Academic literature on the topic 'Pulsed power generator'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pulsed power generator.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pulsed power generator"
Dang, Khanh Quoc, Makoto Nanko, Masakazu Kawahara, and Shinichi Takei. "Densification of Alumina Powder by Using PECS Process with Different Pulse Electric Current Waveforms." Materials Science Forum 620-622 (April 2009): 101–4. http://dx.doi.org/10.4028/www.scientific.net/msf.620-622.101.
Full textSong, Falun, Fei Li, Beizhen Zhang, Mingdong Zhu, Chunxia Li, Ganping Wang, Haitao Gong, Yanqing Gan, and Xiao Jin. "Recent advances in compact repetitive high-power Marx generators." Laser and Particle Beams 37, no. 01 (March 2019): 110–21. http://dx.doi.org/10.1017/s0263034619000272.
Full textYATSUI, KIYOSHI, KOUICHI SHIMIYA, KATSUMI MASUGATA, MASAO SHIGETA, and KAZUHIKO SHIBATA. "Characteristics of pulsed power generator by versatile inductive voltage adder." Laser and Particle Beams 23, no. 4 (October 2005): 573–81. http://dx.doi.org/10.1017/s0263034605050779.
Full textPemen, A. J. M., I. V. Grekhov, E. J. M. van Heesch, K. Yan, S. A. Nair, and S. V. Korotkov. "Pulsed corona generation using a diode-based pulsed power generator." Review of Scientific Instruments 74, no. 10 (October 2003): 4361–65. http://dx.doi.org/10.1063/1.1606119.
Full textBalcerak, Michał, Marcin Hołub, and Ryszard Pałka. "High voltage pulse generation using magnetic pulse compression." Archives of Electrical Engineering 62, no. 3 (September 1, 2013): 463–72. http://dx.doi.org/10.2478/aee-2013-0037.
Full textLindblom, A., H. Bernhoff, M. Elfsberg, T. Hurtig, A. Larsson, A. Larsson, M. Leijon, and S. E. Nyholm. "High-Voltage Pulsed-Power Cable Generator." IEEE Transactions on Plasma Science 37, no. 1 (January 2009): 236–42. http://dx.doi.org/10.1109/tps.2008.2007118.
Full textTokuchi, A., N. Ninomiya, Weihua Jiang, and K. Yatsui. "Repetitive pulsed-power generator "ETIGO-IV"." IEEE Transactions on Plasma Science 30, no. 5 (October 2002): 1637–41. http://dx.doi.org/10.1109/tps.2002.806644.
Full textSugai, Taichi, Takuma Sugawara, Akira Tokuchi, Weihua Jiang, and Yasushi Minamitani. "Comparative Study of SOS Pulsed Power Generator and Magnetic Compression Pulsed Power Generator for Applications of Pulsed Streamer Discharge." IEEJ Transactions on Fundamentals and Materials 135, no. 5 (2015): 303–9. http://dx.doi.org/10.1541/ieejfms.135.303.
Full textRuiz-Ortega, Pablo, Miguel Olivares-Robles, and Olao Enciso-Montes de Oca. "Segmented Thermoelectric Generator under Variable Pulsed Heat Input Power." Entropy 21, no. 10 (September 24, 2019): 929. http://dx.doi.org/10.3390/e21100929.
Full textZOU, XIAOBING, RUI LIU, NAIGONG ZENG, MIN HAN, JIANQIANG YUAN, XINXIN WANG, and GUIXIN ZHANG. "A pulsed power generator for x-pinch experiments." Laser and Particle Beams 24, no. 4 (October 2006): 503–9. http://dx.doi.org/10.1017/s0263034606060666.
Full textDissertations / Theses on the topic "Pulsed power generator"
Wang, Meng. "A Tesla-Blumlein PFL-Bipolar pulsed power generator." Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/22802.
Full textGrenier, Jason. "Design of a MOSFET-Based Pulsed Power Supply for Electroporation." Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/844.
Full textIn this research, two Metal Oxide Field Effect Transistor (MOSFET)-based pulsed power supplies that are used for electroporation experiments were designed and built. The first used up to three MOSFETs in parallel to deliver high voltage pulses to highly conductive loads. To produce pulses with higher voltages, a second pulsed power supply using two MOSFETs connected in series was designed and built. The parallel and series MOSFET-based pulsed power supplies are capable of producing controllable square pulses with widths of a few hundred nanoseconds to dc and amplitudes up to 1500 V and 3000 V, respectively. The load in this study is a 1-mm electroporation cuvette filled with a buffer solution that is varied in conductivity from 0. 7 mS/m to 1000 mS/m. The results indicate that by controlling the circuit parameters such as the number of parallel MOSFETs, gate resistance, energy storage capacitance, and the parameters of the MOSFET driver gating pulses, the output pulse parameters can be made almost independent of the load conductivity.
Using the pulsed power supplies designed in this work, an investigation into electroporation-mediated delivery of a plasmid DNA molecule into the pathogenic bacterium E. coli O157:H7, was conducted. It was concluded that increasing the electric field strength and pulse amplitude resulted in an increase in the number of transformants. However, increasing the number of pulses had the effect of reducing the number of transformants. In all of the experiments the number of cells that were inactivated by the exposure to the pulsed electric field was measured.
Kadja, Tchamie. "Chip Scale Tunable Nanosecond Pulsed Electric Field Generator for Electroporation." University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1556028923379642.
Full textLindblom, Adam. "Inductive Pulse Generation." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6699.
Full textBendixsen, Luis Sebastian Caballero. "The design and construction of a compact, high-current pulsed power generator based on multiple low impedance pulse forming lines and networks." Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526548.
Full textMotloung, Setumo Victor. "Intense pulsed neutron generation based on the principle of Plasma Immersion Ion Implantation (PI3) technique." Thesis, University of the Western Cape, 2006. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_9599_1182748458.
Full textThe development of a deuterium-deuterium/ tritium-deuterium (D-D/ D-T) pulsed neutron generator based on the principle of the Plasma Immersion Ion Implantation (PI3) technique is presented, in terms of investigating development of a compact system to generate an ultra short burst of mono-energetic neutrons (of order 1010 per second) during a short period of time (<
20&mu
s) at repetition rates up to 1 kHz. The system will facilitate neutron detection techniques, such as neutron back-scattering, neutron radiography and time-of-flight activation analysis.
Aspects addressed in developing the system includes (a) characterizing the neutron spectra generated as a function of the target configuration/ design to ensure a sustained intense neutron flux for long periods of time, (b) the system was also characterised as a function of power supply operating conditions such as voltage, current, gas pressure and plasma density.
Drexler, Petr. "METODY MĚŘENÍ ULTRAKRÁTKÝCH NEPERIODICKÝCH ELEKTROMAGNETICKÝCH IMPULSŮ." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2007. http://www.nusl.cz/ntk/nusl-233412.
Full textRondani, Bruno. "Projeto, desenvolvimento e construção de um modulador de pulso estado-solido para transmissores pulsados de alta potencia." [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/261786.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-08-06T14:09:31Z (GMT). No. of bitstreams: 1 Rondani_Bruno_M.pdf: 5870538 bytes, checksum: 69f2b2bd154400cd5b620b87a2c4fe8c (MD5) Previous issue date: 2005
Resumo: Descreve-se neste trabalho o desenvolvimento de uma topologia de modulador de pulso estado-sólido e a linha de retardo modular, para aplicação em transmissores pulsados de alta potência que utilizem válvulas de microondas magnetron empregadas comumente em radares de trajetografia, meteorologia e controle de tráfego aéreo. A pesquisa abrange o projeto, desenvolvimento e construção de um modulador de pulso destinado à modernização do transmissor do radar de trajetografia Bearn do Centro de Lançamentos de Foguetes da Barreira do Inferno, Natal -RN. O equipamento desenvolvido fornece pulsos de até 37,5kV e 60A em três modos de transmissão, a saber: monopulso longo, monopulso curto e bipulso. No modo monopulso longo, a largura de pulso é de 1,7µs e nos outros dois modos, 0,85µs. A taxa de repetição dos pulsos é de 585,5Hz. A unidade de modulação de pulso consiste de oito módulos de chaveamento em paralelo, conectados ao primário de um transformador de pulso de razão 1:50. Cada módulo contém dois trechos de linha de retardo e duas chaves estado-sólido e é capaz de gerar pulsos de até 790V e 390A nos diferentes modos de operação. A alimentação da linha de retardo é feita através de um circuito de carga composto por um indutor de alimentação e um circuito de Clipper. O indutor de alimentação faz com que a tensão de carga na linha seja dobrada em relação à tensão contínua presente na saída da fonte de alimentação de entrada, devido à ressonância série criada entre esse indutor e a capacitância total das linhas de retardo. O circuito de Clipper garante a regulação de tensão pulso a pulso e a proteção do modulador contra surto de sobre-corrente na carga e sobre-tensão nas linhas de retardo. Esta topologia foi desenvolvida para melhorar a confiabilidade e facilitar a manutenção dos transmissores de radar com a implementação do conceito de degradação suave (graceful degradation) do modulador de pulso
Abstract: This work describes the development of a modular line-type solid-state pulse modulator topology to be applied in magnetron pulsed power radar transmitters, commonly found on tracking, weather and air traffic management radars. This research includes the design, development and assembling of a pulsed modulator for the Barreira do Inferno Launching Center (CLBI, Natal-RN) Bearn tracking radar upgrade program. The equipment developed provides pulses of 37.5 KV and 60 A in three transmission modes: single long pulse, single short pulse and bipulse. In the single long pulse the pulse width is 1.7 µs and in the other modes 0.85 µs. The pulse repetition frequency is of 585.5Hz. The modulator unit is composed by eight switching modules connected in parallel with the primary windings of a 1:50 ratio pulse transformer. Each module has two pulse-forming network and two IGBT switches and it is capable of handling 790 V and 390 A in the three operational modes. An inductor and a Clipper circuit implement the pulse-forming network charging. The charging inductor allows charging the pulse-forming network with twice the supply voltage since there is a resonance with the total modulator capacitance. The Clipper circuit assures the pulse-to-pulse charging voltage regulation and protects the modulator against load over-current and over-voltage charging. This topology was developed to improve reliability and maintainability of radar transmitters by implementing the graceful degradation (soft failure mode) in the pulse modulator
Mestrado
Sistemas e Controle de Energia
Mestre em Engenharia Elétrica
Ure, K. A. N. "The generation of short, tunable high power optical pulses." Thesis, University of Southampton, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383874.
Full textTakayanagi, Jun, Norihiko Nishizawa, Hiroyuki Nagai, Makoto Yoshida, and Toshio Goto. "Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system." IEEE, 2005. http://hdl.handle.net/2237/6770.
Full textBooks on the topic "Pulsed power generator"
Babaie-Azadi, Daria. Impact of pulsed power loads on torsional oscillations of turbine-generator shaft systems. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1993.
Find full textCowan, M. Megagauss magnetic field generation and pulsed power applications. New York: Nova Science, 1994.
Find full textSarjeant, W. James. High-power electronics. Blue Ridge Summit, PA: TAB Professional and Reference Books, 1989.
Find full textInternational, Conference on Megagauss Magnetic Field Generation and Related Topics (4th 1986 Santa Fe N. M. ). Megagauss technology and pulsed power applications. New York: Plenum Press, 1987.
Find full textJ, Schneider-Muntau Hans, and Physical Phenomena at High Magnetic Fields (3rd : 1998 : Tallahassee, Fla.), eds. Megagauss magnetic field generation, its application to science and ultra-high pulsed-power technology: Proceedings of the VIIIth International Conference on Megagauss Magnetic Field Generation and Related Topics : Tallahassee, Florida, USA, 18-23 October 1998. Hackensack, NJ: World Scientific, 2004.
Find full textStanton, Bonita. Physics and technology of high current discharges in dense gas media and flows. Hauppauge, N.Y: Nova Science Publishers, 2009.
Find full textIEEE, International Pulsed Power Conference (11th 1997 Baltimore Md ). 11th IEEE International Pulsed Power Conference: Digest of technical papers, Hyatt Regency Baltimore on the Inner Harbor, Baltimore, Maryland, USA, June 29-July 2, 1997. [New York]: Institute of Electrical and Electronics Engineers, 1997.
Find full textCanada, Atomic Energy of. Laser plasma generation of hydrogen-free diamond-like carbon thin films on ZR-2.5Nb CANDU pressure tube materials and silicon wafers with a pulsed high-power CO 2 laser. Chalk River, Ont: Chalk River Nuclear Laboratories, 1995.
Find full textNeuber, Andreas A. Explosively Driven Pulsed Power: Helical Magnetic Flux Compression Generators (Power Systems). Springer, 2005.
Find full textNeuber, Andreas A. Explosively Driven Pulsed Power: Helical Magnetic Flux Compression Generators. Springer, 2010.
Find full textBook chapters on the topic "Pulsed power generator"
Martin, J. C. "Notes for Report on the Generator ‘Tom’." In J. C. Martin on Pulsed Power, 489–535. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-1561-0_36.
Full textUshakov, Vasily Ya, Alexey V. Mytnikov, Valeriy A. Lavrinovich, and Alexey V. Lavrinovich. "Development of a Schematic Diagram and a Probing Pulsed Generator Prototype." In Power Systems, 129–35. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83198-1_5.
Full textMartin, J. C. "Hull Lecture No. 3 Marx-Like Generators and Circuits." In J. C. Martin on Pulsed Power, 107–16. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-1561-0_7.
Full textOicles, J., M. Staskus, and P. Brunemeier. "High-Power Impulse Generators for UWB Applications." In Ultra-Wideband, Short-Pulse Electromagnetics 2, 59–66. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1394-4_8.
Full textSzatmári, S., and F. P. Schäfer. "Generation of High Power UV Femtosecond Pulses." In Ultrafast Phenomena VI, 82–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83644-2_24.
Full textHarvey, J. D., J. M. Dudley, V. I. Kruglov, B. C. Thomsen, and M. E. Fermann. "Parabolic Pulses from Yb:fiber Amplifiers: A New Paradigm for High Power Ultrashort Pulse Generation." In Ultrafast Phenomena XII, 102–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56546-5_28.
Full textLisanti, Joel C., and William L. Roberts. "Pulse Combustor Driven Pressure Gain Combustion for High Efficiency Gas Turbine Engines." In Combustion for Power Generation and Transportation, 127–52. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3785-6_7.
Full textCarstens, Henning. "Megawatt-Level Average Power Enhancement Cavities for Ultrashort Pulses." In Enhancement Cavities for the Generation of Extreme Ultraviolet and Hard X-Ray Radiation, 47–64. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94009-0_4.
Full textPang, L. Y., J. G. Fujimoto, and E. S. Kintzer. "Ultrashort Pulse Generation from High-Power Arrays Using Intracavity Nonlinearities." In Ultrafast Phenomena VIII, 217–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84910-7_63.
Full textMucha, Z., S. Müller, J. H. Schäfer, J. Uhlenbusch, and W. Viöl. "Generation and Application of a Pulsed CO2 Laser of High Average Power." In Gas Flow and Chemical Lasers, 442–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71859-5_65.
Full textConference papers on the topic "Pulsed power generator"
Yampolsky, J., G. Kirkman, and L. Voevudko. "Multistage Blumlein Generator." In 2005 IEEE Pulsed Power Conference. IEEE, 2005. http://dx.doi.org/10.1109/ppc.2005.300618.
Full textHartmann, W. "Design of a high current pulse generator for magnetoforming." In Pulsed Power Seminar. IEE, 2003. http://dx.doi.org/10.1049/ic:20030090.
Full textKucherov, A. I. "Explosive magnetic generator of high-power high-voltage pulses." In Pulsed Power Seminar. IEE, 2003. http://dx.doi.org/10.1049/ic:20030103.
Full textLara, M. B., J. Mayes, M. G. Mayes, and C. W. Hatfield. "A Modular Compact Marx Generator Design for the Gatling Marx Generator System." In 2005 IEEE Pulsed Power Conference. IEEE, 2005. http://dx.doi.org/10.1109/ppc.2005.300610.
Full textLindblom, Adam, Anders Larsson, Hans Bernhoff, and Mats Leijon. "45 GW Pulsed-Power Generator." In 2007 IEEE Pulsed Power Plasma Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4346067.
Full textChoi, P. "Inductive line energy storage generator." In IEE Colloquium Pulsed Power '97. IEE, 1997. http://dx.doi.org/10.1049/ic:19970417.
Full textSack, M., and G. Muller. "Modular trigger generator for an over-voltage triggered Marx generator." In 2011 IEEE Pulsed Power Conference (PPC). IEEE, 2011. http://dx.doi.org/10.1109/ppc.2011.6191510.
Full textLloyd, S., Y. G. Chen, G. McAllister, M. Montgomery, T. Olson, J. Shannon, B. Dane, et al. "A 500 kV rep-rate electron beam generator." In 7th Pulsed Power Conference. IEEE, 1989. http://dx.doi.org/10.1109/ppc.1989.767600.
Full textLindbloma, Adam, Anders Larsson, Hans Bernhoff, and Mats Leijon. "45 GW pulsed-power generator." In 2007 IEEE International Pulsed Power Plasma Science Conference (PPPS 2007). IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4652419.
Full textJiang, W., W. Diao, and X. Wang. "Marx generator using power mosfets." In 2009 IEEE Pulsed Power Conference (PPC). IEEE, 2009. http://dx.doi.org/10.1109/ppc.2009.5386282.
Full textReports on the topic "Pulsed power generator"
Ao, Tommy, James Russell Asay, Sophie J. Chantrenne, Randall John Hickman, Michael David Willis, Andrew W. Shay, Suzi A. Grine-Jones, Clint Allen Hall, and Melvin R. Baer. The VELOCE pulsed power generator for isentropic compression experiments. Office of Scientific and Technical Information (OSTI), December 2007. http://dx.doi.org/10.2172/1324445.
Full textWisher, Matthew Louis, Owen M. Johns, Eric Wayne Breden, Jacob Daniel Calhoun, Frederick Rusticus Gruner, Robert James Hohlfelder, Thomas D. Mulville, David J. Muron, Brian S. Stoltzfus, and William A. Stygar. Field-Distortion Air-Insulated Switches for Next-Generation Pulsed-Power Accelerators. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1395749.
Full textJohnson, R., K. Marcotte, and M. Donnelly. Computer controlled MHD power consolidation and pulse generation system. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6050343.
Full textJohnson, R., K. Marcotte, and M. Donnelly. Computer controlled MHD power consolidation and pulse-generation system. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5426877.
Full textJohnson, R., K. Marcotte, and M. Donnelly. Computer controlled MHD power consolidation and pulse generation system. Office of Scientific and Technical Information (OSTI), May 1990. http://dx.doi.org/10.2172/6830352.
Full textCyr, Eric C., Gregory John von Winckel, Drew Philip Kouri, Thomas Anthony Gardiner, Denis Ridzal, John N. Shadid, and Sean Miller. LDRD Report: Topological Design Optimization of Convolutes in Next Generation Pulsed Power Devices. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1413648.
Full textJerng, D. W., and J. M. Carpenter. Heat generation and neutron beam characteristics in a high power pulsed spallation neutron source. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/396586.
Full textBowlan, Pamela, and Rick Trebino. Measurement and Generation of Ultra-High Power Fiber Laser Pulses by Coherent Combination. Fort Belvoir, VA: Defense Technical Information Center, June 2010. http://dx.doi.org/10.21236/ada547533.
Full textAlessi, D. High-Average-Power Diffraction Pulse-Compression Gratings Enabling Next-Generation Ultrafast Laser Systems. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1333397.
Full textArthur, J. Chirped-Beam Two-Stage SASE-FEL for High Power Femtosecond X-Ray Pulse Generation. Office of Scientific and Technical Information (OSTI), August 2002. http://dx.doi.org/10.2172/800011.
Full text