Academic literature on the topic 'Pulsed laser deposition (PLD)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pulsed laser deposition (PLD).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pulsed laser deposition (PLD)"
Hubler, Graham K. "Pulsed Laser Deposition." MRS Bulletin 17, no. 2 (February 1992): 26–29. http://dx.doi.org/10.1557/s0883769400040586.
Full textRAO, M. C. "PULSED LASER DEPOSITION — ABLATION MECHANISM AND APPLICATIONS." International Journal of Modern Physics: Conference Series 22 (January 2013): 355–60. http://dx.doi.org/10.1142/s2010194513010362.
Full textNiemczyk, Moszyński, Jędrzejewski, Kwiatkowski, Piwowarczyk, and Baranowska. "Chemical Structure of EVA Films Obtained by Pulsed Electron Beam and Pulse Laser Ablation." Polymers 11, no. 9 (August 29, 2019): 1419. http://dx.doi.org/10.3390/polym11091419.
Full textDeng, Ying, Anthony Pelton, and R. A. Mayanovic. "Comparison of Vanadium Oxide Thin Films Prepared Using Femtosecond and Nanosecond Pulsed Laser Deposition." MRS Advances 1, no. 39 (2016): 2737–42. http://dx.doi.org/10.1557/adv.2016.311.
Full textWang, Yuxuan, Bin Zou, Bruno Rente, Neil Alford, and Peter K. Petrov. "Deposition of Nanocrystalline Multilayer Graphene Using Pulsed Laser Deposition." Crystals 13, no. 6 (May 27, 2023): 881. http://dx.doi.org/10.3390/cryst13060881.
Full textZHAO, YAFAN, CHUANZHONG CHEN, MINGDA SONG, JIE MA, and DIANGANG WANG. "EFFECTS OF TECHNICAL PARAMETERS ON THE PULSED LASER DEPOSITED FERROELECTRIC FILMS." Surface Review and Letters 13, no. 05 (October 2006): 687–95. http://dx.doi.org/10.1142/s0218625x06008669.
Full textCotell, Catherine M., and Kenneth S. Grabowski. "Novel Materials Applications of Pulsed Laser Deposition." MRS Bulletin 17, no. 2 (February 1992): 44–53. http://dx.doi.org/10.1557/s0883769400040616.
Full textThyen, Laurenz, Daniel Splith, Max Kneiß, Marius Grundmann, and Holger von Wenckstern. "Masked-assisted radial-segmented target pulsed-laser deposition: A novel method for area-selective deposition using pulsed-laser deposition." Journal of Vacuum Science & Technology A 41, no. 2 (March 2023): 020801. http://dx.doi.org/10.1116/6.0002275.
Full textBulai, Georgiana, Oana Pompilian, Silviu Gurlui, Petr Nemec, Virginie Nazabal, Nicanor Cimpoesu, Bertrand Chazallon, and Cristian Focsa. "Ge-Sb-Te Chalcogenide Thin Films Deposited by Nanosecond, Picosecond, and Femtosecond Laser Ablation." Nanomaterials 9, no. 5 (May 1, 2019): 676. http://dx.doi.org/10.3390/nano9050676.
Full textVenkatesan, T., X. D. Wu, R. Muenchausen, and A. Pique. "Pulsed Laser Deposition: Future Directions." MRS Bulletin 17, no. 2 (February 1992): 54–58. http://dx.doi.org/10.1557/s0883769400040628.
Full textDissertations / Theses on the topic "Pulsed laser deposition (PLD)"
Krogstad, Hedda Nordby. "Deposition of Thin Film Electrolyte by Pulsed Laser Deposition (PLD) for micro-SOFC Development." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for materialteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19017.
Full textJenderka, Marcus. "Pulsed Laser Deposition of Iridate and YBiO3 Thin Films." Doctoral thesis, Universitätsbibliothek Leipzig, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-219334.
Full textThe present thesis reports on the thin film growth of ternary oxides Na2IrO3, Li2IrO3, Y2Ir2O7 and YBiO3. All of these oxides are candidate materials for the so-called topological insulator and spin liquid, respectively. These states of matter promise future application in quantum computation, and in magnetic memory and low-power electronic devices. The realization of the thin films presented here, thus represents a first step towards these future device applications. All thin films are prepared by means of pulsed laser deposition on various single-crystalline substrates. Their structural, optical and electronic properties are investigated with established experimental methods such as X-ray diffraction, spectroscopic ellipsometry and resistivity measurements. The structural properties of Na2IrO3 thin films, that were previously realized in the author’s M. Sc. thesis for the first time, are improved significantly by deposition of an intermediate ZnO layer. Single-crystalline Li2IrO3 thin films are grown for the first time and exhibit a defined crystal orientation. Measurement of the dielectric function gives insight into electronic excitations that compare well with single crystal samples and related iridates. From the data, an optical energy gap of about 300 meV is obtained. For Y2Ir2O7 thin films, a possible (111) out-of-plane preferential crystal orientation is obtained. Compared to chemical solution deposition, the pulsed laser-deposited YBiO3 thin films presented here exhibit a biaxial in-plane crystal orientation up to a significantly larger film thickness. From the measured dielectric function, a direct and indirect band gap energy is determined. Their magnitude provides necessary experimental feedback for theoretical calculations of the electronic structure of YBiO3, which are used in the prediction of the novel states of matter mentioned above. After the introduction and motivation of this thesis, the second chapter reviews the current state of the science of the studied thin film materials. The following two chapters introduce the sample preparation and the employed experimental methods, respectively. Subsequently, the experimental results of this thesis are discussed for each material individually. The thesis concludes with a summary and an outlook
Kawwam, Mohammad. "Pulsed Laser Deposition and Structural Analysis of Crystalline CuO and GaN Thin Films." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10007.
Full textThe thesis presents experimental results related to the Pulsed Laser Deposition (PLD) of GaN and CuO thin films using sapphire, SrTiO3, quartz and MgO substrates. The evolution of crystallization and surface morphology of the as-deposited films were studied to investigate the influence of the process conditions such as: substrate heating, background pressure, target-substrate distance, laser energy density, and substrate location, which were systematically varied. The as-deposited films were characterized by X-ray diffraction, atomic force microscopy and scanning electron microscopy, X-ray photoelectron spectroscopy, RHEED and RAMAN techniques. The results convincingly demonstrate that the enhancement in film growth quality - the reduction in roughness and the delay of epitaxial breakdown - is related to the control of PLD species kinetics. The films thickness, crystallinity, homogeneity and surface roughness are strongly dependent on deposition conditions
Farrell, Ian Laurence. "Growth of Metal-Nitride Thin Films by Pulsed Laser Deposition." Thesis, University of Canterbury. Physics and Astronomy, 2010. http://hdl.handle.net/10092/5011.
Full textZhao, Yue. "Fabrication and characterization of superconducting PLD MgB2 thin films." Access electronically, 2005. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20060719.121046/index.html.
Full textJiang, Ge. "Preparation and Characteristics of Bi0.5Na0.5TiO3 based Lead-Free thin films by Pulsed Laser Deposition." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-247872.
Full textBlybaserade piezoelektriska material, såsom PbZrxTi1-xO3 (PZT), har väckt stor uppmärksamhet och har använts i stor utsträckning på grund av deras utmärkta elektriska egenskaper. Men med tanke på toxiciteten hos bly och dess oxider lockar miljövänliga blyfria piezoelektriska material mer uppmärksamhet från forskare som potentiella utbyten för PZT. Bland dem uppvisar Bi0.5Na0.5TiO3 (BNT) -baserade material bra elektriska egenskaper och elektromekanisk kopplingssvar. I detta arbete framställdes 0,97Bi0.5Na0.5TiO3-0.03BiAlO3 (BNTBA) tunna filmer (~ 120 nm tjocklek) med användning av pulserad laseravsättningsmetod på Pt / TiO2 / SiO2 / Si-substrat. Effekterna av substrattemperatur, syretryck, laserrepetitionshastighet och efterglödande behandling undersöktes. Röntgendiffraktions (XRD) och skanningelektronmikroskop (SEM) används för att studera filmens struktur och de ferroelektriska och dielektriska egenskaperna mäts. Resultaten visar att det är nödvändigt att införa överskott av natrium och vismut för att kompensera för deras avdunstning vid vidare termisk behandling. Värdena för återstående polarisation ökar från 8,7 μC / cm2 till 12,3 μC / cm2 med introduktionen BiAlO3. Den dielektriska konstanten ökar från 600-550 till 710-600 och den dielektriska förlusten ökar från 4,2% till 6,7% vid högre frekvens när syretrycket ökar från 20 Pa till 30 Pa.
Hardie, Graham Lyall. "Techniques for enhancing the PLD growth of superconducting YBCO thin films." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/96096.
Full textENGLISH ABSTRACT: High Temperature Superconductors (HTS) exhibit exceptional electrical properties that make them attractive candidates for numerous electronic devices and applications. However, constructing working devices can be challenging due to fabrication difficulties of these brittle ceramics. This thesis investigates new methods to make the fabrication of high quality YBa2Cu3O7 (YBCO) thin films easier and compatible with more materials. We present the development of a universal add-on method that can be used in situ to improve the quality of superconducting thin films deposited by Pulsed Laser deposition (PLD). We investigate the in situ application of electric fields and voltage biasing to improve the thin film growth. Considering various electrode configurations, we have developed a final electrode design that is stable and produces reproducible results. By introducing an insulated high voltage (HV) electrode into the chamber during deposition, the quality of the deposited thin films can be modulated depending on the polarity of the voltage applied. Applying a positive voltage improves the film quality obtained. Applying a negative voltage degrades the superconducting properties of the films. A simple proof-of-concept HTS dual-mode microwave filter was designed, fabricated and tested. Only the filter produced using our novel PLD technique displayed the correct filtering action upon cooling to 77K. This is attributed to the thin films better superconducting properties due to our developed technique.
AFRIKAANSE OPSOMMING: Hoë Temperatuur Supergeleiers (HTS) vertoon aantreklike elektriese eienskappe wat hulle goeie kandidate maak vir verskeie elektroniese toepassings. Om werkende toestelle te ontwikkel kan 'n uitdaging wees, as gevolg van die vervaardigings probleme wat bestaan vir hierdie bros keramiek materiaal. Hierdie tesis ondersoek nuwe metodes om die vervaardiging van 'n hoë gehalte YBa2Cu3O7 (YBCO) dun films makliker en versoenbaar te maak met verskeie materiale. Ons toon die ontwikkeling van 'n algemene metode wat maklik bygevoeg kan word om in situ die gehalte van supergeleidende dun films, wat deur gepulseerde laser deponering (PLD) gedeponeer is, te verbeter. Ons ondersoek die in situ toepassing van elektriese velde en spannings om die dun film groei te verbeter. Verder oorweeg ons verskeie elektrode konfigurasies en ontwikkel 'n finale elektrode ontwerp wat stabiel is en herhaalbare resultate produseer. Die kwaliteit van die gedeponeerde dun films kan gemoduleer word deur die byvoeging van 'n geïsoleerde hoogspannings (HV) elektrode tydens deponering, afhangende van die polariteit van die aangelegde spanning. 'n Positiewe spanning verhoog die film kwaliteit, terwyl 'n negatiewe spanning die supergeleidende eienskappe van die films verlaag. 'n Eenvoudige HTS dubbele-modus mikrogolffilter is ontwerp, vervaardig en getoets, om as toepassings voorbeeld te dien. Slegs die filter wat geproduseer was met behulp van ons nuwe PLD tegniek, vertoon die beste filter oordrag by 77K. Dit word toegeskryf aan die beter supergeleidende eienskappe van die dun film, as gevolg van die toepassing van ons ontwikkelde tegniek.
Wu, Yi Sun. "Fabrication of in-situ MgB₂ thin films on Al₂O₃ substrate using off-axis PLD technique." Access electronically, 2007. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20080917.103857/index.html.
Full textStock, François. "Traitements laser UV de couches de carbone amorphe adamantin (DLC) obtenues par ablation laser pulsée (PLD) : application à la synthèse d'électrodes transparentes." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAD035.
Full textOne of the biggest challenge that optoelectronic and photovoltaic devices will have to face is the necessity to provide a reliable alternative to transparent conducting oxide (TCO) and especially to Indium Thin Oxide (ITO) widely used in display technologies. This thesis presents an alternative solution based on laser processes and carbon materials only. In a first step, Diamond-Like Carbon (DLC) is grown with a pulsed laser deposition (PLD) process. DLC is an amorphous form of carbon sharing many properties with diamond like very high transparency in the visible range and being a perfect electrical insulator. Therefore, in a second step, DLC thin films are annealed with UV laser. These surface treatments lead to the modification of the first DLC atomic layers. With this step, dominating diamond bindings (sp3) responsible of insulating properties of DLC are broken and atoms will be reorganized in graphitic bindings (sp2) leading to surface conductivity appearance. Within only surface modifications (over a few atomic layers), the interesting property of transparency is conserved with an additional attractive surface conductivity. Obtained performances clearly approach and reach ITO values. This only laser-based process offers very interesting perspectives with keeping an important compatibility with standard microelectronics technical steps
Saha, Sanjib. "Study Of Pulsed Laser Ablated Barium Strontium Titanate Thin Flims For Dynamic Random Access Memory Applications." Thesis, Indian Institute of Science, 2000. https://etd.iisc.ac.in/handle/2005/208.
Full textBooks on the topic "Pulsed laser deposition (PLD)"
Eason, Robert, ed. Pulsed Laser Deposition of Thin Films. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/0470052120.
Full textB, Chrisey Douglas, and Hubler G. K, eds. Pulsed laser deposition of thin films. New York: J. Wiley, 1994.
Find full textEason, Robert. Pulsed Laser Deposition of Thin Films. New York: John Wiley & Sons, Ltd., 2006.
Find full textRecker, Stephanie J. Pulsed laser deposition of YBa2Cu3O7-[delta]/PrBa2Cu3O7-[delta]. St. Catharines, Ont: Brock University, Dept. of Physics, 1998.
Find full textUnited States. National Aeronautics and Space Administration., ed. Soft X-ray optics by pulsed laser deposition: Final report. [Washington, DC: National Aeronautics and Space Administration, 1996.
Find full textUnited States. National Aeronautics and Space Administration., ed. Soft X-ray optics by pulsed laser deposition: Final report. [Washington, DC: National Aeronautics and Space Administration, 1996.
Find full textUnited States. National Aeronautics and Space Administration., ed. Soft X-ray optics by pulsed laser deposition: Final report. [Washington, DC: National Aeronautics and Space Administration, 1996.
Find full textJackson, Brian Douglas. Pulsed-laser deposition of silicon dioxide thin-films using the molecular fluorine laser. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1999.
Find full textPulsed laser deposition of thin films: Applications-led growth of functional materials. Hoboken, N.J: Wiley-Interscience, 2007.
Find full textYazdanian, Mohammad Mehdi. Preparation of SrMgx-Ru1-xO3 thin films by pulsed laser deposition. St. Catharines, Ont: Brock University, Dept. of Physics, 2004.
Find full textBook chapters on the topic "Pulsed laser deposition (PLD)"
Winter, Patrick M., Gregory M. Lanza, Samuel A. Wickline, Marc Madou, Chunlei Wang, Parag B. Deotare, Marko Loncar, et al. "Pulsed-Laser Deposition (PLD)." In Encyclopedia of Nanotechnology, 2186. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100689.
Full textRijnders, Guus, and Dave H. A. Blank. "In Situ Diagnostics by High-Pressure RHEED During PLD." In Pulsed Laser Deposition of Thin Films, 85–97. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470052129.ch4.
Full textGorbunoff, Andreé. "Cross-Beam PLD: Metastable Film Structures from Intersecting Plumes." In Pulsed Laser Deposition of Thin Films, 131–60. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470052129.ch6.
Full textKrebs, Hans-Ulrich, Martin Weisheit, Jörg Faupel, Erik Süske, Thorsten Scharf, Christian Fuhse, Michael Störmer, et al. "Pulsed Laser Deposition (PLD) -- A Versatile Thin Film Technique." In Advances in Solid State Physics, 505–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-44838-9_36.
Full textBeltrano, Joseph J., Lorenzo Torrisi, Anna Maria Visco, Nino Campo, and E. Rapisarda. "Pulsed Laser Deposition (PLD) Technique to Prepare Biocompatible Thin Films." In Advances in Science and Technology, 56–61. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-05-2.56.
Full textLeedy, Kevin D. "Pulsed Laser Deposition 1." In Gallium Oxide, 257–71. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37153-1_14.
Full textvon Wenckstern, Holger, Daniel Splith, and Marius Grundmann. "Pulsed Laser Deposition 2." In Gallium Oxide, 273–91. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37153-1_15.
Full textTakeuchi, Ichiro. "Combinatorial Pulsed Laser Deposition." In Pulsed Laser Deposition of Thin Films, 161–76. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470052129.ch7.
Full textMihailescu, I. N., and E. György. "Pulsed Laser Deposition: An Overview." In Springer Series in OPTICAL SCIENCES, 201–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-540-48886-6_13.
Full textKrebs, Hans-Ulrich. "Pulsed Laser Deposition of Metals." In Pulsed Laser Deposition of Thin Films, 363–82. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470052129.ch16.
Full textConference papers on the topic "Pulsed laser deposition (PLD)"
Rode, Andrei V., Barry Luther-Davies, and Eugene G. Gamaly. "Laser Ablation of Carbon with High-Pulse-Rate Nanosecond and Picosecond Lasers." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.cmf2.
Full textO'Donnell, K. P., P. G. Middleton, C. Trager-Cowan, D. Cole, M. Cazzanelli, and J. G. Lunney. "Pulsed laser deposited (PLD) GaN and its powder precursor." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.cthk2.
Full textPlociennik, Przemyslaw, Anna Zawadzka, Janusz Strzelecki, Zbigniew Lukasiak, and Andrzej Korcala. "Pulsed laser deposition (PLD) of hafnium oxide thin films." In 2014 16th International Conference on Transparent Optical Networks (ICTON). IEEE, 2014. http://dx.doi.org/10.1109/icton.2014.6876620.
Full textFialkova, Svitlana, Sergey Yarmolenko, Jagannathan Sankar, Geoffrey Ndungu, and Kevin Wilkinson. "Bioactive Coating From White Portland Cement Deposited by Pulsed Laser Deposition." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70986.
Full textNAEEMA, Nadia, Hanaa E. JASIM, and Ahmed Shaker HUSSEIN. "EFFECT OF LASER SHOTS ON THE OPTICAL PROPERTIES OF FE2O3: CUO THIN FILMS PREPARED BY PULSE LASER DEPOSITION TECHNIQUE." In III.International Scientific Congress of Pure,Appliedand Technological Sciences. Rimar Academy, 2021. http://dx.doi.org/10.47832/minarcongress3-10.
Full textHaywood, Talisha M., Kwadwo M. Darkwa, Ram K. Gupta, and Dhananjay Kumar. "Pulsed Laser Deposition and Biocompatibility of Titanium Nitride Coatings." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86330.
Full textBelouet, C. "Pulsed laser deposition of high-Tc superconducting thin films for device applications." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/cleo_europe.1994.cmg1.
Full textSheng, Biqing, and Zhaoyan Zhang. "Experimental Investigation of Pulsed Laser Deposition Based on a Compressible Flow Framework." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14219.
Full textZergioti, I., C. Fotakis, and G. N. Haidemenopoulos. "Nanocrystalline Growth of Hard Coatings by Pulsed Laser Deposition." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.cthh89.
Full textHusmann, A., M. Aden, E. W. Kreutz, and R. Poprawe. "Material removal in pulsed laser deposition (PLD) with Q-switch CO2-lasers." In ICALEO® ‘97: Proceedings of the Laser Materials Processing Conference. Laser Institute of America, 1997. http://dx.doi.org/10.2351/1.5059706.
Full textReports on the topic "Pulsed laser deposition (PLD)"
Laube, Samuel J., and Jeffery J. Heyob. Magnetron Sputtered Pulsed Laser Deposition Scale Up. Fort Belvoir, VA: Defense Technical Information Center, August 2003. http://dx.doi.org/10.21236/ada422887.
Full textRubin, M., S. J. Wen, T. Richardson, J. Kerr, K. von Rottkay, and J. Slack. Electrochromic lithium nickel oxide by pulsed laser deposition and sputtering. Office of Scientific and Technical Information (OSTI), September 1996. http://dx.doi.org/10.2172/446407.
Full textHamblen, David G., David B. Fenner, Peter A. Rosenthal, Joseph Cosgrove, and Pang-Jen Kung. Epitaxial Growth of High Quality SiC of Pulsed Laser Deposition. Fort Belvoir, VA: Defense Technical Information Center, February 1995. http://dx.doi.org/10.21236/ada360082.
Full textPeter Pronko. Isotopically Enriched Films and Nanostructures by Ultrafast Pulsed Laser Deposition. Office of Scientific and Technical Information (OSTI), December 2004. http://dx.doi.org/10.2172/835030.
Full textFernandez, Felix E. Pulsed Laser Deposition of Thin Film Material for Nonlinear Waveguides. Fort Belvoir, VA: Defense Technical Information Center, October 1994. http://dx.doi.org/10.21236/ada290789.
Full textBritson, Jason Curtis. Pulsed laser deposition of AlMgB14 thin films. Office of Scientific and Technical Information (OSTI), November 2008. http://dx.doi.org/10.2172/964388.
Full textSiegal, M. P., D. R. Tallant, J. C. Barbour, P. N. Provencio, L. J. Martinez-Miranda, and N. J. DiNardo. Characterization of amorphous carbon films grown by pulsed-laser deposition. Office of Scientific and Technical Information (OSTI), September 1998. http://dx.doi.org/10.2172/658461.
Full textKolagani, R., and S. Friedrich. Heteroepitaxial Growth of NSMO on Silicon by Pulsed Laser Deposition. Office of Scientific and Technical Information (OSTI), June 2008. http://dx.doi.org/10.2172/945832.
Full textNorton, D. P., B. C. Chakoumakos, D. H. Lowndes, and J. D. Budai. Formation of artificially-layered thin-film compounds using pulsed-laser deposition. Office of Scientific and Technical Information (OSTI), April 1995. http://dx.doi.org/10.2172/102249.
Full textCook, L. P., P. K. Schenck, C. K. Chiang, M. D. Vaudinl, and W. Wong-Ng. Ferroelectric thin films prepared by pulsed laser deposition processing and characterization. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4844.
Full text