Academic literature on the topic 'Pterobranchs'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pterobranchs.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Pterobranchs"

1

Rigby, Susan, and P. Noel Dilly. "Growth rates of pterobranchs and the lifespan of graptolites." Paleobiology 19, no. 4 (1993): 459–75. http://dx.doi.org/10.1017/s0094837300014081.

Full text
Abstract:
Pterobranchs are the closest living relatives of graptolites. Their skeleton is constructed from the same material, and in a homologous manner. Growth rates of the pterobranch Cephalodiscus gracilis are described for the first time and, along with rhabdopleuran growth rates, they are used to estimate the amount of time invested by a graptolite colony in growing its rhabdosome. This is a measure of minimum age. The significance of age calculations is shown for individuals and large communities of graptoloids. Large individuals can be shown to be much older than the time it would have taken them to settle through seawater and so it is shown that graptoloids moved up, as well as down, through the water column. Life tables constructed for biserial graptoloids from the Utica shale in Quebec, Canada, suggest that these graptoloids died from constant environmental stress. Graptoloid length can thus be a function of environment and should only cautiously be considered to be of taxonomic significance.
APA, Harvard, Vancouver, ISO, and other styles
2

Sato, Atsuko. "Seasonal reproductive activity in the pterobranch hemichordate Rhabdopleura compacta." Journal of the Marine Biological Association of the United Kingdom 88, no. 5 (June 24, 2008): 1033–41. http://dx.doi.org/10.1017/s0025315408001604.

Full text
Abstract:
Pterobranchs are small marine filter feeders in the phylum Hemichordata. Their phylogenetic position and anatomical structure has resulted in pterobranchs featuring in many scenarios concerning the evolution of chordates. Despite this interest, the basic reproductive biology of pterobranchs is still poorly known. To address this issue, the reproductive season of Rhabdopleura compacta was investigated by collecting specimens in 2004–2007 from a population growing on disarticulated bivalve shells off the south coast of Devon, UK. I analysed reproductive status by categorizing shells according to the condition of the colonies growing on them. The frequency of shells having mature females was almost constant from spring to autumn among shells with active colonies. However, it was apparent that: (a) shells having mature females were more likely to be incubating embryos or larvae in June and July than other months; and (b) the production of embryos was high in June, and then decreased by July. Thus, despite the previous speculation that the species is capable of successful sexual reproduction throughout the year, the present study shows seasonality in reproduction of R. compacta, with at least a peak season during summer.
APA, Harvard, Vancouver, ISO, and other styles
3

LoDuca, Steven T., Jean-Bernard Caron, James D. Schiffbauer, Shuhai Xiao, and Anthony Kramer. "A reexamination of Yuknessia from the Cambrian of British Columbia and Utah." Journal of Paleontology 89, no. 1 (January 2015): 82–95. http://dx.doi.org/10.1017/jpa.2014.7.

Full text
Abstract:
AbstractTo investigate the phylogenetic affinity of Yuknessia simplex Walcott, 1919, scanning electron microscopy was applied to the Burgess Shale (Cambrian Series 3, Stage 5) type material and to new material from the Trilobite Beds (Yoho National Park) and specimens from the Cambrian of Utah. On the basis of fine-scale details observed using this approach, including banding structure interpreted as fusellae, Yuknessia Walcott, 1919 is transferred from the algae, where it resided for nearly a century, to the extant taxon Pterobranchia (Phylum Hemichordata). Considered as such, Yuknessia specimens from the Trilobite Beds and Spence Formation (Utah) are amongst the oldest known colonial pterobranchs. Two morphs regarded herein as two different species are recognized from the Trilobite Beds based on tubarium morphology. Yuknessia simplex has slender erect tubes whereas Yuknessia stephenensis n. sp., which is also known in Utah, has more robust erect tubes. The two paratypes of Y. simplex designated by Walcott (1919) are formally removed from Yuknessia and are reinterpreted respectively as an indeterminate alga and Dalyia racemata Walcott, 1919, a putative red alga.
APA, Harvard, Vancouver, ISO, and other styles
4

Dilly, P. N. "Modern pterobranchs: observations on their behaviour and tube building." Geological Society, London, Special Publications 20, no. 1 (1986): 261–69. http://dx.doi.org/10.1144/gsl.sp.1986.020.01.27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hu, Shixue, Bernd-D. Erdtmann, Michael Steiner, Yuandong Zhang, Fangchen Zhao, Zhiliang Zhang, and Jian Han. "Malongitubus: a possible pterobranch hemichordate from the early Cambrian of South China." Journal of Paleontology 92, no. 1 (December 4, 2017): 26–32. http://dx.doi.org/10.1017/jpa.2017.134.

Full text
Abstract:
AbstractMalongitubus kuangshanensis Hu, 2005 from the early Cambrian Chengjiang Lagerstätte of China is redescribed as a pterobranch and provides the best evidence to demonstrate that hemichordates were present as early as Cambrian Stage 3. Interpretation of this taxon as a hemichordate is based on the morphology of the branched colony and the presence of resistant inner threads consistent with the remains of an internal stolon system. The presence of fusellar rings in the colonial tubes cannot be unambiguously proven for Malongitubus, probably due to early decay and later diagenetic replacement of the thin organic material of the tubarium, although weak annulations are still discernible in parts of the tubes. The description of M. kuangshanensis is revised according to new observations of previously reported specimens and recently collected additional new material. Malongitubus appears similar in most features to Dalyia racemata Walcott, 1919 from the Cambrian Stage 5 Burgess Shale, but can be distinguished by the existence of disc-like thickenings at the bases of tubarium branching points in the latter species. Both species occur in rare mass-occurrence layers with preserved fragmentary individuals of different decay stages, with stolon remains preserved as the most durable structures. Benthic pterobranchs may have occurred in some early Cambrian shallow marine communities in dense accumulations and provided firm substrates and shelter for other benthic metazoans as secondary tierers.
APA, Harvard, Vancouver, ISO, and other styles
6

MALETZ, JÖRG, MICHAEL STEINER, and OLDRICH FATKA. "Middle Cambrian pterobranchs and the Question: What is a graptolite?" Lethaia 38, no. 1 (March 2005): 73–85. http://dx.doi.org/10.1080/00241160510013204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Melchin, Michael J., and M. Edwin DeMont. "Possible propulsion modes in Graptoloidea: a new model for graptoloid locomotion." Paleobiology 21, no. 1 (1995): 110–20. http://dx.doi.org/10.1017/s0094837300013105.

Full text
Abstract:
The mode of locomotion of any swimming animal is constrained by its size, architecture, and phylogenetic history. Considering these factors and the range of locomotory systems used by extant zooplankton, the range of possible modes of locomotion for graptoloids can be effectively limited. Three assumptions have been made: (1) graptoloids did not use a mode of locomotion unknown among modern organisms; (2) all graptoloids employed essentially the same mode of locomotion except, possibly, in their early growth stages; and (3) graptoloids did not rely entirely on passive buoyancy—no extant zooplankton groups in the size range of the graptoloids do. Structures that increase buoyancy or drag are often found in actively swimming zooplankton. They enhance feeding efficiency and reduce sinking rates during nonswimming periods.The modes of locomotion utilized by extant zooplankton groups are ciliary propulsion, elongate body undulation, jet propulsion, rowing with skeletonized appendages, and rowing or undulation with muscular appendages. Of these, all but the last can be rejected for the graptoloids on the basis of scale or architecture. It is concluded that graptoloids probably used a rowing or undulatory motion with muscular appendages for swimming. Using a pterobranch model for the graptoloid zooids, the lophophore is considered an unlikely propulsive structure because the design requirements would conflict with those of a ciliarly suspension-feeding organ. Winglike, lateral extensions of the muscular cephalic shield, the same structure used for creeping locomotion in the benthic pterobranchs, is regarded as the most likely propulsive organ, analogous to the pteropod swimming wings.
APA, Harvard, Vancouver, ISO, and other styles
8

SATO, ATSUKO, BARRIE RICKARDS, and PETER W. H. HOLLAND. "The origins of graptolites and other pterobranchs: a journey from ‘Polyzoa’." Lethaia 41, no. 4 (December 2008): 303–16. http://dx.doi.org/10.1111/j.1502-3931.2008.00123.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lambert, Charles C. "Historical introduction, overview, and reproductive biology of the protochordates." Canadian Journal of Zoology 83, no. 1 (January 1, 2005): 1–7. http://dx.doi.org/10.1139/z04-160.

Full text
Abstract:
This issue of the Canadian Journal of Zoology exhaustively reviews most major aspects of protochordate biology by specialists in their fields. Protochordates are members of two deuterostome phyla that are exclusively marine. The Hemichordata, with solitary enteropneusts and colonial pterobranchs, share a ciliated larva with echinoderms and appear to be closely related, but they also have many chordate-like features. The invertebrate chordates are composed of the exclusively solitary cephalochordates and the tunicates with both solitary and colonial forms. The cephalochordates are all free-swimming, but the tunicates include both sessile and free-swimming forms. Here I explore the history of research on protochordates, show how views on their relationships have changed with time, and review some of their reproductive and structural traits not included in other contributions to this special issue.
APA, Harvard, Vancouver, ISO, and other styles
10

TOLMACHEVA, TATIANA, LARS HOLMER, LEONID POPOV, and IVAN GOGIN. "Conodont biostratigraphy and faunal assemblages in radiolarian ribbon-banded cherts of the Burubaital Formation, West Balkhash Region, Kazakhstan." Geological Magazine 141, no. 6 (November 2004): 699–715. http://dx.doi.org/10.1017/s0016756804009902.

Full text
Abstract:
Biostratigraphical study of the early to mid-Ordovician conodont fauna from ribbon-banded radiolarian cherts of the middle Burubaital Formation in Central Kazakhstan reveals an almost complete succession of conodont biozones from the late Tremadocian to the early Darriwilian. During this interval, biosiliceous sediments were deposited in basinal environments, inhabited by lingulate brachiopods, sponges, pterobranchs and caryocaridids in conditions of high fertility and primary productivity of surface water. The community structure of taxonomically diverse conodont assemblages typifying open oceanic environments is not significantly different from that of epicratonic basins of the North Atlantic conodont province. The regional increase of oxygenated bottom waters at the base of the Oepikodus evae Biozone is possibly related to considerable changes in palaeo-oceanographical circulation patterns. The finds of three natural clusters of Prioniodus oepiki (McTavish) enable us to propose an emended diagnosis of this species.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Pterobranchs"

1

Sato, Atsuko. "Developmental biology of the pterobranch hemichordate Rhabdopleura compacta." Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491978.

Full text
Abstract:
The aim of this research is to gain new insights into the evolution of deuterostomes through molecular developmental investigation of pterobranchs. This thesis consists of three major parts. In the first part, I investigated the seasonal reproductive activity of the pterobranch species Rhabdoplellra compacta. By analyzing large numbers of specimens for two years, I found that their reproductive activity has a peak in June. In the second part, I investigated the origin of vertebrate left-right axis patterning using anatomical as well as molecular studies on R. compacta. I found that R. compacta indeed have anatomical left-right asymmetry in the body. However, contrary to the traditional description, the direction was random, rather than directional as traditionally described. Together with further molecular analyses and previous morphological studies in enteropneusts, I suggest that precise left-right patterning already existed before the divergence of deuterostomes, but underwent degeneration during the evolution of the hemichordate lineage. The molecular analyses brought about two unexpected discoveries. One is that the expression patterns of the gene I examined were completely different from those of enteropneusts. Importantly, expression of the hedgehog gene in pterobranchs was found in the dorsal midline as in chordates, suggesting that the dorsal side of pterobranchs may be comparable to the dorsal side of chordates. The other is that there are unusual mutations in the autoproteolytic cleavage region of hedgehog proteins in the hemichordate lineage. In the third part, I analyzed whether these mutations alter efficiency of autoproteolytic cleavage and the signaling function, using Drosophila genetics. It was found that an enteropneust-type mutation decreases the efficiency of autoproteolytic cleavage whereas a pterobranch-type does not. Since this autoproteolytic cleavage is essential for the signaling function of hedgehog proteins, I suggest that hedgehog underwent unique functional evolution in the enteropneust lineage, which requires less efficiency of signaling function.
APA, Harvard, Vancouver, ISO, and other styles
2

Kaul-Strehlow, Sabrina [Verfasser]. "Ultrastructural and immunohistochemical studies of the development of the nervous system and the mesoderm in Enteropneusta and Pterobranchia in order to elucidate deuterostome evolution / Sabrina Kaul-Strehlow." Berlin : Freie Universität Berlin, 2012. http://d-nb.info/1026694957/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gonzalez, Paul. "Morphologie évolutive et fonctionnelle des hémichordés." Thèse, 2010. http://hdl.handle.net/1866/4962.

Full text
Abstract:
L’embranchement Hemichordata regroupe les classes Enteropneusta et Pterobranchia. Hemichordata constitue, avec l’embranchement Echinodermata, le groupe-frère des chordés. Les entéropneustes sont des organismes vermiformes solitaires qui vivent sous ou à la surface du substrat et s’alimentent généralement par déposivorie, alors que les ptérobranches sont des organismes coloniaux filtreurs habitant dans un réseau de tubes appelé coenecium. Ce mémoire présente trois études dont le point commun est l’utilisation des hémichordés actuels pour répondre à des questions concernant l’évolution des hémichordés, des chordés, et du super-embranchement qui les regroupe, Deuterostomia. Notre première étude démontre que les fentes pharyngiennes, l’organe pré-oral cilié (POCO) et le pharynx de l’entéropneuste Protoglossus graveolens sont utilisés pour l’alimentation par filtration. Le système de filtration de P. graveolens permet la capture de particules jusqu’à 1.3 um, à un débit de 4.05 mm.s-1, pour une demande énergétique de 0.009 uW. Les similarités structurales et fonctionnelles avec le système de filtration des céphalochordés suggèrent que la filtration pharyngienne est ancestrale aux deutérostomes. Lors de notre deuxième étude, nous avons exploré l’hypothèse selon laquelle le POCO des entéropneustes, une structure ciliée pré-buccale au rôle possiblement chémorécepteur, serait homologue au « wheel organ » des céphalochordés et à l’adénohypophyse des vertébrés. Pour cela, nous avons déterminé par immunohistochimie l’expression de Pit-1, un facteur de transcription spécifique à ces deux structures, chez l’entéropneuste Saccoglossus pusillus. Pit-1 est exprimé dans des cellules sensorielles du POCO, mais aussi dans des cellules épithéliales distribuées dans le proboscis, collet et tronc. Ce patron d’expression ne permet pas de confirmer ou rejeter l’homologie du POCO et de l’adénohypophyse des vertébrés. Lors de notre troisième étude, nous avons caractérisé l’ultrastructure du coenecium des ptérobranches Cephalodiscus hodgsoni, Cephalodiscus nigrescens et Cephalodiscus densus par microscopie électronique à transmisison et à balayage. Cephalodiscus est le groupe frère de Graptolithina, un groupe qui inclut les graptolithes éteints ainsi que les ptérobranches du genre Rhabdopleura. Nous avons décrit les types de fibrilles de collagène présents, leur taille et leur organisation, ainsi que l’organisation globale du coenecium. Nous avons ainsi démontré la présence chez Cephalodiscus d’une organisation similaire au paracortex, pseudocortex et eucortex des graptolithes. La présence chez Cephalodiscus de ce type d’organisation suggère que le cortex est ancestral à la classe Pterobranchia. Ces trois études illustrent plusieurs axes importants de la recherche sur les hémichordés, qui en intégrant des données morphologiques, fonctionnelles et moléculaires permet de reconstruire certains évènements clés de l’évolution des deutérostomes.
The phylum Hemichordata comprises the classes Enteropneusta and Pterobranchia. Together with echinoderms, hemichordates are the sister-group to chordates. Enteropneusts are worm-shaped solitary deposit feeders. Pterobranchs are colonial filter feeders that live in a secreted collagenous domicile called a coenecium. In this thesis, three studies are presented. These studies are based on observations of extant hemichordates, and adress a variety of issues relating to the evolution of hemichordates, chordates, and the super-phylum to which they belong: Deuterostomia. Our first study demonstrates that the gill slits, pre-oral ciliary organ (POCO), and lining of the pharynx of the enteropneust Protoglossus graveolens are used in filter feeding. The filter-feeding system of P. graveolens enables particle capture down to 1.3 um, at a rate up to 4.05 mm.s-1, with a power consumption of 0.009 uW. Structural and functional similarities with the cephalochordate filter-feeding system suggest that pharyngeal filter-feeding is ancestral to the deuterostomes. In our second study, we address the hypothesis that the enteropneust POCO, a putative chemosensory structure located anterior to the mouth, is homologous to the cephalochordate wheel organ and vertebrate adenohypophysis. We characterized the expression pattern of the adenohypophysis-specific transcription factor Pit-1 in the adult enteropneust Saccoglossus pusillus with immunohistochemistry. Pit-1 is expressed in sensory cells of the POCO and in scattered epithelial cells of the proboscis, collar and trunk. This expression pattern does not allow to confirm or reject the homology of the POCO with the vertebrate adenohypophysis. In our third study, we characterized the ultrastructure of the coenecium of the pterobranchs Cephalodiscus hodgsoni, Cephalodiscus nigrescens and Cephalodiscus densus using transmission and scanning electron microscopy. Cephalodiscus is the sister-group to the Graptolithina, which includes the extinct graptolites and the extant pterobranch genus Rhabdopleura. We described the fibril types, size and organization, as well as the general organization of the coenecium. We demonstrated that the coenecium of Cephalodiscus shows similarities with the graptolite eucortex, paracortex and pseudocortex. The cortical-like organization of the coenecium of Cephalodiscus suggests that the cortex is ancestral to the Pterobranchia. Together, these three studies illustrate different axes of hemichordate research, and show how integrating morphological, functional and molecular data allows us toinfer key events in the evolution of deuterostomes.
APA, Harvard, Vancouver, ISO, and other styles
4

Beli, Elena. "The graptolite Rhabdopleura recondita tube composition, development and morphological invariance (Hemichordata, Pterobranchia)." Thesis, 2020. http://hdl.handle.net/1866/25606.

Full text
Abstract:
Le phylum Hemichordata est composé exclusivement d'organismes marins et, avec les embranchement Echinodermata et chordata, il forme le groupe des Deutérostomes sur l'arbre de la vie des animaux. Dans les chapitres d'introduction et le deuxième, je donne un aperçu des hémichordés, y compris les enteropneustes solitaires et les pterobranches coloniaux et je les défini dans un contexte évolutif ou phylogénétique. Les enteropneustes sont souvent considérés comme le meilleur proxy vivant de l'ancêtre des deutérostomes. Les ptérobranches comprennent les Cephalodiscida et les Graptolithina. Les graptolites (graptos = écrit, lithos = roche) sont principalement représentés par des espèces fossiles remontant à la Période Cambrienne, il y a plus de 500 millions d'années. Ces «écritures dans la roche» sont largement connues et étudiées par les paléontologues et sont si abondantes qu'elles sont utilisées comme fossiles indicateurs pour identifier les couches sédimentaires. Les graptolites sont éteints sauf pour cinq espèces benthiques appartenant au genre Rhabdopleura, membres de la famille Rhabdopleuridae, que j'examine en détail dans le chapitre trois. Rhabdopleura recondita de la mer Méditerranée fait l'objet de cette thèse. Il est courant le long des côtes sud de l'Italie d'où je l’ai échantillonné en plongée sous- marine. Il est inhabituel que des colonies résident cachées à l'intérieur de la zoaria des bryozoaires morts. Seuls les tubes érigés font saillie à partir de la matrice de l'hôte. Les chapitres quatre et cinq sont les contributions les plus significatives de cette thèse, avec un accent sur les tubes de R. recondita. Le chapitre quatre fournit des observations de la construction de tubes par R. recondita gardé en captivité. J'ai observé la capacité des larves, des zooïdes et des colonies à sécréter de nouveaux tubes en présence et en l'absence du matériel hôte du zoarium bryozoaire. Nous avons découvert que la colonisation larvaire et la sécrétion du dôme peuvent se produire sans l'hôte bryozoaire, mais la croissance continue de la colonie nécessite le substrat de l'hôte. Les zooïdes adultes ne peuvent reformer de nouveaux tubes que s'ils sont capables de s'abriter à l'intérieur du matériel hôte. Un résultat surprenant des observations des zooïdes a été la sécrétion d'un opercule et d'un tube évasé. Les colonies qui avaient des tubes érigés enlevés ont pu fabriquer de nouveaux tubes, mais à un faible nombre. Une étude parallèle a été réalisée sur des colonies dont les tubes avaient été retirés, puis cultivées dans des canaux à quatre vitesses d'écoulement. Cette expérience a été conçue pour induire une réponse plastique phénotypique à l'écoulement. Au lieu de cela, je n'ai trouvé aucune différence significative dans la longueur du tube ou le nombre de tubes en réponse à quatre vitesses d'écoulement. Ce résultat suggère que le développement du tube de R. recondita peut être canalisé ou fixé. Il est significatif car il suggère que de petites différences qui distinguent les espèces primitives de graptolites encroûtantes sont bonnes. Le chapitre cinq porte sur la composition des tubes de R. recondita. Plusieurs hypothèses et de nombreuses analyses ont été faites sur ce sujet, mais aucune n'a été concluante. J'utilise ici la génomique et la bioinformatique, l'immunochimie et la spectroscopie et rejette les hypothèses selon lesquelles les tubes sont de la kératine ou de la cellulose. Au lieu de cela, j'ai trouvé huit gènes de chitine synthase dans le génome et le trascriptome, un complexe composé d'un polysaccharide semblable à la chitine, d'une protéine, d'un acide gras et de composants élémentaires inattendus. Cette étude est significative car elle ferme la porte sur une ancienne hypothèse de composition de tube de graptolite et révèle qu'il s'agit d'une structure complexe comprenant de la chitine. Le chapitre de conclusion est un bref résumé des résultats et une réflexion sur les aveenues potentiellement fructueuse pour des recherches futures.
The phylum Hemichordata is comprised of exclusively marine organisms, and together with the Echinodermata and Chordata forms the Deuterostomia branch on the animal tree of life. In the introductory and second chapters I provide a background on Hemichordata including the solitary Enteropneusta and the colonial Pterobranchia and define them in an evolutionary or phylogenetic context. The enteropneusts are often regarded as the best living proxy of the deuterostome ancestor. Pterobranchs, include the Cephalodiscida and Graptolithina. Graptolites (graptos=written, lithos=rock) are mostly represented by fossil species dating back to the Cambrian Period, more than 500 million years ago. These “writings in the rock” are widely known and studied by paleontologists and are so abundant that they are used as index fossils to identify sedimentary layers. Graptolites are extinct but for five benthic species belonging to the genus Rhabdopleura, members of the Rhabdopleurida, which I extensively review in chapter three. Rhabdopleura recondita from the Mediterranean Sea is the subject of this thesis. It is common along the south coasts of Italy from where I sample it by SCUBA diving. It is unusual in that colonies reside hidden inside of the zoaria of dead bryozoans. Only erect tubes project from the host matrix. Chapters four and five are the most significant contributions of this thesis, with a focus on R. recondita tubes. Chapter four provides observations of tube building by R. recondita kept in captivity. I observed larvae, zooids and colonies abilities to secrete new tubes in the presence and absence of the bryozoan zoarium host material. We discovered that larval settlement and dome secretion can occur without the bryozoan host, but the continued growth of the colony requires the host substrate. Adult zooids can reform new tubes only if they are able to shelter inside of host material. A surprising result from the zooid observations was the secretion of an operculum and a flared tube. Colonies that had erect tubes removed were able to make new tubes, but fewer in number. A parallel study was done on colonies that had tubes removed and then were cultured in channels at four flow velocities. This experiment was designed to induce a phenotypic plastic response to flow. Instead, I found no significant difference in tube length or tube number in response to four flow velocities. This result suggests that the tube development of R. recondita may be canalized, or fixed. It is significant because it suggests that small differences that distinguish primitive, encrusting graptolite species, are good. Chapter five is on the composition of R. recondita tubes. Several hypotheses and numerous analysis have been done on this topic, but none were conclusive. Here I use genomics and bioinformatics, immunochemistry and spectroscopy and reject the hypotheses that the tubes contain keratin or cellulose. Instead I found eight chitin synthase genes in the genome and transcriptome, a complex made of a chitin-like polysaccharide, protein, fatty acid and unexpected elemental components. This study is significant because it closes the door on old hypothesis of graptolite tube composition and reveals that it is a complex structure including chitin. The conclusion chapter is a brief summary of the results and a reflection on fruitful avenues of future research.
APA, Harvard, Vancouver, ISO, and other styles
5

Ramírez-Guerrero, Greta M. "The systematics and evolution of Cambrian graptolites from the Burgess Shale of Canada." Thèse, 2019. http://hdl.handle.net/1866/22745.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Pterobranchs"

1

Maletz, Jörg, and Denis E. B. Bates. "Paleoecology of the Pterobranchia." In Graptolite Paleobiology, 50–75. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118515624.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Queiroz, Kevin de, Philip D. Cantino, and Jacques A. Gauthier. "Pterobranchia E. R. Lankester 1877 [M. J. Melchin and C. B. Cameron], converted clade name." In Phylonyms, 637–40. Boca Raton : CRC Press, [2019]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429446276-165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cole, Theodor C. H. "IV. Plathelminthes (Plattwürmer), Rotatoria (Rädertiere), Nematomorpha (Saitenwürmer), Nemertini (Schnurwürmer), Acanthocephala (Kratzer), Chaetognatha (Pfeilwürmer), Phoronida (Hufeisenwürmer), Gastrotricha (Bauchhärlinge), Enteropneusta (Eichelwürmer), Pterobranchia (Flügelkiemer) – Platyhelminthes (flatworms, tapeworms), Rotatoria (rotifers), Nematomorpha (horsehair worms), Nemertini (nemertines), Acanthocephala (spiny-headed worms), Chaetognatha (arrow worms), Phoronida (phoronids), Gastrotricha (gastrotrichs), Enteropneusta (acorn worms), Pterobranchia (sea angels)." In Wörterbuch der Wirbellosen / Dictionary of Invertebrates, 29–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-52869-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nielsen, Claus. "Phylum Pterobranchia." In Animal Evolution, 343–47. Oxford University Press, 2011. http://dx.doi.org/10.1093/acprof:oso/9780199606023.003.0061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"8. Pterobranchia." In Miscellaneous Invertebrates, 283–98. De Gruyter, 2018. http://dx.doi.org/10.1515/9783110489279-008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"1.26 Übrige Deuterostomia: Pterobranchia + Enteropneusta + Chordata." In Zoologie, edited by Katharina Munk. Stuttgart: Georg Thieme Verlag, 2011. http://dx.doi.org/10.1055/b-0034-38031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography