Academic literature on the topic 'Psychologie mathématique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Psychologie mathématique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Psychologie mathématique"
Hudry, Olivier. "Avant-propos : Psychologie mathématique." Mathématiques et sciences humaines, no. 199 (September 15, 2012): 5–6. http://dx.doi.org/10.4000/msh.12253.
Full textHerscovics, Nicolas, and Jacques C. Bergeron. "La formation des enseignants à l’analyse conceptuelle en didactique de la mathématique." Revue des sciences de l'éducation 8, no. 2 (November 2, 2009): 293–311. http://dx.doi.org/10.7202/900373ar.
Full textPerret, Jean-François. "Quelle Psychologie Pour Quel Apprentissage des Mathématiques?" European Journal of Psychology of Education 2, no. 3 (September 1987): 247–60. http://dx.doi.org/10.1007/bf03172731.
Full textBrousseau, Guy. "Les représentations : étude en théorie des situations didactiques." Articles 30, no. 2 (April 12, 2006): 241–77. http://dx.doi.org/10.7202/012669ar.
Full textNguyen Thanh, Monique. "Du sujet mathématique." Revue française de psychanalyse 55, no. 5 (1991): 1749. http://dx.doi.org/10.3917/rfp.g1991.55n5.1749.
Full textCAMOS, V. "Compétences exceptionnelles en mathématiques." Psychologie Française 49, no. 3 (September 2004): 321–36. http://dx.doi.org/10.1016/s0033-2984(04)00043-3.
Full textNicolas, François. "La troisième audition est la bonne (De l'audition musicale conçue comme une intégration)." Musicae Scientiae 1, no. 2 (July 1997): 165–81. http://dx.doi.org/10.1177/102986499700100202.
Full textOsana, Helena P., and Jérôme Proulx. "A tale of two researchers: Commonalities, complementarities, and contrasts in an examination of mental computation and relational thinking." Journal of Numerical Cognition 4, no. 1 (June 7, 2018): 59–83. http://dx.doi.org/10.5964/jnc.v4i1.89.
Full textCléro, Jean-Pierre. "L'utilité des mathématiques en psychanalyse." Essaim 24, no. 1 (2010): 7. http://dx.doi.org/10.3917/ess.024.0007.
Full textAppell, Jean-Robert. "« Votre enfant fait des mathématiques ! »." Spirale 63, no. 3 (2012): 66. http://dx.doi.org/10.3917/spi.063.0066.
Full textDissertations / Theses on the topic "Psychologie mathématique"
Viarouge, Arnaud. "Les bases cognitives de l'intuition mathématique." Paris, EHESS, 2008. http://www.theses.fr/2008EHES0107.
Full textNumerical cognition allow an experimental approach to mathematical intuition, which can be conceived as paralleling some conceptions developed by philosophers and mathematicians, and even as answering some epistemological issues. Two aspects of mathematical intuition are revealed by these studies. The first is the existence of constraints on the structure of our cognitive system on our intuitions of numbers. The second is the presence of a strong spatial component in these intuitions. These two aspects are considered in two behavioral studies we conducted. The first study shows a compressed representational scale of numbers, the second study specifies the spatial reference frames implicated in the spatio-numerical interactions. These data also support the idea of a non-static intuition, constituted from a plurality of experiences. We propose that this dynamic of intuition is at the origin of more complex intuitions, which play a crucial role in the practice of mathematics
Meurée-Le, Jan Christine. "Evolution du rapport personnel d'élèves du cours moyen deuxième année à l'objet mathématique Proportionnalité : dimensions cognitive et institutionnelle de la conceptualisation." Paris 8, 2004. http://www.theses.fr/2004PA082369.
Full textIn the frame of this survey the conceptualization of a knowledge item like proportionality takes place in an evolutive process examined from two complementary points of view - cognitive and institutional. The institutional schema reflects the polarity of understanding represented here as an emergent of a representational activity based on the appropriation of knowledge items shaped by institutional expectations aimed at producing cognitive effects. The impact of the two perspectives, cognitive and institutional, on the proportionality understanding was put under scrutiny in four classes of 5th graders. We will consider how much pupils' conceptions develop in the course of teaching. However, some teachings may fail when they don't take into account the hierarchical complexity of knowledge items. This complexity requires an organization of knowledge on which school should build up the lessons in order to consolidate pupils'understanding
Suppo, Christelle. "Modélisation et analyse mathématique de la propagation des viroses dans les populations de carnivores." Bordeaux 1, 1996. http://www.theses.fr/1996BOR10685.
Full textDahan, Maurice. "Eléments de psychogénétique pour l'analyse et la conception de situations didactiques en classe de mathématique à l'école primaire." Nantes, 2012. http://www.theses.fr/2012NANT3029.
Full textCharraud, Nathalie. "Psychologie de l'invention en mathématiques." Rennes 2, 1998. http://www.theses.fr/1998REN20003.
Full text“In mathematics, we are servants rather than masters", is what Hermite said to his disciple Hadamard. The reference point of this research is Hadamard's celebrated work on invention in mathematics, itself inspired by a lecture pronounced by Poincare. These mathematicians had the merit of explicitly underlining the dimension of the unconscious at work in mathematics and to have recourse to the psychology of their time to elaborate a doctrine to account for it. That is how Hadamard distinguishes four steps in the mathematical invention : - a preparatory phase, - a phase of incubation in which the unconscious is at work, - a moment of illumination during which the solution looms up in a more or less incongruous fashion,- a phase of verification during which the solution must be written up in such a way as to convince one's perrs. Hermite's assertion thus underlines the importance of the two intermediary phases, which apparently escape control, contrary to the two phases at the beginning and at the end (preparation and verification). Our work has consisted, in the first part, in reactualising the problematic, within the framework of contemporary epistemology, of certain results of the cognitive sciences, and of psychoanalytic concepts which permit the theorization of the unconscious phase, on the basis of a number of a number of testimonies and examples. The second part examines the principal discoveries of G. Cantor concerning infinite sets, in the light of the findings of the first part. The third part is consecrated to the subjective implication of the mathematician, to the "drama of the scientist" (Lacan), for the special case of cantor. He is one of the first, in the history of mathematics, to initialize a "schizoid" tendency in mathematical thinking, in the sense that this thinking then becomes largely cut off from the concrete and requires a totally formalized language
Balacheff, Nicolas. "Une étude des processus de preuve en mathématique chez des élèves de collège." Habilitation à diriger des recherches, Grenoble 1, 1988. http://tel.archives-ouvertes.fr/tel-00326426.
Full textSusa, Isabella. "Modélisation mathématique des oscillations en salves du potentiel membranaire dans les neurones et les cellules [beta] pancréatiques." Université Joseph Fourier (Grenoble), 1999. http://www.theses.fr/1999GRE10216.
Full textBordeau, Karim. "La notion de trou dans l’expérience psychanalytique : ses abords logiques et topologiques par Jacques Lacan : conséquences épistémologiques et cliniques." Paris 8, 2012. http://octaviana.fr/document/168004798#?c=0&m=0&s=0&cv=0.
Full textThis thesis aims to elucidate the concept of the hole in analytic experience based on notions of modern logic and topology. These concepts have been used by Jacques Lacan in his teaching. By following the trace of his use of these concepts throughout his teaching, the work has been divided into three principal areas, knotted together like a plait. Firstly, the notion of the hole is correlated with Gödel's theorems on the inconsistency and imcompleteness of arithmetic. It is here that the function of fantasy, conceived as a screen of the real, takes on a new logical consistency. A second axis elucidates the problematic topological link of the unconscious to consciousness. The notion of the topological surface (Moebius strip, torus, Klein bottle, projective plane) facilitates the understanding of this link. Correspondingly, a topological translation is given to the hole (equivalent to the Lacanian object (a)) that circumvents the drive providing a previously unarticulated topology: the object (a) is a hole in any theory. Finally, a third axis elucidates "the logic of the proper name" in analytic experience. At this level, we have a new topological approach (with the mathematical theory of knots) to the real of jouissance and Freud's primal repression, the «Urverdrängt», conceived by Freud as an irreducible remainder. A new way of conceiving the notion of reference and modal logic (from the category of the hole) is deduced. The torus (the most simple figuration of the hole) subsequently becomes a central element in Lacanian topology. The epistemological and clinical implications of this approach have been studied for this purpose : The topology of Lacan is not a model of the real
Zoghlami, Nesrine. "Optimisation à base d’agents communicants des flux logistiques pour la gestion de crises." Ecole Centrale de Lille, 2008. http://www.theses.fr/2008ECLI0013.
Full textThe logistic chains represent a competitive advantage that companies try to maintain. Nevertheless, it is never easy to anticipate the evolution of a logistics chain. Consequently, to integrate the disturbances as a parameter into the study of the chain can allow limiting its vulnerability. The research works presented in this thesis, within the context of cooperation with the logistics department of EADS, concern the definition of a modeling approach and an oriented agent simulation of logistic chains in a context with strong disturbances (the crisis management logistics chain). However, work in an uncertain environment; incite to be equipped with cooperation mechanisms assuring all the actors of the chain satisfaction, while acting in a collective way to reach a common objective: the crisis management. To resolve this kind of problem, we defined in this thesis two interaction modes and negotiation protocols based on the cooperation between agents. These protocols, validated in a crisis management application, allow us to take into account the dependencies between the different negotiation issues. To demonstrate, the efficiency of the used approaches, we represented the variation of the bullwhip effect according to the used approach. We concluded that the cooperation is essential and allows reducing efficiently the bullwhip effect along a logistics chain. A demonstrator OBAC was realized, integrating all this approaches and military applications
Defrance, Anne. "Nature du savoir et formulation des définitions dans les cours de mathématiques du secondaire." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210174.
Full textWhat is the nature of the Mathematics which are taught in secondary education classes (pupils from 12 to 18 years old)? How far does it impair learning mathematics like teachers dream them ?The taught matter shows the features of a text, of a scriptural form showing up differences with the oral form of a society without writing. The formulation of definitions appears to be a powerful tool to perform this analysis. Empirical investigations reveal through four tensions, how hardly the teachers bring their pupils into the learning of a mathematical theory. The analysis of the various ways to validate what they teach leads to show in what serious difficulties is today the teaching of mathematics. A remedy could be the learning of idiomatic competence.
Doctorat en Sciences Psychologiques et de l'éducation
info:eu-repo/semantics/nonPublished
Books on the topic "Psychologie mathématique"
Verley, Xavier. Pensée, symbole, et représentation: Logique et psychologie chez Frege et Husserl. Chennevières-sur-Marne: Dianoïa, 2004.
Find full textGauvrit, Nicolas. Vous avez dit hasard?: Entre mathématiques et psychologie. Paris: Belin pour la science, 2009.
Find full textGauvrit, Nicolas. Vous avez dit hasard?: Entre mathématiques et psychologie. Paris: Belin pour la science, 2009.
Find full textFaire des maths autrement: Développement cognitif et proportionnalité. Paris: L'Harmattan, 1997.
Find full textNathalie, Michaud, ed. Plaisir d'apprendre: Activités d'apprentissage en lecture, écriture et mathématiques. Montréal, Qué: Éditions de la Chenelière, 1999.
Find full textL' enseignement des mathématiques d'appoint aux adultes. LaSalle, P.Q: Cégep André-Laurendeau, 1988.
Find full textBook chapters on the topic "Psychologie mathématique"
Vilette, Bruno, and Charlotte Docus. "Chapitre 9. L’expression émotionnelle écrite pour surmonter l’anxiété mathématique." In 12 interventions en psychologie du développement, 199–215. Dunod, 2019. http://dx.doi.org/10.3917/dunod.brun.2019.03.0199.
Full textJarlégan, Annette. "Chapitre 18. Apprendre les mathématiques quand on est un garçon ou une fille." In Psychologie cognitive des apprentissages scolaires, 253–64. Dunod, 2018. http://dx.doi.org/10.3917/dunod.ferra.2018.01.0253.
Full textKarsenti, Thierry. "Chapitre 7. Apprendre les mathématiques avec un jeu vidéo ? Une recherche mixte menée auprès de 118 apprenants." In Les méthodes mixtes en psychologie, 133–46. Dunod, 2020. http://dx.doi.org/10.3917/dunod.schwe.2020.01.0133.
Full text