Journal articles on the topic 'Pseudo-differential amplifier'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 47 journal articles for your research on the topic 'Pseudo-differential amplifier.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Shainda, J. Tahseen*1 Sandeep Singh 2. "REVIEW PAPER ON PSEUDO-DIFFERENTIAL AND BULK-DRIVEN MOS TRANSISTOR TECHNIQUE FOR OTA." INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY 6, no. 7 (2017): 596–601. https://doi.org/10.5281/zenodo.829785.
Full textAtkin, E. V., and V. V. Shumikhin. "Charge Sensitive Amplifier with Pseudo-differential Output." Russian Microelectronics 50, no. 3 (2021): 206–10. http://dx.doi.org/10.1134/s1063739721020037.
Full textNGUYEN, Huy-Hieu, Jeong-Seon LEE, and Sang-Gug LEE. "Low Voltage Current-Reused Pseudo-Differential Programmable Gain Amplifier." IEICE Transactions on Electronics E93-C, no. 1 (2010): 148–50. http://dx.doi.org/10.1587/transele.e93.c.148.
Full textGiustolisi, Gianluca, Alfio Dario Grasso, and Salvatore Pennisi. "High-Drive and Linear CMOS Class-AB Pseudo-Differential Amplifier." IEEE Transactions on Circuits and Systems II: Express Briefs 54, no. 2 (2007): 112–16. http://dx.doi.org/10.1109/tcsii.2006.886239.
Full textManfredini, Giuseppe, Alessandro Catania, Lorenzo Benvenuti, Mattia Cicalini, Massimo Piotto, and Paolo Bruschi. "Ultra-Low-Voltage Inverter-Based Amplifier with Novel Common-Mode Stabilization Loop." Electronics 9, no. 6 (2020): 1019. http://dx.doi.org/10.3390/electronics9061019.
Full textBabaeinik, Majid, Massoud Dousti та Mohammad Bagher Tavakoli. "A High Bandwidth (DC-40 GHz) Pseudo Differential Distributed Amplifier in 0.18-μm RF CMOS". Journal of Circuits, Systems and Computers 26, № 12 (2017): 1750191. http://dx.doi.org/10.1142/s0218126617501912.
Full textKasipogula, Bhaskara Rao, and Gurumurthy Komanapalli. "A chopper amplifier with adaptive biasing OTA for biomedical applications, featuring high gain and CMRR." PLOS ONE 19, no. 11 (2024): e0313423. http://dx.doi.org/10.1371/journal.pone.0313423.
Full textBallo, Andrea, Alfio Dario Grasso, and Salvatore Pennisi. "0.4-V, 81.3-nA Bulk-Driven Single-Stage CMOS OTA with Enhanced Transconductance." Electronics 11, no. 17 (2022): 2704. http://dx.doi.org/10.3390/electronics11172704.
Full textKarami Horestani, Fatemeh, Zahra Karami Horastani, and Niclas Björsell. "A Band-Pass Instrumentation Amplifier Based on a Differential Voltage Current Conveyor for Biomedical Signal Recording Applications." Electronics 11, no. 7 (2022): 1087. http://dx.doi.org/10.3390/electronics11071087.
Full textWang, Zhiqiang, Xiaosong Wang, and Yu Liu. "A Wideband Power Amplifier in 65 nm CMOS Covering 25.8 GHz–36.9 GHz by Staggering Tuned MCRs." Electronics 12, no. 17 (2023): 3566. http://dx.doi.org/10.3390/electronics12173566.
Full textZhou, Zhijun, Longbin Zhu, Rui Yang, et al. "A High CMRR Instrumentation Amplifier Employing Pseudo-Differential Inverter for Neural Signal Sensing." IEEE Sensors Journal 22, no. 1 (2022): 419–27. http://dx.doi.org/10.1109/jsen.2021.3130003.
Full text., D. S. Shylu. "DESIGN AND ANALYSIS OF LOW POWER PSEUDO DIFFERENTIAL CLASS-AB TELESCOPIC OPERATIONAL AMPLIFIER." International Journal of Research in Engineering and Technology 03, no. 19 (2014): 243–48. http://dx.doi.org/10.15623/ijret.2014.0319044.
Full textKasipogula, Bhaskara Rao, and Gurumurthty Komanapalli. "A High Gain, High CMRR, Low Noise Bio-Potential amplifier based on Switched Capacitor Feedback Amplifier." Journal of Integrated Circuits and Systems 19, no. 2 (2024): 1–9. http://dx.doi.org/10.29292/jics.v19i2.813.
Full textMalz, Stefan, Bernd Heinemann, Rudolf Lachner та Ullrich R. Pfeiffer. "J-band amplifier design using gain-enhanced cascodes in 0.13 μm SiGe". International Journal of Microwave and Wireless Technologies 7, № 3-4 (2015): 339–47. http://dx.doi.org/10.1017/s175907871500080x.
Full textPAIK, Daehwa, Masaya MIYAHARA, and Akira MATSUZAWA. "An Analysis on a Dynamic Amplifier and Calibration Methods for a Pseudo-Differential Dynamic Comparator." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E95-A, no. 2 (2012): 456–70. http://dx.doi.org/10.1587/transfun.e95.a.456.
Full textNagari, A., and G. Nicollini. "A 3 V 10 MHz pseudo-differential SC bandpass filter using gain enhancement replica amplifier." IEEE Journal of Solid-State Circuits 33, no. 4 (1998): 626–30. http://dx.doi.org/10.1109/4.663568.
Full textGrace, Carl, Maurice Garcia-Sciveres, Timon Heim, and Amanda Krieger. "Low-Jitter Clock Receivers for Fast Timing Applications." Sensors 25, no. 7 (2025): 2284. https://doi.org/10.3390/s25072284.
Full textKong, Dameng, and Quanzhen Duan. "A Pseudo-Differential Capacitive MEMS Accelerometer Analog Front-End Design." Journal of Physics: Conference Series 2477, no. 1 (2023): 012033. http://dx.doi.org/10.1088/1742-6596/2477/1/012033.
Full textMeng-Hung Shen, Po-Hsiang Lan, and Po-Chiun Huang. "A 1-V CMOS Pseudo-Differential Amplifier With Multiple Common-Mode Stabilization and Frequency Compensation Loops." IEEE Transactions on Circuits and Systems II: Express Briefs 55, no. 5 (2008): 409–13. http://dx.doi.org/10.1109/tcsii.2007.914445.
Full textSuadet, Apirak, and Varakorn Kasemsuwan. "A CMOS inverter-based class-AB pseudo-differential amplifier with current-mode common-mode feedback (CMFB)." Analog Integrated Circuits and Signal Processing 74, no. 2 (2012): 387–98. http://dx.doi.org/10.1007/s10470-012-9970-0.
Full textIm, Saemin, and Sang-Gyu Park. "Analysis and Design of a Microphone Preamplifier for Mobile Applications." Electronics 10, no. 14 (2021): 1624. http://dx.doi.org/10.3390/electronics10141624.
Full textGirardi, Alessandro, Lucas Compassi-Severo, and Paulo César Comassetto de Aguirre. "Design Techniques for Ultra-Low Voltage Analog Circuits Using CMOS Characteristic Curves: a practical tutorial." Journal of Integrated Circuits and Systems 17, no. 1 (2022): 1–11. http://dx.doi.org/10.29292/jics.v17i1.573.
Full textKRISHNAMURTHY, KARTHIKEYAN, JIAN XU, XIAOQIANG SHOU, et al. "40 Gb/s TDM SYSTEM TRANSCEIVER PROTOTYPE IN InP HBT TECHNOLOGY." International Journal of High Speed Electronics and Systems 15, no. 03 (2005): 643–65. http://dx.doi.org/10.1142/s0129156405003375.
Full textEghtesadi, Minoo, Mohammad Reza Mosavi, and Egidio Ragonese. "A Pseudo-Differential LNA with Noise Improvement Techniques for Concurrent Multi-Band GNSS Applications." Electronics 13, no. 14 (2024): 2805. http://dx.doi.org/10.3390/electronics13142805.
Full textYin, Yue, Xinbing Zhang, Ziting Feng, et al. "An Ultra-Low-Voltage Transconductance Stable and Enhanced OTA for ECG Signal Processing." Micromachines 15, no. 9 (2024): 1108. http://dx.doi.org/10.3390/mi15091108.
Full textEghtesadi, Minoo, Gianluca Giustolisi, Andrea Ballo, Salvatore Pennisi, and Egidio Ragonese. "A 5 mW 28 nm CMOS Low-Noise Amplifier with Transformer-Based Electrostatic Discharge Protection for 60 GHz Applications." Electronics 13, no. 21 (2024): 4285. http://dx.doi.org/10.3390/electronics13214285.
Full textLi, Zhiyu, Xueqian Shang, Haigang Feng, and Xinpeng Xing. "A Power-Efficient 50 MHz-BW 76.8 dB Signal-to-Noise-and-Distortion Ratio Continuous-Time 2-2 MASH Delta-Sigma Analog-to-Digital Converter with Digital Calibration." Journal of Low Power Electronics and Applications 15, no. 2 (2025): 20. https://doi.org/10.3390/jlpea15020020.
Full textLlimos Muntal, Pere, and Ivan Harald Holger Jorgensen. "34.3 fJ/conv.-step 8-MHz Bandwidth Fourth-Order Pseudo-Differential Ring-Amplifier-Based Continuous-Time Delta–Sigma ADC in 65 nm." IEEE Solid-State Circuits Letters 1, no. 10 (2018): 198–201. http://dx.doi.org/10.1109/lssc.2019.2910468.
Full textCorbacho, Israel, Juan M. Carrillo, José L. Ausín, Miguel Á. Domínguez, Raquel Pérez-Aloe, and Juan Francisco Duque-Carrillo. "Compact CMOS Wideband Instrumentation Amplifiers for Multi-Frequency Bioimpedance Measurement: A Design Procedure." Electronics 11, no. 11 (2022): 1668. http://dx.doi.org/10.3390/electronics11111668.
Full textChoi, Bo-Hun. "A Time-Differential BOCDA Sensor Measurement System Applied to a 1 km Long SMF Using a Semiconductor Optical Amplifier as a Pump Chopper." Sensors 24, no. 8 (2024): 2417. http://dx.doi.org/10.3390/s24082417.
Full textRekha, S., and T. Laxminidhi. "Common Mode Feedback Circuits for Low Voltage Fully-Differential Amplifiers." Journal of Circuits, Systems and Computers 25, no. 10 (2016): 1650124. http://dx.doi.org/10.1142/s0218126616501243.
Full textLiao, Xiaofei, Dixian Zhao, and Xiaohu You. "An E-band CMOS frequency quadrupler with 1.7-dBm output power and 45-dB fundamental suppression." Journal of Semiconductors 43, no. 9 (2022): 092401. http://dx.doi.org/10.1088/1674-4926/43/9/092401.
Full textCenturelli, Francesco, Riccardo Della Sala, and Giuseppe Scotti. "A Standard-Cell-Based CMFB for Fully Synthesizable OTAs." Journal of Low Power Electronics and Applications 12, no. 2 (2022): 27. http://dx.doi.org/10.3390/jlpea12020027.
Full textCao, Zhiheng, Tongyu Song, and Shouli Yan. "A 14 mW 2.5 MS/s 14 bit $\Sigma\Delta$ Modulator Using Split-Path Pseudo-Differential Amplifiers." IEEE Journal of Solid-State Circuits 42, no. 10 (2007): 2169–79. http://dx.doi.org/10.1109/jssc.2007.905241.
Full textTang, Hui, Jian Gao, Xin Chen, Lan Yu Zhang, and Zhao He Zeng. "Design and Analysis of a Planar Piezo-Actuated Nanopositioner with Millimeter Scale Stroke." Key Engineering Materials 679 (February 2016): 143–48. http://dx.doi.org/10.4028/www.scientific.net/kem.679.143.
Full textSTEPANENKO, Dmitry A., and Ksenija A. BUNCHUK. "MATHEMATICAL MODELLING OF VIBRATIONS OF NON-UNIFORM RING-SHAPED ULTRASONIC WAVEGUIDES." Mechanics of Machines, Mechanisms and Materials 3, no. 56 (2021): 90–96. http://dx.doi.org/10.46864/1995-0470-2021-3-56-90-96.
Full textFrech, Michael, and John Hubbert. "Monitoring the differential reflectivity and receiver calibration of the German polarimetric weather radar network." Atmospheric Measurement Techniques 13, no. 3 (2020): 1051–69. http://dx.doi.org/10.5194/amt-13-1051-2020.
Full textRickett, Laura, and Pratim Datta. "Beauty-Contests in the Age of Financialization: Information Activism and Retail Investor Behavior." Journal of Information Technology 33, no. 1 (2018): 31–49. http://dx.doi.org/10.1057/s41265-016-0026-2.
Full textGil-Torralvo, Ana, Marta Benavent, Maria A. Dominguez-Cejudo, et al. "Abstract P2-07-08: Identification of UGT2B15 as a potential biomarker in response to neoadjuvant therapy in HER2+ breast cancer." Cancer Research 82, no. 4_Supplement (2022): P2–07–08—P2–07–08. http://dx.doi.org/10.1158/1538-7445.sabcs21-p2-07-08.
Full textBabaeinik, Majid, Massoud Dousti, and Mohammad Bagher Tavakoli. "Analysis and Design of High Gain-Bandwidth CMOS Distributed Amplifier Utilizing a Cascaded Pseudo Differential Distributed Amplifier." Journal of Circuits, Systems and Computers, July 21, 2020, 2150005. http://dx.doi.org/10.1142/s0218126621500055.
Full textZhou, Zhijun, Keping Wang, Longbin Zhu, et al. "A Differential Difference Amplifier Employing Pseudo-Differential CMFB for Neural Signal Recording Applications." IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 1. http://dx.doi.org/10.1109/tcsii.2022.3223874.
Full textManfredini, Giuseppe, Alessandro Catania, Lorenzo Benvenuti, Mattia Cicalini, Massimo Piotto, and Paolo Bruschi. "Ultra-Low-Voltage Inverter-Based Amplifier with Novel Common-Mode Stabilization Loop." June 19, 2020. https://doi.org/10.3390/electronics9061019.
Full textLee, Calvin Yoji, Praveen Kumar Venkatachala, Ahmed ElShater, and Un-Ku Moon. "A Pseudo-Pseudo-Differential ADC Achieving 105dB SNDR in 10kHz Bandwidth Using Ring Amplifier Based Integrators." IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 1. http://dx.doi.org/10.1109/tcsii.2021.3060011.
Full textManouras, Vasileios, and Ioannis Papananos. "A Wideband High-Gain Power Amplifier Operating in the D Band." November 8, 2022. https://doi.org/10.1109/VLSI-SoC54400.2022.9939613.
Full textKuai, Yang, Liwei Yan, Mingjie Liu, and Fei Yang. "A 31–36 GHz low noise‐variable gain amplifier with less than 0.37° RMS phase error and 0.4 dB gain step in 65‐nm CMOS." Microwave and Optical Technology Letters 66, no. 7 (2024). http://dx.doi.org/10.1002/mop.34229.
Full textRusanen, Jere, Alok Sethi, Nuutti Tervo, et al. "Ka-band stacked and pseudo-differential orthogonal load-modulated balanced power amplifier in 22 nm CMOS FDSOI." International Journal of Microwave and Wireless Technologies, October 11, 2023, 1–8. http://dx.doi.org/10.1017/s1759078723001137.
Full textShabanzadeh, Negar, Rehman Akbar, Aarno Pärssinen, and Timo Rahkonen. "Origins and minimization of intermodulation distortion in a pseudo-differential CMOS beamforming receiver." Analog Integrated Circuits and Signal Processing, July 25, 2021. http://dx.doi.org/10.1007/s10470-021-01916-w.
Full text