Academic literature on the topic 'Pseudocyclic electron transport'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pseudocyclic electron transport.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Pseudocyclic electron transport"

1

Goetze, D. Christoper, and Robert Carpentier. "Ferredoxin–NADP+ reductase is the site of oxygen reduction in pseudocyclic electron transport." Canadian Journal of Botany 72, no. 2 (1994): 256–60. http://dx.doi.org/10.1139/b94-034.

Full text
Abstract:
The effects of ferredoxin (Fd) and Fd–NADP+ reductase (FNR) on the oxygen photoreduction by photosystem I (PS I) in spinach (Spinacia oleracea L.) thylakoid membranes were investigated using a unique photoelectrochemical cell. This cell was previously shown to monitor the Mehler reaction products of photosynthetic oxygen reduction and represents an excellent tool for studying pseudocyclic electron transport. The magnitude of the photocurrent produced by the thylakoids was increased by as much as 40% in the presence of 60 μM Fd. If thylakoids were supplemented by both Fd and FNR, an additional
APA, Harvard, Vancouver, ISO, and other styles
2

Tikhonov, A. N. "Electron transport in chloroplasts: regulation and alternative pathways of electron transfer." Биохимия 88, no. 10 (2023): 1742–60. http://dx.doi.org/10.31857/s0320972523100032.

Full text
Abstract:
This work represents an overview of electron transport regulation in chloroplasts as considered in the context of structure-function organization of photosynthetic apparatus in plants. A basic focus of the article is concentrated on a bifurcated oxidation of plastoquinol by the cytochrome b6f complex, which represents the rate-limiting step of electron transfer between photosystems 2 and 1. Electron transport along the chains of the noncyclic, cyclic and pseudocyclic electron flow, their relationships to generation of the trans-thylakoid difference in electrochemical potentials of protons in c
APA, Harvard, Vancouver, ISO, and other styles
3

Clarke, Joanne E., and Giles N. Johnson. "In vivo temperature dependence of cyclic and pseudocyclic electron transport in barley." Planta 212, no. 5-6 (2001): 808–16. http://dx.doi.org/10.1007/s004250000432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Furbank, RT, CLD Jenkins, and MD Hatch. "C4 Photosynthesis: Quantum Requirement, C4 and Overcycling and Q-Cycle Involvement." Functional Plant Biology 17, no. 1 (1990): 1. http://dx.doi.org/10.1071/pp9900001.

Full text
Abstract:
The relationship between overcycling of the C4 acid cycle in C4 photosynthesis (due to CO2 leakage) and the quantum yield of photosynthesis is considered. From a comparison of theoretical and measured quantum yields we suggest that the high efficiency of light utilisation by most C4 plants can only be explained by the mandatory involvement of both the Q-cycle and cyclic or pseudocyclic electron transport in the proton partitioning process. The existence of the Q-cycle mechanism may have been a prerequisite for the evolution of the C4 pathway.
APA, Harvard, Vancouver, ISO, and other styles
5

Tokarz, Krzysztof M., Wojciech Makowski, Barbara Tokarz, et al. "Can Ceylon Leadwort (Plumbago zeylanica L.) Acclimate to Lead Toxicity?—Studies of Photosynthetic Apparatus Efficiency." International Journal of Molecular Sciences 21, no. 5 (2020): 1866. http://dx.doi.org/10.3390/ijms21051866.

Full text
Abstract:
Ceylon leadwort (Plumbago zeylanica) is ornamental plant known for its pharmacological properties arising from the abundant production of various secondary metabolites. It often grows in lead polluted areas. The aim of presented study was to evaluate the survival strategy of P. zeylanica to lead toxicity via photosynthetic apparatus acclimatization. Shoots of P. zeylanica were cultivated on media with different Pb concentrations (0.0, 0.05, and 0.1 g Pb∙l−1). After a four-week culture, the efficiency of the photosynthetic apparatus of plants was evaluated by Chl a fluorescence measurement, pho
APA, Harvard, Vancouver, ISO, and other styles
6

Burlacot, Adrien. "Quantifying the roles of algal photosynthetic electron pathways: a milestone towards photosynthetic robustness." New Phytologist, October 23, 2023. http://dx.doi.org/10.1111/nph.19328.

Full text
Abstract:
SummaryDuring photosynthesis, electron transport reactions generate and shuttle reductant to allow CO2 reduction by the Calvin–Benson–Bassham cycle and the formation of biomass building block in the so‐called linear electron flow (LEF). However, in nature, environmental parameters like light intensity or CO2 availability can vary and quickly change photosynthesis rates, creating an imbalance between photosynthetic energy production and metabolic needs. In addition to LEF, alternative photosynthetic electron flows are central to allow photosynthetic energy to match metabolic demand in response
APA, Harvard, Vancouver, ISO, and other styles
7

"Effect of methyl viologen on slow secondary fluorescence kinetics associated with photosynthetic carbon assimilation in intact isolated chloroplasts." Proceedings of the Royal Society of London. Series B. Biological Sciences 226, no. 1243 (1985): 237–47. http://dx.doi.org/10.1098/rspb.1985.0093.

Full text
Abstract:
Methyl viologen in catalytic amounts induces pronounced secondary kinetics in fluorescence in intact isolated chloroplasts performing photosynthetic carbon assimilation. These transient increases in fluorescence and oscillations were associated with the induction phase of O 2 evolution in a similar manner to the transient ‘shoulder’ detected previously (Z. G. Cerović, M. N. Sivak and D. A. Walker, Proc . R . Soc . Lond . B 220, 327–338 (1984)). Experiments with the addition of antimycin A and gramicidin D demonstrated that methyl viologen induced an increased ATP production linked to pseudocyc
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Pseudocyclic electron transport"

1

Hani, Umama. "Regulation of cyclic and pseudocyclic electron transport." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASB044.

Full text
Abstract:
La photosynthèse, principale voie de production d'énergie dans les environnements naturels, repose sur des flux d'électrons intervenant dans plusieurs complexes dans la membrane des thylakoïdes des organismes photosynthétiques. Le flux principal est le transport « linéaire » des électrons qui implique leur transfert de l'eau au NADP⁺, le tout couplé à la synthèse d'ATP. L'oxydation de l'eau photosynthétique est catalysée par les clusters de manganèse (Mn₄CaO₅) au niveau du photosystème II (PSII). Pour assurer un équilibre optimal entre la quantité d'énergie produite et consommée, les organisme
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Pseudocyclic electron transport"

1

Kruk, J., and M. Jemioła-Rzemińska. "Plastoquinol and Other Natural Membrane Prenyllipids May Form Pseudocyclic Electron Transport by Scavenging Superoxide Generated in Photosystem I." In Advanced Research on Plant Lipids. Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0159-4_85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!