Journal articles on the topic 'Proton Learning Model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Proton Learning Model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Dhuri, Dattaraj B., Dimitra Atri, and Ahmed AlHantoobi. "An Explainable Deep-learning Model of Proton Auroras on Mars." Planetary Science Journal 5, no. 6 (2024): 136. http://dx.doi.org/10.3847/psj/ad45ff.
Full textAsuroglu, Tunc. "Enhancing precision in proton therapy: Utilizing machine learning for predicting Bragg curve peak location in cancer treatment." Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering 66, no. 2 (2024): 140–61. http://dx.doi.org/10.33769/aupse.1417403.
Full textFathul, Jannah, Fahlevi Reja, Sari Raihanah, Radiansyah, Yuda, and Azizah Ni'mah. "Improving Learning Activities and Writing Skills in Indonesian Language Content the Environmental Theme of Our Friends Using the Proton Model at Sdn Hatungun 1 Tapin." International Journal of Social Science And Human Research 05, no. 11 (2022): 5091–96. https://doi.org/10.5281/zenodo.7333040.
Full textLi, Meng, and Dong Ding. "Accelerated Discovery of Proton-Conducting Perovskites through Density Functional Theory and Machine Learning." ECS Meeting Abstracts MA2022-02, no. 49 (2022): 1913. http://dx.doi.org/10.1149/ma2022-02491913mtgabs.
Full textPastor-Serrano, Oscar, and Zoltán Perkó. "Learning the Physics of Particle Transport via Transformers." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 12071–79. http://dx.doi.org/10.1609/aaai.v36i11.21466.
Full textBall, Richard D., Alessandro Candido, Juan Cruz-Martinez, et al. "Evidence for intrinsic charm quarks in the proton." Nature 608, no. 7923 (2022): 483–87. http://dx.doi.org/10.1038/s41586-022-04998-2.
Full textKim, Jiwoong, Chang-Seong Moon, Hokyeong Nam, et al. "Multi-Jet Event classification with Convolutional neural network at Large Scale." Journal of Physics: Conference Series 2438, no. 1 (2023): 012103. http://dx.doi.org/10.1088/1742-6596/2438/1/012103.
Full textIndraniyati, Indraniyati, Abdul Hadjranul Fatah, and Nopriawan Berkat Asi. "Pemahaman Konsep Struktur Atom Setelah Pembelajaran Menggunakan Model Discovery Learning Berbantuan LKS pada Siswa Kelas X MIA-1 SMA Negeri 1 Paku." Jurnal Ilmiah Kanderang Tingang 11, no. 1 (2020): 180–92. http://dx.doi.org/10.37304/jikt.v11i1.85.
Full textMohamed Zabidi, Zubainun, Nurul Batrisyia Muhamad Suhaimy, Ahmad Nazib Alias, Nur Diyana Nazihah Fuadi, and Nur Hanisah Hamzi. "Prediction Of Carboxylic Acid Toxicity Using Machine Learning Model." Malaysian Journal of Applied Sciences 8, no. 2 (2023): 28–36. http://dx.doi.org/10.37231/myjas.2023.8.2.357.
Full textJUNG, Emrae JUNG, and Erhan ATAY. "Internationalization of the Automotive Industry by Extending IOL3 model: A Case Study of Geely Automobile." Eurasian Journal of Business and Economics 15, no. 29 (2022): 1–17. http://dx.doi.org/10.17015/ejbe.2022.029.01.
Full textChen, S., L. Zhao, P. Liu, et al. "Deep Learning-Based Dose Prediction Model for Automated Spot-Scanning Proton Arc Planning." International Journal of Radiation Oncology*Biology*Physics 117, no. 2 (2023): e652. http://dx.doi.org/10.1016/j.ijrobp.2023.06.2077.
Full textMohamed, Amira, Hatem Ibrahem, Rui Yang, and Kibum Kim. "Optimization of Proton Exchange Membrane Electrolyzer Cell Design Using Machine Learning." Energies 15, no. 18 (2022): 6657. http://dx.doi.org/10.3390/en15186657.
Full textAkar, Simon, Gowtham Atluri, Thomas Boettcher, et al. "Progress in developing a hybrid deep learning algorithm for identifying and locating primary vertices." EPJ Web of Conferences 251 (2021): 04012. http://dx.doi.org/10.1051/epjconf/202125104012.
Full textGeng, Huaizhi, Zhongxing Liao, Quynh-Nhu Nguyen, et al. "Implementation of Machine Learning Models to Ensure Radiotherapy Quality for Multicenter Clinical Trials: Report from a Phase III Lung Cancer Study." Cancers 15, no. 4 (2023): 1014. http://dx.doi.org/10.3390/cancers15041014.
Full textZhu, Cong, Radhe Mohan, Steven H. Lin, et al. "Identifying Individualized Risk Profiles for Radiotherapy-Induced Lymphopenia Among Patients With Esophageal Cancer Using Machine Learning." JCO Clinical Cancer Informatics, no. 5 (September 2021): 1044–53. http://dx.doi.org/10.1200/cci.21.00098.
Full textWilliams, Michael T., Chiho Sugimoto, Samantha L. Regan, et al. "Cognitive and behavioral effects of whole brain conventional or high dose rate (FLASH) proton irradiation in a neonatal Sprague Dawley rat model." PLOS ONE 17, no. 9 (2022): e0274007. http://dx.doi.org/10.1371/journal.pone.0274007.
Full textPan, Yuwei, Haijun Ruan, Yagya N. Regmi, Billy Wu, Huizhi Wang, and Nigel Brandon. "A Machine Learning Accelerated Hierarchical 3D+1D Model for Proton Exchange Membrane Fuel Cells." ECS Meeting Abstracts MA2023-02, no. 37 (2023): 1706. http://dx.doi.org/10.1149/ma2023-02371706mtgabs.
Full textRicks, L. J., A. Sambyal, J. McDonald, et al. "Utilization of Machine Learning and Proton Collaborative Group Data to Develop a Model for Predictive Prostate Cancer Proton Radiation Therapy Outcomes." International Journal of Radiation Oncology*Biology*Physics 99, no. 2 (2017): E262. http://dx.doi.org/10.1016/j.ijrobp.2017.06.1230.
Full textPrzepiórski, Michał, and Marcin Moździerz. "Artificial Neural Networks as Efficient Models of Proton Exchange Membrane Fuel Cells." Journal of Physics: Conference Series 2812, no. 1 (2024): 012022. http://dx.doi.org/10.1088/1742-6596/2812/1/012022.
Full textStumpo, Mirko, Monica Laurenza, Simone Benella, and Maria Federica Marcucci. "Predicting the Energetic Proton Flux with a Machine Learning Regression Algorithm." Astrophysical Journal 975, no. 1 (2024): 8. http://dx.doi.org/10.3847/1538-4357/ad7734.
Full textGraziani, G., L. Anderlini, S. Mariani, E. Franzoso, L. L. Pappalardo, and P. di Nezza. "A Neural-Network-defined Gaussian Mixture Model for particle identification applied to the LHCb fixed-target programme." Journal of Instrumentation 17, no. 02 (2022): P02018. http://dx.doi.org/10.1088/1748-0221/17/02/p02018.
Full textKalendralis, Petros, Mr Matthijs Sloep, Mr Jasper Snel, et al. "A FEDERATED LEARNING IT-INFRASTRUCTURE TO SUPPORT THE DUTCH MODEL-BASED APPROACH FOR PROTON THERAPY." Physica Medica 104 (December 2022): S155—S156. http://dx.doi.org/10.1016/s1120-1797(22)02491-7.
Full textRadi, Amr. "Modeling charged-particle multiplicity distributions at LHC." Modern Physics Letters A 35, no. 36 (2020): 2050302. http://dx.doi.org/10.1142/s0217732320503022.
Full textTsoi, Ho Fung, Adrian Alan Pol, Vladimir Loncar, et al. "Symbolic Regression on FPGAs for Fast Machine Learning Inference." EPJ Web of Conferences 295 (2024): 09036. http://dx.doi.org/10.1051/epjconf/202429509036.
Full textAuricchio, Silvia, Francesco Cirotto, and Antonio Giannini. "VBF Event Classification with Recurrent Neural Networks at ATLAS’s LHC Experiment." Applied Sciences 13, no. 5 (2023): 3282. http://dx.doi.org/10.3390/app13053282.
Full textAad, G., E. Aakvaag, B. Abbott, et al. "Accuracy versus precision in boosted top tagging with the ATLAS detector." Journal of Instrumentation 19, no. 08 (2024): P08018. http://dx.doi.org/10.1088/1748-0221/19/08/p08018.
Full textMalinović-Milićević, Slavica, Milan M. Radovanović, Sonja D. Radenković, et al. "Application of Solar Activity Time Series in Machine Learning Predictive Modeling of Precipitation-Induced Floods." Mathematics 11, no. 4 (2023): 795. http://dx.doi.org/10.3390/math11040795.
Full textLi, Qi, Wei Rong Chen, Zhi Xiang Liu, Shu Kui Liu, and Wei Min Tian. "A Nonlinear Fuel Cell Model Based on Adaptive Neuro-Fuzzy Inference System." Applied Mechanics and Materials 321-324 (June 2013): 1357–60. http://dx.doi.org/10.4028/www.scientific.net/amm.321-324.1357.
Full textLi, Xin, Lu Bai, Zuhao Ge, Zhizhe Lin, Xi Yang, and Teng Zhou. "Early Diagnosis of Neuropsychiatric Systemic Lupus Erythematosus by Deep Learning Enhanced Magnetic Resonance Spectroscopy." Journal of Medical Imaging and Health Informatics 11, no. 5 (2021): 1341–47. http://dx.doi.org/10.1166/jmihi.2021.3378.
Full textAtkinson, M. C., and W. H. Dickhoff. "Learning from knockout reactions using a dispersive optical model." Frontiers in Physics 12 (January 6, 2025). https://doi.org/10.3389/fphy.2024.1505982.
Full textGao, Yuan, Chih-Wei Chang, Shaoyan Pan, et al. "Deep learning-based synthetic dose-weighted LET map generation for intensity modulated proton therapy." Physics in Medicine & Biology, December 13, 2023. http://dx.doi.org/10.1088/1361-6560/ad154b.
Full textWilliams, Michael T., Chiho Sugimoto, Samantha L. Regan, et al. "Whole brain proton irradiation in adult Sprague Dawley rats produces dose dependent and non-dependent cognitive, behavioral, and dopaminergic effects." Scientific Reports 10, no. 1 (2020). http://dx.doi.org/10.1038/s41598-020-78128-1.
Full textJiang, Zhuoran, Jerimy C. Polf, Carlos A. Barajas, Matthias K. Gobbert, and Lei Ren. "A feasibility study of enhanced prompt gamma imaging for range verification in proton therapy using deep learning." Physics in Medicine & Biology, February 27, 2023. http://dx.doi.org/10.1088/1361-6560/acbf9a.
Full textZhu, Jiahua, Taoran Cui, Yin Zhang, et al. "Comprehensive Output Estimation of Double Scattering Proton System With Analytical and Machine Learning Models." Frontiers in Oncology 11 (January 31, 2022). http://dx.doi.org/10.3389/fonc.2021.756503.
Full textHasibuan, Israwati, Cawang Cawang, and Dedeh Kurniasih. "PENGARUH PENGGUNAAN MODEL PEMBELAJARAN KOOPERATIF TIPE STUDENT TEAMS ACHIEVEMENT DIVISION (STAD) TERHADAP HASIL BELAJAR PADA MATERI STRUKTUR ATOM SISWA KELAS X SMA NEGERI 10 PONTIANAK." AR-RAZI Jurnal Ilmiah 7, no. 2 (2019). http://dx.doi.org/10.29406/ar-r.v7i2.1726.
Full textChiravalle, Vincent P. "Using deep machine learning to interpret proton radiography data from a pulsed power experiment." AIP Advances 13, no. 8 (2023). http://dx.doi.org/10.1063/5.0158167.
Full textRentería, David, Roger J. Hernández-Pinto, German Sborlini, and Pia Zurita. "Reconstructing partonic kinematics at colliders with machine learning." SciPost Physics Core 5, no. 4 (2022). http://dx.doi.org/10.21468/scipostphyscore.5.4.049.
Full textDesai, Ronak, Thomas Zhang, John J. Felice, et al. "Applying Machine‐Learning Methods to Laser Acceleration of Protons: Lessons Learned From Synthetic Data." Contributions to Plasma Physics, November 22, 2024. http://dx.doi.org/10.1002/ctpp.202400080.
Full textTang, Xueyan, Hok Wan Chan Tseung, Douglas Moseley, et al. "Deep learning based linear energy transfer calculation for proton therapy." Physics in Medicine & Biology, May 7, 2024. http://dx.doi.org/10.1088/1361-6560/ad4844.
Full textDevlin, Peter, Jian-Wei Qiu, Felix Ringer, and Nobuo Sato. "Diffusion model approach to simulating electron-proton scattering events." Physical Review D 110, no. 1 (2024). http://dx.doi.org/10.1103/physrevd.110.016030.
Full textBelis, Vasilis, Patrick Odagiu, Michele Grossi, Florentin Reiter, Günther Dissertori, and Sofia Vallecorsa. "Guided quantum compression for high dimensional data classification." Machine Learning: Science and Technology, July 5, 2024. http://dx.doi.org/10.1088/2632-2153/ad5fdd.
Full textChang, Chih-Wei, Shuang Zhou, Yuan Gao, et al. "Validation of a deep learning-based material estimation model for Monte Carlo dose calculation in proton therapy." Physics in Medicine & Biology, September 29, 2022. http://dx.doi.org/10.1088/1361-6560/ac9663.
Full textPang, Bo, Shuoyan Chen, Yiling Zeng, et al. "Lightweight and universal deep learning model for fast proton spot dose calculation at arbitrary energies." Physics in Medicine & Biology, May 2, 2025. https://doi.org/10.1088/1361-6560/add3b9.
Full textCroxford, William, Anna France, Matthew Clarke, et al. "Online learning in proton radiation therapy: the future in the post-Covid-19 pandemic era?" BJR|Open 3, no. 1 (2021). http://dx.doi.org/10.1259/bjro.20210054.
Full textChen, Mei, Bo Pang, Yiling Zeng, et al. "Evaluation of an automated clinical decision system with deep learning dose prediction and NTCP model for prostate cancer proton therapy." Physics in Medicine & Biology, May 8, 2024. http://dx.doi.org/10.1088/1361-6560/ad48f6.
Full textGao, Yuan, Chih-Wei Chang, Justin Roper, et al. "Single energy CT-based mass density and relative stopping power estimation for proton therapy using deep learning method." Frontiers in Oncology 13 (November 23, 2023). http://dx.doi.org/10.3389/fonc.2023.1278180.
Full textStarke, Sebastian, Aaron Kieslich, Martina Palkowitsch, et al. "A deep-learning-based surrogate model for Monte-Carlo simulations of the linear energy transfer in primary brain tumor patients treated with proton-beam radiotherapy." Physics in Medicine & Biology, July 17, 2024. http://dx.doi.org/10.1088/1361-6560/ad64b7.
Full textTang, Chunmei, Baoyin Yuan, Xinyi Xie, Yoshitaka Aoki, Ning Wang, and Siyu Ye. "Machine learning-assisted advances and perspectives for electrolytes of protonic solid oxide fuel cells." Energy Materials 5, no. 9 (2025). https://doi.org/10.20517/energymater.2025.17.
Full textChen, C., O. Cerri, T. Q. Nguyen, J. R. Vlimant, and M. Pierini. "Analysis-Specific Fast Simulation at the LHC with Deep Learning." Computing and Software for Big Science 5, no. 1 (2021). http://dx.doi.org/10.1007/s41781-021-00060-4.
Full textEl-Dahshan, EL-Sayed. "Application of genetic programming for proton-proton interactions." Open Physics 9, no. 3 (2011). http://dx.doi.org/10.2478/s11534-010-0088-7.
Full text