Introduction to Protein Structure Prediction. John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470882207.ch18.
Full textEti Proto, Meltem, and Ceren Koç Sağlam. "Furniture Design Education with 3D Printing Technology." In Makers at School, Educational Robotics and Innovative Learning Environments. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77040-2_13.
Full textVeena, M. B., and Gagan Bagewadi. "Identification of Plant Leaf Disease Using Synthetic Data Augmentation ProGAN to Improve the Performance of Deep Learning Models." In Evolutionary Artificial Intelligence. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8438-1_14.
Full text"A Learning Model for Today." In Robot-Proof, 2nd ed. The MIT Press, 2024. http://dx.doi.org/10.7551/mitpress/15620.003.0007.
Full text"A Learning Model for the Future." In Robot-Proof. The MIT Press, 2017. http://dx.doi.org/10.7551/mitpress/11456.003.0006.
Full textMuggleton, Stephen. "Inverting Entailment and Progol." In Machine Intelligence 14. Oxford University PressOxford, 1996. http://dx.doi.org/10.1093/oso/9780198538608.003.0006.
Full textMozetičt, I., J. Stefan Institute, I. Bratko, et al. "Varying Levels of Abstraction in Qualitative Modelling." In Machine Intelligence 12. Oxford University PressOxford, 1991. http://dx.doi.org/10.1093/oso/9780198538233.003.0017.
Full textSokouti, Babak, and Massoud Sokouti. "Security of Internet-, Intranet-, and Computer-Based Examinations in Terms of Technical, Authentication, and Environmental, Where Are We?" In Advanced Methodologies and Technologies in System Security, Information Privacy, and Forensics. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7492-7.ch008.
Full textConference papers on the topic "Proton Learning Model"
Franić, Nikola, Ivan Pivac, Frano Barbir, and Ivan Peko. "Voltage Prediction of Proton Exchange Membrane Fuel Cells in Various Air Stoichiometries Using a Deep Learning Model Approach." In 2024 9th International Conference on Smart and Sustainable Technologies (SpliTech). IEEE, 2024. http://dx.doi.org/10.23919/splitech61897.2024.10612556.
Full textCabrales, P., V. V. Onecha, J. M. Udías, D. Izquierdo-García, and J. L. Herraiz. "PROTOTWIN-PET: Patient-Specific Deep Learning Models for 3D Dose Verification in Proton Therapy with PET." In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD). IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10655000.
Full textDhaked, Dheeraj Kumar, Purushottam Kumar, and Sanjib Ganguly. "Development of Data Driven Model for Proton Exchange Membrane Fuel Cell Using Machine Learning Approaches." In 2024 IEEE 3rd International Conference on Control, Instrumentation, Energy & Communication (CIEC). IEEE, 2024. http://dx.doi.org/10.1109/ciec59440.2024.10468283.
Full textZhu, Shaopeng, Yifeng Wang, Qinghui Xiong, Jun Geng, and Huipeng Chen. "Fault Diagnosis of Proton Exchange Membrane Fuel Cells Based on Deep Learning and Transfer Learning." In SAE 2024 Vehicle Powertrain Diversification Technology Forum. SAE International, 2025. https://doi.org/10.4271/2025-01-7076.
Full textLv, Hang, Fengxiang Chen, and Yaowang Pei. "Thermal Management of Air-Cooled PEMFC: Machine Learning-Based Warm Starting of Active Set Methods in Model Predictive Control." In SAE 2024 Vehicle Powertrain Diversification Technology Forum. SAE International, 2025. https://doi.org/10.4271/2025-01-7071.
Full textLin, Lianshan, Hoang Tran, Majdi I. Radaideh, et al. "Material Model Parameters Optimization in Liquid Mercury Target Dynamics Simulation With Machine Learning Surrogates." In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-113604.
Full textSag, Canda Deniz, and Onur Sahin. "Predicting Jet Count in Proton-Proton Collisions using Machine Learning and Deep Learning Models." In 2023 8th International Conference on Computer Science and Engineering (UBMK). IEEE, 2023. http://dx.doi.org/10.1109/ubmk59864.2023.10286647.
Full textLin, Tong, Leiming Hu, Shawn Litster, and Levent Burak Kara. "Prediction of Nitrogen Concentration in Fuel Cells Using Data-Driven Modeling." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-98477.
Full textCruz Martinez, Juan Manuel, Stefano Carrazza, and Roy Stegeman. "Studying the parton content of the proton with deep learning models." In Artificial Intelligence for Science, Industry and Society. Sissa Medialab, 2020. http://dx.doi.org/10.22323/1.372.0008.
Full textOrehova, Ekaterina, Sergey Govyazin, and Iurii Stroganov. "LEARNING DATABASE QUERIES WITH PROLOG." In eLSE 2019. Carol I National Defence University Publishing House, 2019. http://dx.doi.org/10.12753/2066-026x-19-107.
Full textReports on the topic "Proton Learning Model"
Arnold, Zachary, Joanne Boisson, Lorenzo Bongiovanni, Daniel Chou, Carrie Peelman, and Ilya Rahkovsky. Using Machine Learning to Fill Gaps in Chinese AI Market Data. Center for Security and Emerging Technology, 2021. http://dx.doi.org/10.51593/20200064.
Full textGupta, Sweta, and Mohamed Abouaziza. Closing England's Maths Attainment Gap through One-to-One Tutoring – Global Solutions. Institute of Development Studies (IDS), 2021. http://dx.doi.org/10.19088/ids.2021.050.
Full textDouglas, Thomas, and Caiyun Zhang. Machine learning analyses of remote sensing measurements establish strong relationships between vegetation and snow depth in the boreal forest of Interior Alaska. Engineer Research and Development Center (U.S.), 2021. http://dx.doi.org/10.21079/11681/41222.
Full textWandeler, Christian, and Steve Hart. The Central Valley Transportation Challenge. Mineta Transportation Institute, 2022. http://dx.doi.org/10.31979/mti.2022.2029.
Full textPerdigão, Rui A. P. Information physics and quantum space technologies for natural hazard sensing, modelling and prediction. Meteoceanics, 2021. http://dx.doi.org/10.46337/210930.
Full textHarris, L. B., P. Adiban, and E. Gloaguen. The role of enigmatic deep crustal and upper mantle structures on Au and magmatic Ni-Cu-PGE-Cr mineralization in the Superior Province. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328984.
Full textBeshouri, Greg. PR-309-14212-WEB Field Demonstration of Fully Integrated NSCR System. Pipeline Research Council International, Inc. (PRCI), 2019. http://dx.doi.org/10.55274/r0011623.
Full textElmann, Anat, Orly Lazarov, Joel Kashman, and Rivka Ofir. therapeutic potential of a desert plant and its active compounds for Alzheimer's Disease. United States Department of Agriculture, 2015. http://dx.doi.org/10.32747/2015.7597913.bard.
Full textLandau, Sergei Yan, John W. Walker, Avi Perevolotsky, Eugene D. Ungar, Butch Taylor, and Daniel Waldron. Goats for maximal efficacy of brush control. United States Department of Agriculture, 2008. http://dx.doi.org/10.32747/2008.7587731.bard.
Full textEvidence-informed planning and action in Central Asia: Learnings from the Tajikistan Adolescent Wellbeing and Health Pilot Project. Population Council, 2021. http://dx.doi.org/10.31899/sbsr2021.1046.
Full text