Academic literature on the topic 'Pseudoplastic fluid'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pseudoplastic fluid.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pseudoplastic fluid"
Lim, Elaine, and Yew Mun Hung. "Long-wave evolution model of thermocapillary convection in an evaporating thin film of pseudoplastic fluids." International Journal of Numerical Methods for Heat & Fluid Flow 29, no. 12 (December 2, 2019): 4764–87. http://dx.doi.org/10.1108/hff-01-2019-0003.
Full textSingh, Udaya P., and Ram S. Gupta. "Non-Newtonian Effects on the Squeeze Film Characteristics between a Sphere and a Flat Plate: Rabinowitsch Model." Advances in Tribology 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/571036.
Full textSingh, Udaya, Ram Gupta, and Vijay Kapur. "Effects of inertia in the steady state pressurised flow of a non-Newtonian fluid between two curvilinear surfaces of revolution: Rabinowitsch fluid model." Chemical and Process Engineering 32, no. 4 (December 1, 2011): 333–49. http://dx.doi.org/10.2478/v10176-011-0027-1.
Full textSaravana, R., K. Vajravelu, and S. Sreenadh. "Influence of Compliant Walls and Heat Transfer on the Peristaltic Transport of a Rabinowitsch Fluid in an Inclined Channel." Zeitschrift für Naturforschung A 73, no. 9 (September 25, 2018): 833–43. http://dx.doi.org/10.1515/zna-2018-0181.
Full textPratap Singh, Udaya. "Application of Rabinowitsch Fluid Model to Pivoted Curved Slider Bearings." Archive of Mechanical Engineering 60, no. 2 (June 1, 2013): 247–67. http://dx.doi.org/10.2478/meceng-2013-0016.
Full textTahir, Muhammad, and Adeel Ahmad. "Impact of pseudoplaticity and dilatancy of fluid on peristaltic flow and heat transfer: Reiner-Philippoff fluid model." Advances in Mechanical Engineering 12, no. 12 (December 2020): 168781402098118. http://dx.doi.org/10.1177/1687814020981184.
Full textKadyirov, A. I., and B. R. Abaydullin. "Vortex Breakdown under Laminar Flow of Pseudoplastic Fluid." Journal of Physics: Conference Series 899 (September 2017): 022009. http://dx.doi.org/10.1088/1742-6596/899/2/022009.
Full textDongxue, Li, Su Yufeng, Xia Weiwei, Liu Chaoran, Wang Wen, Wang Pan, and Duan Zhiyong. "Analysis of slumping on nanoimprint patterning with pseudoplastic metal nanoparticle fluid." RSC Adv. 4, no. 57 (2014): 30402–11. http://dx.doi.org/10.1039/c4ra01138d.
Full textHumberto Escobar, Freddy, Javier-Andrés Martínez, and Luis-Fernando Bonilla. "Transient pressure analysis for vertical wells with spherical power-law flow." CT&F - Ciencia, Tecnología y Futuro 5, no. 1 (November 30, 2012): 19–36. http://dx.doi.org/10.29047/01225383.216.
Full textAyoubi Ayoubloo, Kasra, Mohammad Ghalambaz, Taher Armaghani, Aminreza Noghrehabadi, and Ali J. Chamkha. "Pseudoplastic natural convection flow and heat transfer in a cylindrical vertical cavity partially filled with a porous layer." International Journal of Numerical Methods for Heat & Fluid Flow 30, no. 3 (September 30, 2019): 1096–114. http://dx.doi.org/10.1108/hff-06-2019-0464.
Full textDissertations / Theses on the topic "Pseudoplastic fluid"
TARAZONA, VICTOR MANUEL CARDENAS. "FLOW OF PSEUDOPLASTIC FLUID IN ANNULAR WITH VARIABLE ECCENTRICITY." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2005. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8743@1.
Full textO estudo de escoamentos em espaço anular é de fundamental importância para o entendimento e otimização do processo de perfuração de poços. A lama de perfuração deve possuir propriedades reológicas e termofísicas tais que garantam um bom desempenho no carreamento de cascalho, na lubrificação e refrigeração das brocas, na limpeza do poço, manutenção da pressão da coluna de líquido para equilibrar a pressão das formações atravessadas e estabilizar as paredes do poço. Uma análise completa desta situação é extremamente complexa; o cilindro interno (coluna) pode estar girando, a geometria da parede do poço não é um cilindro perfeito, o espaço anular é excêntrico e a excentricidade varia ao longo do poço. Além disto, lamas de perfuração possuem um comportamento pseudoplástico, isto é a viscosidade é função decrescente da taxa de deformação. Os modelos que levam em conta todos esses fatores são extremamente complexos e caros computacionalmente. Os modelos disponíveis na literatura utilizam hipóteses simplificadoras para tornar a análise menos complexa. Muitos trabalhos consideram a rotação do cilindro interno e o comportamento não Newtoniano, mas desprezam a variação da excentricidade ao longo do poço. Mesmo com esta simplificação, os modelos apresentados, que consistem na solução da equação bidimensional para determinar o campo de velocidade axial e tangencial do escoamento desenvolvido em um espaço anular, possuem alto custo computacional. O modelo apresentado neste trabalho leva em conta a variação da excentricidade ao longo do poço, bem como o comportamento pseudoplástico da lama e a rotação do cilindro interno. As equações que governam o problema foram simplificadas utilizando a teoria de lubrificação. As equações diferenciais parciais que descrevem o perfil de velocidade e a pressão ao longo do poço foram resolvidas pelo método de diferenças finitas (diferenças centrais) e linearizadas pelo método de Newton. O modelo de lubrificação foi validado através da comparação dos resultados obtidos com trabalhos na literatura para escoamentos com excentricidade constante. Os resultados mostram o efeito da variação da excentricidade ao longo do poço, da rotação na coluna, das propriedades não Newtonianas no padrão do escoamento e no fator de atrito.
Helical flow in annular space occurs in drilling operation of oil and gas wells. The correct prediction of the flow of the drilling mud in the annular space between the wellbore wall the the drill pipe is essential to determine the variation in the mud pressure within the wellbore, the frictional pressure drop and the efficiency of the transport of the rock drill cuttings. A complete analysis of this situation is extremely complex; the inner cylinder is usualy rotating, the wellbore wall will depart significantly from cylindrical, during driling operation the drill pipe is eccentric, and the eccentricity varies with position along the well. Moreover, drilling muds present pseudoplastic behavior, the viscosity is a strong function of the deformation rate. A complete analysis of this situation would require the solution of the three-dimensional momentum equation and would be computationally expensive and complex. Models available in the literature to study this situation do consider the rotation of the inner cylinder and the non Newtonian behavior of the liquid, but assume the position of the inner and outer cilinders fixed, i.e. they neglect the variation of the eccentricity along the length of the well, and assume the flow to be well developed. This approximation leads to a two-dimensional model to determine the three components of the velocity field in a cross-section of the annulus. The resulting differential equations have to be solved by some numerical method. The model presented in this work takes into account the variation of the eccentricity along the well; a more appropriate description of the geometric configuration of directional wells. As a consequence, the velocity field varies along the well length and the resulting flow model is three-dimensional. Lubrication theory is used to simplify the governing equations into a non-linear, two-dimensional Poisson Equation that describes the pressure field. Lubrication model was validated by comparing the predictions to reported results on fully developed flow on eccentric annular space. The results show the effect of varying eccentricity, non Newtonian behavior and inner cylinder rotation on the flow field and on the friction factor.
Azevedo, Cardoso Ivan. "Lois d'échange lors du refroidissement d'un fluide non newtonien thermo-dépendant." Vandoeuvre-les-Nancy, INPL, 1993. http://www.theses.fr/1993INPL045N.
Full textZang, Yong Hua. "Contribution a l'etude des proprietes viscoelastiques de caoutchoucs reticules et de liquides polystyrenes." Université Louis Pasteur (Strasbourg) (1971-2008), 1987. http://www.theses.fr/1987STR13225.
Full textGratão, Ana Carolina Amaral. "Termofluidodinamica de sucos de frutas pseudoplasticos em dutos cilindricos e anulos concentricos." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/255776.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-06T15:00:42Z (GMT). No. of bitstreams: 1 Gratao_AnaCarolinaAmaral_D.pdf: 2034155 bytes, checksum: 7a7cc4a961cab6b38ae3dc5ee5f3f9d8 (MD5) Previous issue date: 2006
Doutorado
Engenharia de Alimentos
Doutor em Engenharia de Alimentos
Erdogan, Baris. "Production And Development Of De/anti Icing Fluids For Aircraft." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609926/index.pdf.
Full textMartyn, Michael T., R. Joseph, W. J. McGregor, K. E. Tanner, and Philip D. Coates. "Effect of polymer matrix on the rheology of hydroxapatite filled polyethylene composites." 2002. http://hdl.handle.net/10454/2944.
Full textThe effect of matrix polymer and filler content on the rheological behavior of hydroxyapatite-filled injection molding grade high-density polyethylene (HDPE) has been studied. Studies of the flow curves revealed that the matrix and the composite exhibit three distinct regions in the flow curve, namely, a pseudoplastic region at low to moderate shear rates, a plateau and a second pseudoplastic region at high shear rates. The shear stress corresponding to the plateau (Tc) is dependent on both the filler concentration and the melt temperature. Addition of HA in the HDPE matrix increases the value of Tc and decreases compressibility of the melt. An increase in temperature also raises the value of Tc. From the nature of flow curves it is concluded that the matrix polymer largely decides the rheology of the composite.
Books on the topic "Pseudoplastic fluid"
Douillard, Gerald R. Time-averaged measurements of the velocity field of a pseudoplastic free jet. 1995.
Find full textBook chapters on the topic "Pseudoplastic fluid"
Gooch, Jan W. "Pseudoplastic Fluid." In Encyclopedic Dictionary of Polymers, 595. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_9565.
Full textSilva-Zea, Roberto, Romel Erazo-Bone, Fidel Chuchuca-Aguilar, Ricardo Gallegos, Kenny Escobar-Segovia, and Ulises Gallegos Carrión. "Pseudoplastic Magnetorheological Fluid Flow on a Moving Horizontal Flat Plate." In Communications in Computer and Information Science, 56–69. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42517-3_5.
Full text"Pseudoplastic fluid." In Encyclopedic Dictionary of Polymers, 798. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-30160-0_9387.
Full text"Pseudoplastic Fluid." In Encyclopedia of Lubricants and Lubrication, 1470. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-22647-2_200380.
Full textConference papers on the topic "Pseudoplastic fluid"
Tamburrino, Aldo, Gonzalo Montserrat, and Christian Ihle. "Concentration Distribution of Solid Particles Transported by a Pseudoplastic Fluid." In The 2nd World Congress on Mechanical, Chemical, and Material Engineering. Avestia Publishing, 2016. http://dx.doi.org/10.11159/htff16.125.
Full textHazbavi, A., N. Ashrafi, and M. Najafi. "Second Law Analysis of Heat Transfer in Taylor Couette Flow for Pseudoplastic Fluid." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62440.
Full textHazbavi, A., and N. Ashrafi. "Pseudoplastic Flow Between Concentric Rotating Cylinders With Viscous Dissipation." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87698.
Full textIhmoudah, Abdalsalam, Mohamed M. Awad, Mohammad Azizur Rahman, and Stephen D. Butt. "Effect of Rheological Properties of Yield Pseudoplastic Fluids on Slugs Characteristics in an Upward Vertical Pipe: Experiments and Modeling." In ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-19082.
Full textKhan, Waqar A., Richard J. Culham, and Milan M. Yovanovich. "Fluid Flow and Heat Transfer in Power-Law Fluids Across Circular Cylinders: Analytical Study." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79941.
Full textHammad, Khaled J. "Inflow Conditions and Heat Transfer From Suddenly Expanding Annular Pseudoplastic Flows." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-72071.
Full textMetwally, Hossam M., and Raj M. Manglik. "Computational Modeling of Enhanced Laminar Flow Heat Transfer in Viscoplastic Fluids in Corrugated-Plate Channels." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33631.
Full textGómez, Juan R., and Juan P. Escandón. "Combined Magnetohydrodynamic/Pressure Driven Flow of Multi-Layer Pseudoplastic Fluids Through a Parallel Flat Plates Microchannel." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86676.
Full textAshrafi, N., A. Hazbavi, and F. Forghani. "Chaos in Non-Newtonian Rotational Flow With Axial Flow." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-85608.
Full textHazbavi, A., N. Ashrafi, and M. Najafi. "Viscoelastic Rotating Flow With Viscous Dissipation." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36880.
Full text