To see the other types of publications on this topic, follow the link: Pulsating fluid-flow.

Dissertations / Theses on the topic 'Pulsating fluid-flow'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 37 dissertations / theses for your research on the topic 'Pulsating fluid-flow.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Cao, Teng. "Pulsating flow effects on turbocharger turbine performance." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Alnujaie, Ali H. "Flow-induced Vibration of Double Wall Carbon Nanotubes Conveying Pulsating Fluid." University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1555409894074253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kranenbarg, Jelle. "Techniques to inject pulsating momentum." Thesis, Luleå tekniska universitet, Strömningslära och experimentell mekanik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-79097.

Full text
Abstract:
Hydro power plants are an essential part of the infrastructure in Sweden as they stand for a large amount of the produced electricity and are used to regulate supply and demand on the electricity grid. Other renewable energy sources, such as wind and solar power, have become more popular as they contribute to a fossil free society. However, wind and solar power are intermittent energy sources causing the demand for regulating power on the grid to increase. Hydro power turbines are designed to operate at a certain design point with a specific flow rate. The plants are operated away from the design point when used to regulate the supply and demand of electricity. This can cause a specific flow phenomenon to arise in the draft tube at part load conditions called a Rotating Vortex Rope (RVR) which causes dangerous pressure fluctuation able to damage blades and bearings. A solution to mitigate a RVR is to inject pulsating momentum into the draft tube by using an actuator operating at a certain frequency. A literature study was conducted and three techniques were numerically simulated using ANSYS Workbench 19.0 R3; a fluidic oscillator, a piston actuator and a synthetic jet actuator. A dynamic mesh was used to simulate the movement of the piston actuator and diaphragm of the synthetic actuator whilst the mesh of the fluidic oscillator was stationary. The relative errors of the three numerical models were all below 3 %. All devices showed promising results and could potentially be used to mitigate a RVR because they all have the ability to produce high energy jets. The fluidic oscillator had an external supply of water, whereas the other two did not, which means that it could inject the largest mass flow. The piston actuator required a driving motor to move the piston. The diaphragm of the synthetic jet actuator was moved by a Piezoelectric element. Advantages of the fluidic oscillator are that it has no moving parts, in contrary to the two other devices, it can directly be connected to the penstock or draft tube to obtain the required water supply and it is easy to install. It will most likely also be smaller compared to the other two for the same mass flow rate. It does however not generate a pulsating jet, but rather an oscillating jet. The other two devices generate pulsating jets, but have problems with low pressure areas during the intake stroke which can cause cavitation problems. These areas cause the formation of vortex rings close to the outlet. Simulations showed that a coned piston together with a coned cylinder outlet could decrease losses by almost 16 % compared to a normal piston and cylinder. It also decreased the risk for cavitation and the required force to move the piston. Otherwise, a shorter stroke length for a constant cylinder diameter or a longer stroke length for a constant volume displacement also decreased the risk for cavitation and required force. The gasket between the piston and cylinder is a potential risk for leakage. A solution to avoid critical low pressure areas is to install an auxiliary fluid inlet or valve which opens at a certain pressure for the piston actuator as well as the synthetic jet actuator. This will also allow larger mass flow rates and a higher injected momentum. Both devices are more complicated to install and require likely more maintenance compared to the fluidic oscillator. However, there exist many possible design options for the piston actuator. The design of the synthetic jet is more limited because of the diaphragm. The amplitude of the diaphragm also has a direct effect on the pressure levels. The losses increased proportional to the mass flow to the power of three which suggests that it is better to install many small actuators instead of a few large ones.
APA, Harvard, Vancouver, ISO, and other styles
4

Yamin, A. K. M. "Pulsating flow studies in a planar wide-angled diffuser upstream of automotive catalyst monoliths." Thesis, Coventry University, 2012. http://curve.coventry.ac.uk/open/items/e82aae35-8737-48e2-b73d-4758a88f5e1a/1.

Full text
Abstract:
Automotive catalytic converters are used extensively in the automotive industry to reduce toxic pollutants from vehicle exhausts. The flow across automotive exhaust catalysts is distributed by a sudden expansion and has a significant effect on their conversion efficiency. The exhaust gas is pulsating and flow distribution is a function of engine operating condition, namely speed (frequency), load (flow rate) and pressure loss across the monolith. The aims of this study are to provide insight into the development of the pulsating flow field within the diffuser under isothermal conditions and to assess the steady-state computational fluid dynamics (CFD) predictions of flow maldistribution at high Reynolds numbers. Flow measurements were made across an automotive catalyst monolith situated downstream of a planar wide-angled diffuser in the presence of pulsating flow. Cycle-resolved Particle Image Velocimetry (PIV) measurements were made in the diffuser and hot wire anemometry (HWA) downstream of the monoliths. The ratio of pulse period to residence time within the diffuser (J factor) characterises the flow distribution. During acceleration the flow remained attached to the diffuser walls for some distance before separating near the diffuser inlet later in the cycle. Two cases with J ~ 3.5 resulted in very similar flow fields with the flow able to reattach downstream of the separation bubbles. With J = 6.8 separation occurred earlier with the flow field resembling, at the time of deceleration, the steady flow field. Increasing J from 3.5 to 6.8 resulted in greater flow maldistribution within the monoliths; steady flow producing the highest maldistribution in all cases for the same Re. The oblique entry pressure loss of monoliths were measured using a one-dimensional steady flow rig over a range of approach Reynolds number (200 < Rea < 4090) and angles of incidence (0o < α < 70o). Losses increased with α and Re at low mass flow rates but were independent of Re at high flow rates being 20% higher than the transverse dynamic pressure. The flow distribution across axisymmetric ceramic 400 cpsi and perforated 600 cpsi monoliths were modelled using CFD and the porous medium approach. This requires knowledge of the axial and transverse monolith resistances; the latter being only applicable to the radially open structure. The axial resistances were measured by presenting uniform flow to the front face of the monolith. The transverse resistances were deduced by best matching CFD predictions to measurements of the radial flow profiles obtained downstream of the monolith when presented with non-uniform flow at its front face. CFD predictions of the flow maldistibution were performed by adding the oblique entry pressure loss to the axial resistance to simulate the monolith losses. The critical angle approach was used to improve the predictions, i.e. the oblique entry loss was limited such that the losses were assumed constant above a fixed critical angle, αc. The result showed that the perforated 600 cpsi monolith requires the entrance effect to be restricted above αc = 81o, while the losses were assumed constant above αc = 85o for the ceramic 400 cpsi monolith. This might be due to the separation bubble at the monolith entrance being restricted by the smaller hydraulic diameter of the perforated monolith thus limiting the oblique entry loss at the lower incidence angle.
APA, Harvard, Vancouver, ISO, and other styles
5

Fajardo, Peña Pablo. "Methodology for the Numerical Characterization of a Radial Turbine under Steady and Pulsating Flow." Doctoral thesis, Universitat Politècnica de València, 2012. http://hdl.handle.net/10251/16878.

Full text
Abstract:
The increasing use of turbochargers is leading to an outstanding research to understand the internal flow in turbomachines. In this frame, computational fluid dynamics (CFD) is one of the tools that can be applied to contribute to the analysis of the fluid-dynamic processes occurring in a turbine. The objective of this thesis is the development of a methodology for performing simulations of radial turbomachinery optimizing the available computational resources. This methodology is used for the characterization of a vaned-nozzle turbine under steady and pulsating flow conditions. An important effort has been devoted in adjusting the case configuration to maximize the accuracy achievable with a certain computational cost. Concerning the cell size, a local mesh independence analysis is proposed as a procedure to optimize the distribution of cells in the domain, thus allowing to use a finer mesh in the most suitable places. Particularly important in turbomachinery simulations is the influence of the approach for simulating rotor motion. In this thesis two models have been compared: multiple reference frame and sliding mesh. The differences obtained using both methods were found to be significant in off-design regions. Steady flow CFD results have been validated against global measurements taken on a gas-stand. The modeling of a turbine, installed either on a turbocharger test rig or an engine, requires the calculation of the flow in the ducts composing the system. Those ducts could be simulated assuming a one-dimensional (1D) approximation, and thus reducing the computational cost. In this frame of ideas, two CFD boundary conditions have been developed. The first one allows performing coupled 1D-3D simulations, communicating the flow variables from each domain through the boundary. The second boundary condition is based in a new formulation for a stand-alone anechoic end, which intends to represent the flow behavior of an infinite duct. Finally, the turbine was simulat
Fajardo Peña, P. (2012). Methodology for the Numerical Characterization of a Radial Turbine under Steady and Pulsating Flow [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16878
Palancia
APA, Harvard, Vancouver, ISO, and other styles
6

Saracoglu, Bayindir Huseyin. "Turbine Base Pressure Active Control Through Trailing Edge Blowing." Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1346428842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Scanlon, Thomas J. "Vortex shedding flowmeter pulsating flow CFD studies." Thesis, University of Strathclyde, 1992. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=21339.

Full text
Abstract:
The computational analysis of vortex shedding flow is presented, using the commercially available computational fluid dynamics(CFD) software package PHOENICS. In this analysis it is shown how the use of the conventional PHOENICS default first-order hybrid-upwind convective differencing scheme provides an excellent example of the effects of multidimensional false diffusion. These effects are substantially reduced with the introduction of an alternative scheme, SUCCA ( Skew Upwind Corner Convection Algorithm), for the modelling of convective transport in 2D and 3D analyses; resulting in the promotion of continuous vortex shedding for the 2D model. The mechanism of pulsating flow influence on the vortex shedding process has also been simulated. The results show that a complex transient phenomenon such as vortex shedding can be analysed using the PHOENICS code but only with the implementation of an alternative convection algorithm. The results also demonstrate the SUCCA scheme's ability to accurately represent convective transport and hence substantially reduce the effects of multidimensional false diffusion in numerical flow analyses.
APA, Harvard, Vancouver, ISO, and other styles
8

Psimas, Michael J. "Experimental and numerical investigation of heat and mass transfer due to pulse combustor jet impingement." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33863.

Full text
Abstract:
Under certain circumstances pulse combustors have been shown to improve both heat transfer and drying rate when compared to steady flow impingement. Despite this potential, there have been few investigations into the use of pulse combustor driven impingement jets for industrial drying applications. The research presented here utilized experimental and numerical techniques to study the heat transfer characteristics of these types of oscillating jets when impinging on solid surfaces and the heat and mass transfer when drying porous media. The numerical methods were extensively validated using laboratory heat flux and drying data, as well as correlations from literature. As a result, the numerical techniques and methods that were developed and employed in this work were found to be well suited for the current application. It was found that the pulsating flows yielded elevated heat and mass transfer compared to similar steady flow jets. However, the numerical simulations were used to analyze not just the heat flux or drying, but also the details of the fluid flow in the impingement zone that resulted in said heat and mass transport. It was found that the key mechanisms of the enhanced transfer were the vortices produced by the oscillating flow. The characteristics of these vortices such as the size, strength, location, duration, and temperature, determined the extent of the improvement. The effects of five parameters were studied: the velocity amplitude ratio, oscillation frequency, the time-averaged bulk fluid velocity at the tailpipe exit, the hydraulic diameter of the tailpipe, and the impingement surface velocity. Analysis of the resulting fluid flow revealed three distinct flow types as characterized by the vortices in the impingement zone, each with unique heat transfer characteristics. These flow types were: a single strong vortex that dissipated before the start of the next oscillation cycle, a single persistent vortex that remained relatively strong at the end of the cycle, and a strong primary vortex coupled with a short-lived, weaker secondary vortex. It was found that the range over which each flow type was observed could be classified into distinct flow regimes. The secondary vortex and persistent vortex regimes were found to enhance heat transfer. Subsequently, transition criteria dividing these regimes were formed based on dimensionless parameters. The critical dimensionless parameters appeared to be the Strouhal number, a modified Strouhal number, the Reynolds number, the velocity amplitude ratio, and the H/Dh ratio. Further study would be required to determine if these parameters offer similar significance for other configurations.
APA, Harvard, Vancouver, ISO, and other styles
9

Hausner, Alejo. "Non-linear effects in pulsating pipe flow." Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61228.

Full text
Abstract:
The present thesis considers the phenomenon of flow-rate enhancement of polymer solutions in a pipe due to pulsating pressure gradients. It presents an historical review of the problem. The unexplained experimental dependence of enhancement on pulsation frequency reported by Barnes et al is examined, as are later theoretical attempts to reproduce their results. We find that the results can be reproduced only by omitting the important inertial term. The Modified Moment Method is applied to the problem. The results confirm the predictions of other models. The enhancement is of second order in the pulsation amplitude, exhibits a maximum when the pressure gradient is varied, and declines with increasing pulsation frequency. An expansion in powers of the pulsation amplitude gives a satisfactory approximation. Less power is consumed at the same rate of flow if the pressure gradient is constant and not pulsated.
APA, Harvard, Vancouver, ISO, and other styles
10

Reyes, Belmonte Miguel Ángel. "Contribution to the Experimental Characterization and 1-D Modelling of Turbochargers for IC Engines." Doctoral thesis, Universitat Politècnica de València, 2014. http://hdl.handle.net/10251/34777.

Full text
Abstract:
At the end of the 19th Century, the invention of the Internal Combustion Engine (ICE) marked the beginning of our current lifestyle. Soon after the first ICE patent, the importance of increasing air pressure upstream the engine cylinders was revealed. At the beginning of the 20th Century turbo-machinery developments (which had started time before), met the ICE what represented the beginning of turbocharged engines. Since that time, the working principle has not fundamentally changed. Nevertheless, stringent emissions standards and oil depletion have motivated engine developments; among them, turbocharging coupled with downsized engines has emerged as the most feasible way to increase specific power while reducing fuel consumption. Turbocharging has been traditionally a complex problem due to the high rotational speeds, high temperature differences between working fluids (exhaust gases, compressed air, lubricating oil and cooling liquid) and pulsating flow conditions. To improve current computational models, a new procedure for turbochargers characterization and modelling has been presented in this Thesis. That model divides turbocharger modelling complex problem into several sub-models for each of the nonrecurring phenomenon; i.e. heat transfer phenomena, friction losses and acoustic non-linear models for compressor and turbine. A series of ad-hoc experiments have been designed to aid identifying and isolating each phenomenon from the others. Each chapter of this Thesis has been dedicated to analyse that complex problem proposing different sub-models. First of all, an exhaustive literature review of the existing turbocharger models has been performed. Then a turbocharger 1-D internal Heat Transfer Model (HTM) has been developed. Later geometrical models for compressor and turbine have been proposed to account for acoustic effects. A physically based methodology to extrapolate turbine performance maps has been developed too. That model improves turbocharged engine prediction since turbine instantaneous behaviour moves far from the narrow operative range provided in manufacturer maps. Once each separated model has been developed and validated, a series of tests considering all phenomena combined have been performed. Those tests have been designed to check model accuracy under likely operative conditions. The main contributions of this Thesis are the development of a 1-D heat transfer model to account for internal heat fluxes of automotive turbochargers; the development of a physically-based turbine extrapolation methodology; the several tests campaigns that have been necessary to study each phenomenon isolated from others and the integration of experiments and models in a comprehensive characterization procedure designed to provide 1-D predictive turbocharger models for ICE calculation.
Reyes Belmonte, MÁ. (2013). Contribution to the Experimental Characterization and 1-D Modelling of Turbochargers for IC Engines [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34777
TESIS
APA, Harvard, Vancouver, ISO, and other styles
11

Bridges, Ronald Craig II. "Pulsatile flow of a chemically-reacting non-linear fluid." Texas A&M University, 2003. http://hdl.handle.net/1969.1/5892.

Full text
Abstract:
Many complex biological systems, such as blood and polymeric materials, can be approximated as single constituent homogeneous fluids whose properties can change because of the chemical reactions that take place. For instance, the viscosity of such fluids could change because of the chemical reactions and the flow. Here, I investigate the pulsatile flow of a chemically-reacting fluid whose viscosity depends on the concentration of a species (constituent) that is governed by a convection-reaction-diffusion equation and the velocity gradient, which can thicken or thin the fluid. I study the competition between the chemical reaction and the kinematics in determining the response of the fluid. The solutions to the equations governing the steady flow of a chemicallyreacting, shear-thinning fluid are obtained analytically. The solution for the velocity exhibits a parabolic-type profile reminiscent of the Newtonian fluid profile, if the fluids are subject to the same boundary conditions. The full equations associated with the fluid undergoing a pulsatile flow are studied numerically. A comparison of the shear-thinning/chemical-thinning fluid to the shear-thinning/chemicalthickening fluid using a new non-dimensional parameter–the competition number (CN) shows that both the shear-thinning effects and the chemical-thinning/thickening effects play a vital role in determining the response of the fluid. For the parameter values chosen, the effects of chemical-thinning/thickening dominate the majority of the domain, while the effects due to shear-thinning are dominant only in a small region near the boundary.
APA, Harvard, Vancouver, ISO, and other styles
12

Barré, Christian. "Etude expérimentale des écoulements pulsés compressibles : application a l'aérodynamique des conduits d'admission d'un moteur thermique." Poitiers, 1988. http://www.theses.fr/1988POIT2294.

Full text
Abstract:
Etude des ecoulements pulses dans un conduit a section variable. Application aux conduits d'admission des moteurs thermiques. Etude des profils de vitesse par anemometrie laser a effet doppler et par anemometrie a temperature constante. Traitement du signal
APA, Harvard, Vancouver, ISO, and other styles
13

Holmlund, Petter. "Computational fluid dynamic simulations of pulsatile flow in stenotic vessel models." Thesis, Umeå universitet, Institutionen för fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-93007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Lieber, Baruch Barry. "Ordered and random structures in pulsatile flow through constricted tubes." Diss., Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/13011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hägglund, Jesper. "Simulated cerebrospinal fluid motion due to pulsatile arterial flow : Master Thesis Project." Thesis, Umeå universitet, Institutionen för fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-182508.

Full text
Abstract:
All organs, including the brain, need a pathway to remove neurotoxic extracellular proteins. In the brain this is called the glymphatic system. The glymphatic system works by exchanging proteins from interstitial fluids to cerebrospinal fluids. The extracellular proteins are then removed through the cerebrospinal fluid drains. The glymphatic system is believed to be driven by arterial pulsatility, cerebrospinal fluid production and respiration. Cerebrospinal fluids enters the brain alongside arteries. In this project, we investigate if a simulated pulsatile flow in a common carotid artery can drive cerebrospinal fluid flow running along the artery, using computational simulations of a linearly elastic and fluid-structure multiphysical model in COMSOL. Our simulations show that a heartbeat pulse increases the arterial radius of the common carotid artery by 6 %. Experimental data, assessed using 4D magnetic resonance imaging of a living human, show an increase of 13 %. Moreover, our results indicate that arterial displacement itself is not able to drive cerebrospinal fluid flow. Instead, it seems to create a back and forth flow that possibly could help with the protein exchange between the cerebrospinal and interstitial fluids. Overall, the results indicate that the COMSOL Multiphysics linearly elastic model is not ideal for approximations of soft non-linearly elastic solids, such as soft polydimethylsiloxane and artery walls work for stiffer materials. The long term aim is to simulate a part of the glymphatic system and the present work is a starting point to reach this goal. As the simulations in this work are simplified there are more things to test in the future. For example, using the same geometries a non-linear elastic model could be tested. The pulsatile waveform or the geometry could be made more complex. Furthermore the model could be scaled down to represent a penetrating artery in the brain instead of the common carotid artery.
APA, Harvard, Vancouver, ISO, and other styles
16

Hong, Say Yenh. "Fluid structure interaction modeling of pulsatile blood flow in serial pulmonary artery stenoses." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112571.

Full text
Abstract:
Motivated by the physiological phenomena of collapse and flow limitation for a serial pulmonary artery stenosis, we investigated the three-dimensional influence of spatial configuration on the wall motion and hemodynamic. Our numerical study focused on the effect of two geometrical parameters: the relative distance and the angular orientation between the two stenoses. The collapse of a compliant arterial stenosis may cause flow choking, which would limit the flow reserve to major vital vascular beds such as the lungs, potentially leading to a lethal ventilation-perfusion mismatch. Flow through a stenotic vessel is known to produce flow separation downstream of the throat. The eccentricity of a stenosis leads to asymmetric flow where the high velocity jets impinge on the sidewall, thereby inducing significant dissipation. The additional viscous dissipation causes a higher pressure drop for a flow through a stenotic vessel, than in a straight compliant vessel. It is likely that some particular morphology would have a higher vulnerability to the fluid induced instability of buckling (divergence), under physiological pulsatile flow. It was found that fluid pressure distribution have substantial implication for the downstream wall motion, under conditions of strong coupling between nonlinear vessel geometries, and their corresponding asymmetric flow. The three-dimensional fluid structure interaction problem is solved numerically by a finite element method based on the Arbitrary Lagrangian Eulerian formulation, a natural approach to deal with the moving interface between the flow and vessel. The findings of this investigation reveal that the closeness between stenoses is a substantial indication of wall collapse at the downstream end. Moreover, the results suggest a close link between the initial angular orientation of the distal stenosis (i.e. the constriction direction) and the subsequent wall motion at the downstream end. For cases showing evidence of preferential direction of wall motion, it was found that the constricted side underwent greater cumulative displacement than the straight side, suggestive of significant wall collapse.
APA, Harvard, Vancouver, ISO, and other styles
17

Vieira, Junior Francisco Ubaldo. "Analise do perfil hidrodinamico em diferentes modelos de bombas de roletes utilizadas em circulação extracorporea." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/309535.

Full text
Abstract:
Orientador: Reinaldo Wilson Vieira
Tese (doutorado)- Universidade Estadual de Campinas, Faculdade de Ciencias Medicas
Made available in DSpace on 2018-08-14T08:18:06Z (GMT). No. of bitstreams: 1 VieiraJunior_FranciscoUbaldo_D.pdf: 9716061 bytes, checksum: 94d31e9715d7d77c249963888ed77562 (MD5) Previous issue date: 2009
Resumo: Introdução: Dentre os equipamentos utilizados em circulação extracorpórea, as bombas de roletes têm grande importância, com modelos disponíveis de vários fabricantes. O ajuste dos roletes é um fator importante nas taxas de hemólise e o potencial hemolítico difere em cada um deles. Pesquisadores nem sempre abordam detalhes sobre os perfis do leito rígido supondo que as formas padronizadas de ajuste garantem valores iguais e comparáveis para todos os modelos de bombas de roletes. Dispomos principalmente de dois métodos para o ajuste de bombas de roletes e nenhum deles considera as características de impulsão do fluido, definida pelo perfil do leito rígido. Objetivo: O objetivo desse trabalho é analisar o perfil hidrodinâmico de três diferentes modelos de bombas de roletes comercializados no Brasil e sua influência no fluxo e refluxo. Materiais e Métodos: Foram utilizados tubos de silicone de 9,5x1,6; 9,5x2,4; 13x2,4 mm de diâmetro de dois fornecedores diferentes. Os testes foram realizados em solução fisiológica e solução análoga ao sangue. O perfil hidrodinâmico de três bombas de roletes foi realizado por medidas de velocidade de queda e calibração dinâmica. Foi investigada a variação das medidas de velocidade de queda com o tempo e testes de compressão em equipamento servo-hidráulico. Os refluxos foram visualizados em aspirador de sangue e reservatório de cardiotomia com medidas simultâneas. Resultados: Os perfis hidrodinâmicos apresentaram diferenças em suas variâncias para medidas de velocidade de queda (P<0,01) e calibração dinâmica (P<0,0001). A tensão residual nos tubos de silicone ocasionou redução nas medidas de velocidade de queda com o tempo (P<0,0002) e foram confirmadas pelos testes de compressão (P<0,0001). Conclusão: Os ajustes realizados pelos métodos de velocidade de queda e calibração dinâmica são dependentes da forma do leito rígido. Comparações envolvendo bombas de roletes devem ser feitas com cautela. A tensão residual em tubos de silicone compromete a repetitividade dos ajustes feitos pelo método de velocidade de queda.
Abstract: Introduction: Among the equipment used in cardiopulmonary bypass, roller pumps have great importance, with models available from several manufacturers. The roller adjustment is an important factor in the rates of hemolysis and the hemolytic potential differs in adjustment. Researchers do not always address details on the profiles of the raceway accepting that the forms of standardized settings ensure equal and comparable values for all models of roller pumps. There are two methods for setting roller pumps and none considers the dynamic characteristics of the fluid, defined by the profile of the raceway. Objective: The aim of this study is to analyze the hydrodynamic profile of three different models of roller pumps commercialized in Brazil and its influence on the flow and back flow. Materials and methods: We used silicone tubes of 9.5x1.6, 9.5 x2.4 and 13x2.4 mm in diameter from two different suppliers. The tests were performed in saline and solution analogous to blood. The hydrodynamic profile in three roller pumps was achieved by measurements of drop rate and dynamic calibration. The drop rate variations were investigated in silicone tubes by measurements of drop rate and the compression tests in servo-hydraulic equipment. Retrograde flows were viewed in blood aspirator and cardiotomy reservoir. Results: The hydrodynamic profiles showed differences in their variances for measurements of drop rate (P <0.01) and dynamic calibration (P <0.0001). The residual stress in the silicone tubes caused reduction in drop rate with time (P<0.0002) and were confirmed by compression tests (P <0.0001). Conclusion: The adjustments made by the methods of drop rate and dynamic calibration are dependent on the raceway profile. Comparisons involving roller pumps must be made with caution. The residual stress in the silicone tubes compromises repeatability of adjustments made by the drop rate method.
Doutorado
Pesquisa Experimental
Doutor em Cirurgia
APA, Harvard, Vancouver, ISO, and other styles
18

NOGUEIRA, GESSE E. C. "Extensao da faixa de velocidades mensuraveis do velocimetro Doppler ultra-sonico pulsatil." reponame:Repositório Institucional do IPEN, 1995. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10431.

Full text
Abstract:
Made available in DSpace on 2014-10-09T12:38:39Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T14:05:15Z (GMT). No. of bitstreams: 1 06042.pdf: 9369626 bytes, checksum: 37950a2f878d6535f671de4a025da71c (MD5)
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
APA, Harvard, Vancouver, ISO, and other styles
19

Benmadda, El Mostafa. "Etude de l'ecoulement pulse d'un fluide incompressible dans une conduite elastique : application a la circulation arterielle." Poitiers, 1987. http://www.theses.fr/1987POIT2267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Fatouraee, Nasser. "The role of fluid flow and mass transfer in the atherosclerosis of the human carotid artery under pulsatile flow conditions." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0020/NQ48539.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Bathe, Mark 1975. "A fluid-structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic artery." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/9842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Aslan, Seda. "A Computational Fluid Dynamics Study on Bidirectional Glenn Shunt Flow with an Additional Pulsatile Flow Through a modified Blalock-Taussig Shunt." ScholarWorks@UNO, 2017. http://scholarworks.uno.edu/td/2294.

Full text
Abstract:
The blood flow through the Bidirectional Glenn shunt (BGS) and modified Blalock-Taussig shunt (mBTS) to the pulmonary arteries (PAs) was analyzed using Computational Fluid Dynamics. This study consisted of the steady and pulsatile cases. In case one, the results of blood flow through the BGS for the Newtonian and non-Newtonian viscosity models were compared. Case two focused on having an additional pulsatile blood flow through the mBTS using the non-Newtonian Carreau viscosity model. The geometries were created based on the angiograms. In case one, boundary conditions to be specified at the inlets were obtained from the flow rate measurements via Doppler flow studies in children and young adults. The averaged velocities were obtained from these flow rates and specified as parabolic velocity profiles at the inlets. The average PA pressures were obtained from the catheterization data and specified at the branches of the PA outlets. In case two, boundary conditions at the same inlets were constant during the cardiac cycle. The pulsatile PA and aortic pressure tracings obtained from the catheterization data were specified at the outlets and mBTS inlet, respectively. A comparison is made between the first and second case results.
APA, Harvard, Vancouver, ISO, and other styles
23

Hellström, Fredrik. "Numerical computations of the unsteady flow in a radial turbine." Licentiate thesis, KTH, Mechanics, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4660.

Full text
Abstract:

Non-pulsatile and pulsatile flow in bent pipes and radial turbine has been assessed with numerical simulations. The flow field in a single bent pipe has been computed with different turbulence modelling approaches. A comparison with measured data shows that Implicit Large Eddy Simulation (ILES) gives the best agreement in terms of mean flow quantities. All computations with the different turbulence models qualitatively capture the so called Dean vortices. The Dean vortices are a pair of counter-rotating vortices that are created in the bend, due to inertial effects in combination with a radial pressure gradient. The pulsatile flow in a double bent pipe has also been considered. In the first bend, the Dean vortices are formed and in the second bend a swirling motion is created, which will together with the Dean vortices create a complex flow field downstream of the second bend. The strength of these structures will vary with the amplitude of the axial flow. For pulsatile flow, a phase shift between the velocity and the pressure occurs and the phase shift is not constant during the pulse depending on the balance between the different terms in the Navier- Stokes equations.

The performance of a radial turbocharger turbine working under both non-pulsatile and pulsatile flow conditions has also been investigated by using ILES. To assess the effect of pulsatile inflow conditions on the turbine performance, three different cases have been considered with different frequencies and amplitude of the mass flow pulse and different rotational speeds of the turbine wheel. The results show that the turbine cannot be treated as being quasi-stationary; for example, the shaft power varies with varying frequency of the pulses for the same amplitude of mass flow. The pulsatile flow also implies that the incidence angle of the flow into the turbine wheel varies during the pulse. For the worst case, the relative incidence angle varies from approximately −80° to +60°. A phase shift between the pressure and the mass flow at the inlet and the shaft torque also occurs. This phase shift increases with increasing frequency, which affects the accuracy of the results from 1-D models based on turbine maps measured under non-pulsatile conditions.

For a turbocharger working under internal combustion engine conditions, the flow into the turbine is pulsatile and there are also unsteady secondary flow components, depending on the geometry of the exhaust manifold situated upstream of the turbine. Therefore, the effects of different perturbations at the inflow conditions on the turbine performance have been assessed. For the different cases both turbulent fluctuations and different secondary flow structures are added to the inlet velocity. The results show that a non-disturbed inlet flow gives the best performance, while an inflow condition with a certain large scale eddy in combination with turbulence has the largest negative effect on the shaft power output.

APA, Harvard, Vancouver, ISO, and other styles
24

Celestin, Carey Jr. "Computational Fluid Dynamics Applied to the Analysis of Blood Flow Through Central Aortic to Pulmonary Artery Shunts." ScholarWorks@UNO, 2015. http://scholarworks.uno.edu/td/1972.

Full text
Abstract:
This research utilizes CFD to analyze blood flow through pathways representative of central shunts, commonly used as part of the Fontan procedure to treat cyanotic heart disease. In the first part of this research, a parametric study of steady, Newtonian blood flow through parabolic pathways was performed to demonstrate the effect that flow pathway curvature has on wall shear stress distribution and flow energy losses. In the second part, blood flow through two shunts obtained via biplane angiograms is simulated. Pressure boundary conditions were obtained via catheterization. Results showed that wall shear stresses were of sufficient magnitude to initiate platelet activation, a precursor for thrombus formation. Steady results utilizing time-averaged boundary conditions showed excellent agreement with the time-averaged results obtained from pulsatile simulations. For the points of interest in this research, namely wall shear stress distribution and flow energy loss, the Newtonian viscosity model was found to yield acceptable results.
APA, Harvard, Vancouver, ISO, and other styles
25

Hellström, Fredrik. "Numerical computations of the unsteady flow in turbochargers." Doctoral thesis, KTH, Strömningsfysik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12742.

Full text
Abstract:
Turbocharging the internal combustion (IC) engine is a common technique to increase the power density. If turbocharging is used with the downsizing technique, the fuel consumption and pollution of green house gases can be decreased. In the turbocharger, the energy of the engine exhaust gas is extracted by expanding it through the turbine which drives the compressor by a shaft. If a turbocharged IC engine is compared with a natural aspirated engine, the turbocharged engine will be smaller, lighter and will also have a better efficiency, due to less pump losses, lower inertia of the system and less friction losses. To be able to further increase the efficiency of the IC engine, the understanding of the highly unsteady flow in turbochargers must be improved, which then can be used to increase the efficiency of the turbine and the compressor. The main objective with this thesis has been to enhance the understanding of the unsteady flow in turbocharger and to assess the sensitivity of inflow conditions on the turbocharger performance. The performance and the flow field in a radial turbocharger turbine working under both non-pulsatile and pulsatile flow conditions has been assessed by using Large Eddy Simulation (LES). To assess the effects of different operation conditions on the turbine performance, different cases have been considered with different perturbations and unsteadiness of the inflow conditions. Also different rotational speeds of the turbine wheel were considered. The results show that the turbine cannot be treated as being quasi-stationary; for example,the shaft power varies for different frequencies of the pulses for the same amplitude of mass flow. The results also show that perturbations and unsteadiness that are created in the geometry upstream of the turbine have substantial effects on the performance of the turbocharger. All this can be summarized as that perturbations and unsteadiness in the inflow conditions to the turbine affect the performance. The unsteady flow field in ported shroud compressor has also been assessed by using LES for two different operational points. For an operational point near surge, the flow field in the entire compressor stage is unsteady, where the driving mechanism is an unsteadiness created in the volute. For an operational point far away from surge, the flow field in the compressor is relatively much more steady as compared with the former case. Although the stable operational point exhibits back-flow from the ported shroud channels, which implies that the flow into the compressor wheel is disturbed due to the structures that are created in the shear layer between the bulk flow and the back-flow from the ported shroud channels.
QC20100622
APA, Harvard, Vancouver, ISO, and other styles
26

Hatoum, Hoda. "Fluid Mechanics of Transcatheter Aortic Valve Replacement." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1541781379381912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Cicigliano, Emerson Carlos dos Santos. "Análise numérica do escoamento de fluido em tubos elásticos /." Ilha Solteira : [s.n.], 2010. http://hdl.handle.net/11449/94514.

Full text
Abstract:
Resumo: O presente trabalho propõe-se a modelar, analisar, e comparar os efeitos do escoamento de um fluido dentro de um tubo elástico. Esses efeitos, por sua vez, serão ocasionados por uma variação de pressão nesse fluido. Para tanto, através das propriedades físicas e mecânicas do tubo e do fluido, foi calculado o deslocamento da parede do tubo, vazão e velocidade do fluido. Essa modelagem tem como intenção comparar numericamente um arranjo que visa simular uma pulsação com características próximas as do coração humano. Através da construção de duas geometrias cilíndricas que representam domínios distintos (estrutura e fluido) que foram acoplados em sua interface, foi possível fazer um estudo da interação fluido-estrutura (FSI) utilizando o software comercial ANSYS, obtendo assim um estudo tri-dimensional do problema. Os resultados mostraram que o deslocamento da interface fluido-estrutura ocorreu simultaneamente, confirmando, portanto, a correta aplicação do comando FSIN. O fluido é considerado incompressível e Newtoniano e é governado pelas equações de Navier-Stokes. As paredes da estrutura são modeladas a partir da Lei de Hooke. Por fim, uma solução numérica é desenvolvida utilizando o Método dos Elementos Finitos
Abstract: This project proposes to model, analyze and compare the effects of fluid flow inside an elastic tube. These effects, in turn, will be caused by a variation of pressure in this fluid. Therefore, through the physical and mechanical properties of the tube and fluid was calculated the displacement of the tube wall, flow and velocity of the fluid. The Modeling intends to compare numerically an arrangement that aims to simulate a heartbeat with characteristics similar to the human heart. Through of building two cylindrical geometries representing different domains (structure and fluid) that were engaged in its interface, it was possible to study the fluid-structure interaction (FSI) using the commercial software ANSYS, thereby obtaining a three-dimensional study. The results showed that the displacement of the interface fluid-structure occurred simultaneously, thereby confirming the correct application of the command FSIN. The fluid is considered incompressible and Newtonian and is governed by the Navier-Stokes equations. The walls of the structure are modeled from the Hooke's Law. Finally, a numerical solution is developed using the Finite Element Method
Orientador: Gilberto Pechoto de Melo
Coorientador: Amarildo Tabone Paschoalini
Banca: Adyles Arato Junior
Banca: Marcio Higa
Mestre
APA, Harvard, Vancouver, ISO, and other styles
28

Simon, Helene Anne. "Numerical simulations of the micro flow field in the hinge region of bileaflet mechanical heart valves." Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/34861.

Full text
Abstract:
Native heart valves with limited functionality are commonly replaced by a bileaflet mechanical heart valve (BMHV). However, despite their widespread use, BMHVs still cause major complications, including hemolysis, platelet activation, and thromboembolic events. These complications are believed to be due to the non-physiologic hemodynamic stresses imposed on blood elements by the hinge flows. Three-dimensional characterization of the hinge flows is therefore crucial to ultimately design BMHVs with lower complication rates. This study aims at simulating the pulsatile 3D hinge flows of various BMHVs placed and estimating the thromboembolic potential associated with each hinge. The hinge and leaflet geometries of clinical BMHVs are reconstructed from micro-computed tomography scans. Simulations are conducted using a Cartesian sharp-interface immersed-boundary methodology combined with a second-order accurate fractional-step method. Physiologic flow boundary conditions and leaflet motion are extracted from the Fluid-Structure-Interaction simulations of the BMHV bulk flow. The accuracy of the solver is assessed by comparing the results with experimental data. The numerical results are analyzed using a particle tracking approach coupled with existing blood damage models to relate the flow structures to the risk for blood damage. Calculations reveal complex, unsteady, and highly 3D flow fields. Zones of flow stagnation and recirculation, favorable to thrombosis and regions of elevated shear stresses, which may induce platelet activation, are identified throughout the hinge and cardiac cycle. The hinge gap width and, more importantly, the shape of the hinge recess and leaflet are found to impact the flow distribution. Avoiding sharp corners or sudden shape transitions appear as key geometrical design parameters to minimize flow disturbances and thromboembolic potential. The computed flows underscore the need to perform full 3D pulsatile simulations throughout the cardiac cycle to fully capture the complexity and unsteadiness of the hinge flows. Though based only on three different designs, this study provides general guidelines to optimize the hinge design based on hemodynamic performance and thromboembolic potential. The developed framework enables rapid and cost-efficient pre-clinical evaluation of prototype BMHV designs prior to valve manufacturing. Application to a wide range of hinges with varying design parameters will eventually help in determining the optimal hinge design.
APA, Harvard, Vancouver, ISO, and other styles
29

Cicigliano, Emerson Carlos dos Santos [UNESP]. "Análise numérica do escoamento de fluido em tubos elásticos." Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/94514.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:27:13Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-02-26Bitstream added on 2014-06-13T19:14:28Z : No. of bitstreams: 1 cicigliano_ecs_me_ilha.pdf: 2408732 bytes, checksum: 0af63a8f55dcecc2b890effc02c98e0e (MD5)
O presente trabalho propõe-se a modelar, analisar, e comparar os efeitos do escoamento de um fluido dentro de um tubo elástico. Esses efeitos, por sua vez, serão ocasionados por uma variação de pressão nesse fluido. Para tanto, através das propriedades físicas e mecânicas do tubo e do fluido, foi calculado o deslocamento da parede do tubo, vazão e velocidade do fluido. Essa modelagem tem como intenção comparar numericamente um arranjo que visa simular uma pulsação com características próximas as do coração humano. Através da construção de duas geometrias cilíndricas que representam domínios distintos (estrutura e fluido) que foram acoplados em sua interface, foi possível fazer um estudo da interação fluido-estrutura (FSI) utilizando o software comercial ANSYS, obtendo assim um estudo tri-dimensional do problema. Os resultados mostraram que o deslocamento da interface fluido-estrutura ocorreu simultaneamente, confirmando, portanto, a correta aplicação do comando FSIN. O fluido é considerado incompressível e Newtoniano e é governado pelas equações de Navier-Stokes. As paredes da estrutura são modeladas a partir da Lei de Hooke. Por fim, uma solução numérica é desenvolvida utilizando o Método dos Elementos Finitos
This project proposes to model, analyze and compare the effects of fluid flow inside an elastic tube. These effects, in turn, will be caused by a variation of pressure in this fluid. Therefore, through the physical and mechanical properties of the tube and fluid was calculated the displacement of the tube wall, flow and velocity of the fluid. The Modeling intends to compare numerically an arrangement that aims to simulate a heartbeat with characteristics similar to the human heart. Through of building two cylindrical geometries representing different domains (structure and fluid) that were engaged in its interface, it was possible to study the fluid-structure interaction (FSI) using the commercial software ANSYS, thereby obtaining a three-dimensional study. The results showed that the displacement of the interface fluid-structure occurred simultaneously, thereby confirming the correct application of the command FSIN. The fluid is considered incompressible and Newtonian and is governed by the Navier-Stokes equations. The walls of the structure are modeled from the Hooke's Law. Finally, a numerical solution is developed using the Finite Element Method
APA, Harvard, Vancouver, ISO, and other styles
30

Naik, Pratin J., Ganesh K. Seeniraj, and Ram S. Chandran. "A study into forces and moments acting on the swash plate of an axial piston pump using a novel approach to reduce pressure and flow pulsations." Technische Universität Dresden, 2020. https://tud.qucosa.de/id/qucosa%3A71105.

Full text
Abstract:
In hydraulic pumps, typically in axial piston pumps, reduction of pressure and flow ripples was attempted by providing relief grooves and pre-compression for noise reduction. Pre-compression is normally achieved by using the dead space between pump ports in the valve plate. Also valve plate profile modification is required, if system operating conditions such as pump output pressure and flowrate change, to maintain optimum operating conditions for reduced pressure/flow ripple. An earlier simulation study confirmed effectiveness of varying dead centre position to reduce pressure and flow ripples. A specifically designed mechanism, outlined in the earlier work, achieves this goal by varying the dead centre position of the pump swash plate. This study reports on the findings of the effect of varying dead centre position and groove configurations on forces and moments acting on the swash plate for various operating conditions. The simulation model cited in the earlier work was used in this study. This information is vital for the design of an actuating mechanism to vary dead centre position of a pump valve plate. These simulations were run using MATLAB/Simulink and S-functions. Results of this study are promising.
APA, Harvard, Vancouver, ISO, and other styles
31

Ashwin, T. R. "CFD Studies Of Pulse Tube Refrigerators." Thesis, 2010. http://etd.iisc.ernet.in/handle/2005/1849.

Full text
Abstract:
The performance evaluation and parametric studies of an Inertance Tube Pulse Tube Refrigerator (IPTR) are performed for different length-to-diameter ratios, with the Computational Fluid Dynamics (CFD) package FLUENT. The integrated model consists of individual models of the components, namely, the compressor, compressor cooler, regenerator, cold heat exchanger, pulse tube, warm heat exchanger, inertance tube and the reservoir. The formulation consists of the governing equations expressing the conservation of mass, momentum and energy with axi-symmetry assumption and relations for the variable thermophysical properties of the working medium and the regenerator matrix, and friction factor and heat transfer coefficients in oscillatory flows. The local thermal non-equilibrium of the gas and the matrix is taken into account for the modeling of heat exchangers and the regenerator which are treated as porous zones. In addition, the wall thickness of the components is also accounted for. Dynamic meshing is used to model the compressor zone. The heat interaction between pulse tube wall and the oscillating gas, leading to surface heat pumping, is quantified. The axial heat conduction is found to reduce the overall performance. The thermal non-equilibrium results in a higher cold heat exchanger temperature due to inefficiencies. The dynamic characteristics of pulse tube are analyzed by introducing a time constant. The study is extended to other types of PTRs, namely, the Orifice type Pulse Tube Refrigerator (OPTR), Double Inlet type Pulse Tube Refrigerator (DIPTR) and a PTR with parallel combination of inertance tube and orifice (OIPTR). The focus of the second phase of analysis is the pulse tube region. The oscillatory flow and temperature fields in an open-ended pipe driven by a time-wise sinusoidally varying pressure at one end and subjected to an ambient-to-cryogenic temperature difference across the ends, is numerically studied both with and without the inclusion of buoyancy effects. Conjugate effects arising out of the interaction of oscillatory flow with heat conduction in the pipe wall are taken into account by considering a finite thickness wall with an insulated exterior surface. Parametric studies are conducted with frequencies in the range 5-15 Hz for an end-to-end temperature difference of 200 K. As the pressure amplitude increases, the temperature difference between the wall and the fluid decreases due to mixing at the cold end. The pressure amplitude and the frequency have negligible effect on the time averaged Nusselt number. The effect of buoyancy is studied for hot side up and cold side up configurations. It is found that the time averaged Nusselt number does not change significantly with orientation or Rayleigh number. Sharp changes in Nusselt number and velocity profiles and an increase in energy transfer through solid and gas were observed when natural convection comes into play with hot end placed down. Cooldown experiments are conducted on a preliminary experimental setup. Comparison of the numerical and experimental cooldown curves disclosed a number of areas where improvement is required, primarily the leakage past the piston and the design of the heat exchangers. The setup is being improved to bring out a second and improved version for attaining the lower cold heat exchanger temperature.
APA, Harvard, Vancouver, ISO, and other styles
32

(9188927), seyedalireza abootorabi. "COMPUTATIONAL FLUID DYNAMICS FOR MODELING AND SIMULATION OF INTRAOCULAR DRUG DELIVERY AND WALL SHEAR STRESS IN PULSATILE FLOW." Thesis, 2020.

Find full text
Abstract:
The thesis includes two application studies of computational fluid dynamics. The first is new and efficient drug delivery to the posterior part of the eye, a growing health necessity worldwide. Current treatment of eye diseases, such as age related macular degeneration (AMD), relies on repeated intravitreal injections of drug-containing solutions. Such a drug delivery has significant drawbacks, including short drug life, vital medical service, and high medical costs. In this study, we explore a new approach of controlled drug delivery by introducing unique porous implants. Computational
modeling contains physiological and anatomical traits. We simulate the IgG1 Fab drug delivery to the posterior eye to evaluate the effectiveness of the porous implants to control the drug delivery. The computational model was validated by established computation results from independent studies and experimental data. Overall, the results indicate that therapeutic drug levels in the posterior eye are sustained for
eight weeks, similar to those performed with intravitreal injection of the same drug. We evaluate the effects of the porous implant on the time evaluation of the drug concentrations in the sclera, choroid, and retina layers of the eye. Subsequent simulations were carried out with varying porosity values of a porous episcleral implant.
Our computational results reveal that the time evolution of drug concentration is distinctively correlated to drug source location and pore size. The response of this porous implant for controlled drug delivery applications was examined. A correlation between porosity and fluid properties for the porous implants was revealed in this study. The second application lays in the computational modeling of the oscillating flow in rectangular ducts. This computational study has further applications in investigating the fluid flow motion in bodily organs. It can be useful in studying the
response of bone cells to the wall shear stress in the human body.
APA, Harvard, Vancouver, ISO, and other styles
33

Abootorabi, Seyedalireza. "Computational Fluid Dynamics for Modeling and Simulation of Intraocular Drug Delivery and Wall Shear Stress in Pulsatile Flow." Thesis, 2020. http://hdl.handle.net/1805/23571.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
The thesis includes two application studies of computational fluid dynamics. The first is new and efficient drug delivery to the posterior part of the eye, a growing health necessity worldwide. Current treatment of eye diseases, such as age-related macular degeneration (AMD), relies on repeated intravitreal injections of drug-containing solutions. Such a drug delivery has significant cant drawbacks, including short drug life, vital medical service, and high medical costs. In this study, we explore a new approach of controlled drug delivery by introducing unique porous implants. Computational modeling contains physiological and anatomical traits. We simulate the IgG1 Fab drug delivery to the posterior eye to evaluate the effectiveness of the porous implants to control the drug delivery. The computational model was validated by established computation results from independent studies and experimental data. Overall, the results indicate that therapeutic drug levels in the posterior eye are sustained for eight weeks, similar to those performed with intravitreal injection of the same drug. We evaluate the effects of the porous implant on the time evaluation of the drug concentrations in the sclera, choroid, and retina layers of the eye. Subsequent simulations were carried out with varying porosity values of a porous episcleral implant. Our computational results reveal that the time evolution of drug concentration is distinctively correlated to drug source location and pore size. The response of this porous implant for controlled drug delivery applications was examined. A correlation between porosity and fluid properties for the porous implants was revealed in this study. The second application lays in the computational modeling of the oscillating
APA, Harvard, Vancouver, ISO, and other styles
34

"Improved Techniques for Cardiovascular Flow Experiments." Doctoral diss., 2015. http://hdl.handle.net/2286/R.I.36516.

Full text
Abstract:
abstract: Aortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases and account for significant cardiovascular morbidity and mortality worldwide. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies and for planning their surgical repair. In vitro experiments are required to validate these simulations against real world data, and a pulsatile flow pump system can provide physiologic flow conditions characteristic of the aorta. This dissertation presents improved experimental techniques for in vitro aortic blood flow and the increasingly larger parts of the human cardiovascular system. Specifically, this work develops new flow management and measurement techniques for cardiovascular flow experiments with the aim to improve clinical evaluation and treatment planning of aortic diseases. The hypothesis of this research is that transient flow driven by a step change in volume flux in a piston-based pulsatile flow pump system behaves differently from transient flow driven by a step change in pressure gradient, the development time being substantially reduced in the former. Due to this difference in behavior, the response to a piston-driven pump can be predicted in order to establish inlet velocity and flow waveforms at a downstream phantom model. The main objectives of this dissertation were: 1) to design, construct, and validate a piston-based flow pump system for aortic flow experiments, 2) to characterize temporal and spatial development of start-up flows driven by a piston pump that produces a step change from zero flow to a constant volume flux in realistic (finite) tube geometries for physiologic Reynolds numbers, and 3) to develop a method to predict downstream velocity and flow waveforms at the inlet of an aortic phantom model and determine the input waveform needed to achieve the intended waveform at the test section. Application of these newly improved flow management tools and measurement techniques were then demonstrated through in vitro experiments in patient-specific coarctation of aorta flow phantom models manufactured in-house and compared to computational simulations to inform and execute future experiments and simulations.
Dissertation/Thesis
Doctoral Dissertation Bioengineering 2015
APA, Harvard, Vancouver, ISO, and other styles
35

Ceballos, Mariana. "Influence of Salinous Solutions in the Pressure and Volume Modulations of the Intracranial Cavity." Thesis, 2011. http://hdl.handle.net/1969.1/ETD-TAMU-2011-08-10192.

Full text
Abstract:
Following a head concussion the intracranial pressure increases due to the impact, which cannot be adequately relieved because of the stiffness of the skull. Popular strategies aimed at decompressing the head consist in the administration of osmotic agents and skull removal. The mechanical properties of bone can be affected by the administration of different solutions. If the malleability of skull is influenced by the osmotic agents that are administered to the patient then the pressure and volume in the intracranial cavity can also be modified following the treatment. In this thesis research, we hypothesize that administered osmotic agents can influence the mechanical properties of the skull, which can also impact the volume the cavity can hold and subsequently the pressure in the head. This premise was tested by modifying existing mathematical models compiled through two general MATLAB codes that allow the computation of a non-symbolic differential-algebraic initial value problem. Three main features were changed in comparison to current models: the skull's influence on the pressure and volume modulation was tested (inputs were obtained from skull tested under different solutions); pulsatile flow was accounted for on the creation and movement of cerebrospinal fluid; and the input on the mechanical behavior of the cranial vessels was accounted for through previously published continuum-mechanics vessel-behavior models. To complete the model, materials and mechanical properties were obtained through laboratory experiments as well as data collection from existing literature. From our bone test we were able to conclude that there are different factors that affect the mechanical properties of bone in various degrees. There is a mild statistical correlation (p-value 0.05) between the mechanical properties of bone obtained from different regions of the skull samples (2-14mm) and the DPBS and hDPBS solutions. Additionally there is a strong statistical difference (p-value 0.05) between the mechanical properties obtained from cross head speed (0.02, 0.002, and 0.004 (mm/s)) and solution variation (DI, DPBS and hDPBS). Finally, we were able to see that there seems to be a correlation between the mechanical properties of bone, the solution treatments and hypertension; although more test need to be developed to affirm this premise since our results are preliminary.
APA, Harvard, Vancouver, ISO, and other styles
36

Lightstone, Noam S. "Design of a Bioreactor to Mimic Hemodynamic Shear Stresses on Endothelial Cells in Microfluidic Systems." Thesis, 2014. http://hdl.handle.net/1807/65572.

Full text
Abstract:
The mechanisms behind cardiovascular disease (CVD) initiation and progression are not fully elucidated. It is hypothesized that blood flow patterns regulate endothelial cell (EC) function to affect the progression of CVDs. A system that subjects ECs to physiologically-relevant shear stress waveforms within microfluidic devices has not yet been demonstrated, despite the advantages associated with the use of these devices. In this work, a bioreactor was designed to fulfill this need. Waveforms from regions commonly affected by CVDs including were derived. Pump motion and fluid flow profiles were validated by actuator motion tracking, particle image velocimetry, and flowmeters. While several relevant waveforms were successfully replicated, physiological waveforms could not be produced at physiological frequencies owing to actuator velocity and accuracy limitations, as well as dampening effects in the system. Overall, this work lays the foundation for designing a system that provides insight into the role of shear stress in CVD pathogenesis.
APA, Harvard, Vancouver, ISO, and other styles
37

Beggs, Clive B., Simon J. Shepherd, and P. Zamboni. "Cerebral venous outflow resistance and interpretation of cervical plethysmography data with respect to the diagnosis of chronic cerebrospinal venous insufficiency." 2014. http://hdl.handle.net/10454/10606.

Full text
Abstract:
No
PURPOSE: To investigate cerebrospinal fluid (CSF) dynamics in the aqueduct of Sylvius (AoS) in chronic cerebrospinal venous insufficiency (CCSVI)-positive and -negative healthy individuals using cine phase contrast imaging. MATERIALS AND METHODS: Fifty-one healthy individuals (32 CCSVI-negative and 19 age-matched CCSVI-positive subjects) were examined using Doppler sonography (DS). Diagnosis of CCSVI was established if subjects fulfilled >/=2 venous hemodynamic criteria on DS. CSF flow and velocity measures were quantified using a semiautomated method and compared with clinical and routine 3T MRI outcomes. RESULTS: CCSVI was associated with increased CSF pulsatility in the AoS. Net positive CSF flow was 32% greater in the CCSVI-positive group compared with the CCSVI-negative group (P = 0.008). This was accompanied by a 28% increase in the mean aqueductal characteristic signal (ie, the AoS cross-sectional area over the cardiac cycle) in the CCSVI-positive group compared with the CCSVI-negative group (P = 0.021). CONCLUSION: CSF dynamics are altered in CCSVI-positive healthy individuals, as demonstrated by increased pulsatility. This is accompanied by enlargement of the AoS, suggesting that structural changes may be occurring in the brain parenchyma of CCSVI-positive healthy individuals.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography