Contents
Academic literature on the topic 'Pseudopalisading'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pseudopalisading.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pseudopalisading"
Walkowski, Slawomir, and Janusz Szymas. "Histopathologic Patterns of Nervous System Tumors Based on Computer Vision Methods and Whole Slide Imaging (WSI)." Analytical Cellular Pathology 35, no. 2 (2012): 117–22. http://dx.doi.org/10.1155/2012/483525.
Full textMAMUN, Mahabub H., Hideki KAMITANI, Yusuke KINOSHITA, Sadaharu TABUCHI, Brian WASITA, and Takashi WATANABE. "Cerebral Ischemia Promotes Rich Pseudopalisading Necrosis in the Rat C6 Glioblastoma Model." Neurologia medico-chirurgica 49, no. 7 (2009): 294–99. http://dx.doi.org/10.2176/nmc.49.294.
Full textWang, Jiajia, and Jie Ma. "Integrated Transcriptomic Analysis of Necrosis-related Gene in Diffuse Gliomas." Journal of Neurological Surgery Part A: Central European Neurosurgery 80, no. 04 (April 1, 2019): 240–49. http://dx.doi.org/10.1055/s-0039-1683448.
Full textBrat, Daniel J. "Glioblastoma: Biology, Genetics, and Behavior." American Society of Clinical Oncology Educational Book, no. 32 (June 2012): 102–7. http://dx.doi.org/10.14694/edbook_am.2012.32.48.
Full textRong, Yuan, Donald L. Durden, Erwin G. Van Meir, and Daniel J. Brat. "‘Pseudopalisading’ Necrosis in Glioblastoma: A Familiar Morphologic Feature That Links Vascular Pathology, Hypoxia, and Angiogenesis." Journal of Neuropathology & Experimental Neurology 65, no. 6 (June 2006): 529–39. http://dx.doi.org/10.1097/00005072-200606000-00001.
Full textCummings, Thomas J., Christine M. Hulette, Sandra H. Bigner, Gregory J. Riggins, and Roger E. McLendon. "HAM56-Immunoreactive Macrophages in Untreated Infiltrating Gliomas." Archives of Pathology & Laboratory Medicine 125, no. 5 (May 1, 2001): 637–41. http://dx.doi.org/10.5858/2001-125-0637-himiui.
Full textMacaulay, Robert, Hannah Rutherford, James Saller, Jacob Scott, David Basanta, and Anthony Magliocco. "GENT-43. EVOLUTIONARY ADVANTAGE OF PSEUDOPALISADING IN DIFFUSE HIGH-GRADE GLIOMA IS UNRELATED TO PROLIFERATION OR TP53 MUTATIONAL LOAD." Neuro-Oncology 18, suppl_6 (November 1, 2016): vi83. http://dx.doi.org/10.1093/neuonc/now212.349.
Full textRecht, Lawrence, Carmen O. Torres, Thomas W. Smith, Vic Raso, and Thomas W. Griffin. "Transferrin receptor in normal and neoplastic brain tissue: implications for brain-tumor immunotherapy." Journal of Neurosurgery 72, no. 6 (June 1990): 941–45. http://dx.doi.org/10.3171/jns.1990.72.6.0941.
Full textProsniak, Michael, Lawrence C. Kenyon, and D. Craig Hooper. "Glioblastoma Contains Topologically Distinct Proliferative and Metabolically Defined Subpopulations of Nestin- and Glut1-Expressing Cells." Journal of Neuropathology & Experimental Neurology 80, no. 7 (July 1, 2021): 674–84. http://dx.doi.org/10.1093/jnen/nlab044.
Full textTanaka, Kazuhiro, Takashi Sasayama, Takiko Uno, Yuichi Fujita, Mitsuru Hashiguchi, Yasuhiro Irino, and Eiji Kohmura. "CBMS-07 SERINE SYNTHESIS AND ONE-CARBON METABOLISM IN GLIOMA CELLS TO SURVIVE GLUTAMINE STARVATION." Neuro-Oncology Advances 1, Supplement_2 (December 2019): ii6. http://dx.doi.org/10.1093/noajnl/vdz039.026.
Full textDissertations / Theses on the topic "Pseudopalisading"
Ikemori, Rafael Yamashita. "Analise de possiveis mecanismos e consequencias funcionais da expressão de galectina-3 em celulas de glioma expostas a condições hipoxicas." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/316961.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia
Made available in DSpace on 2018-08-13T19:24:03Z (GMT). No. of bitstreams: 1 Ikemori_RafaelYamashita_M.pdf: 4516080 bytes, checksum: 6a332c77058e884f308075bb69496592 (MD5) Previous issue date: 2009
Resumo: Gliomas são tumores primários do sistema nervoso central e o glioblastoma multiforme é sua forma clínica mais comum e de pior prognóstico. Na tentativa de entender sua biologia, a linhagem NG97 foi estabelecida, demonstrando características de glioblastoma com atipia nuclear e elevadas taxas de mitose. Recentemente, descobriu-se que esta é uma linhagem híbrida humano-murina derivada da fusão de células de astrocitoma humano e estroma murino que provavelmente ocorreu no processo de estabelecimento desta linhagem, a qual foi posteriormente denominada NG97ht. Esta linhagem apresenta crescimento de massas tumorais quando inoculada em camundongos imunodeficientes, demonstrando características histopatológicas de pseudopaliçada, comuns a glioblastomas. Estas são regiões hipercelulares que margeiam ambientes necróticos e postula-se que sejam células migrantes de ambientes necróticos/hipóxicos. Além disso, estas áreas têm como característica a expressão de moléculas relacionadas à adaptação a hipóxia, como o fator induzido por hipóxia (HIF), atuando na sobrevivência celular pela indução de diferentes genes. É visto que em hipóxia há aumento da produção de galectina-3, a qual está envolvida em diversos processos celulares e que é somente expressa nestas regiões de pseudopaliçada, não sendo detectada em suas áreas tumorais adjacentes. A galectina-3 é uma lectina que possui ligação a beta-galactosídeos e se relaciona com o aumento da mobilidade, adesão, crescimento e progressão tumoral. Além disso, estudos indicam que em alguns tipos tumorais, a metilação do promotor de galectina-3 é responsável pela modulação de sua expressão. Nossos resultados apresentados neste trabalho demonstraram que a hipóxia é capaz de modular positivamente a expressão de galectina-3, tanto em câmara de hipóxia quanto em cloreto cobaltoso, composto químico capaz de mimetizar a hipóxia, apresentando aumento de expressão de galectina-3 em meio completo ou privado de soro fetal bovino, mimetizando ambientes necróticos com pouco oxigênio e nutrientes. Além disso, foi demonstrado que a regulação da expressão gênica de galectina-3 in vitro e in vivo não é realizada pela metilação de seu promotor. Ensaios utilizando a técnica de interferência por RNA demonstraram que o knockdown de galectina-3, em situação in vitro com privação de oxigênio e nutrientes, induziu aumento das taxas de morte celular. Estes dados podem indicar também que a galectina-3 protege as células tumorais dentro de ambientes necróticos em glioblastomas, criando as áreas de pseudopaliçada. Em conclusão, estes experimentos demonstram as propriedades da galectina-3 de proteção contra a morte em privação de oxigênio e nutrientes, comuns dentro de tumores, destacando sua importância como alvo para agentes anti-neoplásicos.
Abstract: Gliomas are primary Central Nervous System tumors. Among them, glioblastomas are the most common clinical forms and have the worst prognosis. In an attempt to understand glioma biology, the NG97 cell line was established. This cell line presents glioblastoma's characteristics, showing nuclear atipia and high growth rate. Recently, it was discovered that this is a human-murine hybrid cell line derived from the fusion between human astrocytoma and murine stroma cells that likely occurred in the process of cell line establishment. The cell line was therefore renamed NG97ht. This cell line grows as tumors in immunodeficient mice displaying histopathological characteristics of pseudopalisades commonly seen in glioblastomas. These areas are comprised by hypercellular regions in the edge of necrotic environments and are possibly constituted by actively migrating cells out of necrotic/hypoxic environments. Besides, these pseudopalisades show the expression of molecules related to adaptation to oxygen deprivation, like Hypoxia Inducible Factor (HIF), which is involved in cell survival through the induction of many genes. Also, it has been shown that under hypoxia, galectin-3 production is stimulated, a protein involved in diverse cellular processes and that is only present in these pseudopalisades in glioblastomas, not being detected in its adjacent areas. Galectin-3 is a lectin that binds to beta-galactosides and is related to increased motility, adhesion, tumor growth and progression. Also, studies describe that galectin-3 expression is related to its promoter methylation degree in some tumor types. Our results presented here demonstrated that assays performed in hypoxic chamber and in a chemical condition mimicking hypoxia (incubation with cobaltous chloride) showed galectin-3 induction in either complete medium or deprived of fetal bovine serum, mimicking tumor's necrotic areas deprived of oxygen and nutrients. Besides, it was demonstrated that galectin-3 modulation in vitro and in vivo is not due to promoter methylation. Tests related to galectin-3 knockdown in oxygen and nutrient deprivation demonstrated that this protein has a key role in protection against cell death. It is possible that these results may indicate that galectin-3 can also protect tumor cells inside glioblastoma's necrotic areas, acting as a survival factor in disadvantageous environments with low concentrations of oxygen and nutrients. In conclusion, these experiments demonstrate galectin-3 properties related to protection against cell death in environments deprived of oxygen and nutrients, commonly found inside tumors, highlighting its importance as a target to antineoplastic agents.
Mestrado
Imunologia
Mestre em Genética e Biologia Molecular