Academic literature on the topic 'Pulsed time-of-flight'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pulsed time-of-flight.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Pulsed time-of-flight"

1

Dongxian Geng, Dongxian Geng, Xing Fu Xing Fu, Pengfei Du Pengfei Du, Wei Wang Wei Wang, and and Mali Gong and Mali Gong. "Combination of differential discrimination and direct discrimination in pulsed laser time-of-flight systems." Chinese Optics Letters 14, no. 6 (2016): 062801–62805. http://dx.doi.org/10.3788/col201614.062801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Millán-Callado, M. A., C. Guerrero, J. M. Quesada, J. Gómez, B. Fernández, J. Lerendegui-Marco, T. Rodríguez-González, et al. "Laser-driven neutrons for time-of-flight experiments?" EPJ Web of Conferences 239 (2020): 17012. http://dx.doi.org/10.1051/epjconf/202023917012.

Full text
Abstract:
Neutron beams, both pulsed and continuous, are a powerful tool in a wide variety of research fields and applications. Nowadays, pulsed neutron beams are produced in conventional accelerator facilities in which the time-of-fight technique is used to determine the kinetic energy of the neutrons inducing the reactions of interest. In the last decades, the development of ultra-short (femtosecond) and ultra-high power (> 1018 W/cm2) lasers has opened the door to a vast number of new applications, including the production and acceleration of pulsed ion beams. These have been recently used to produce pulsed neutron beams, reaching fluxes per pulse similar and even higher than those of conventional neutron beams, hence becoming an alternative for the pulsed neutron beam users community. Nevertheless, these laser-driven neutrons have not been exploited in nuclear physics experiments so far. Our main goal is to produce and characterize laser-driven neutrons but optimizing the analysis, diagnostic and detection techniques currently used in conventional neutron sources to implement them in this new environment. As a result, we would lay down the viability of carrying out nuclear physics experiments using this kind of sources by identifying the advantages and limitations of this production method. To achieve this purpose, we plan to perform experiments in both medium (50TW@L2A2, in Santiago de Com-postela) and high (1PW@APOLLON, in Paris) power laser facilities.
APA, Harvard, Vancouver, ISO, and other styles
3

Chen Lei, 陈磊, 万翔 Wan Xiang, 金大志 Jin Dazhi, 谈效华 Tan Xiaohua, 谭国斌 Tan Guobin, and 黄正旭 Huang Zhengxu. "Time of flight mass spectrum diagnosis for pulsed plasma." High Power Laser and Particle Beams 27, no. 3 (2015): 32040. http://dx.doi.org/10.3788/hplpb20152703.32040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hang, Wei, Pengyuan Yang, Xiaoru Wang, Chenglong Yang, Yongxuan Su, and Benli Huang. "Microsecond pulsed glow discharge time-of-flight mass spectrometer." Rapid Communications in Mass Spectrometry 8, no. 8 (August 1994): 590–94. http://dx.doi.org/10.1002/rcm.1290080804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hallman, L. W., and J. Kostamovaara. "Note: Detection jitter of pulsed time-of-flight lidar with dual pulse triggering." Review of Scientific Instruments 85, no. 3 (March 2014): 036105. http://dx.doi.org/10.1063/1.4868590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Balagurov, A. M., G. M. Mironova, V. E. Novozchilov, A. I. Ostrovnoy, V. G. Simkin, and V. B. Zlokazov. "The application of the neutron time-of-flight technique for real-time diffraction studies." Journal of Applied Crystallography 24, no. 6 (December 1, 1991): 1009–14. http://dx.doi.org/10.1107/s0021889891006982.

Full text
Abstract:
Real-time neutron powder diffraction and small-angle scattering techniques have been developed on the TOF diffractometer DN-2 at the IBR-2 pulsed reactor at JINR (Dubna) with a total flux on the sample of 107 neutrons cm−2 s−1 and a resolution of about 1%. A special arrangement of the detector system ensures a high counting rate of diffracted neutrons. Depending upon sample type and experimental conditions, the measuring time ts of one neutron pattern varies from a few minutes to several seconds. The performance of the diffractometer is discussed and typical data are shown to demonstrate current achievements using real-time techniques at a pulsed reactor.
APA, Harvard, Vancouver, ISO, and other styles
7

Santisteban, J. R., L. Edwards, A. Steuwer, and P. J. Withers. "Time-of-flight neutron transmission diffraction." Journal of Applied Crystallography 34, no. 3 (May 22, 2001): 289–97. http://dx.doi.org/10.1107/s0021889801003260.

Full text
Abstract:
The positions of Bragg edges in neutron transmission experiments can be defined with high accuracy using the time-of-flight (TOF) technique on pulsed neutron sources. A new dedicated transmission instrument has been developed at ISIS, the UK spallation source, which provides a precision of Δd/d≃ 10−5in the determination of interplanar distances. This is achieved by fitting a theoretical three-parameter expression to the normalized Bragg edges appearing in the TOF transmission spectra. The technique is demonstrated by experiments performed on iron, niobium and nickel powders. The applicability of using the instrument for the determination of lattice strains in materials has been investigated using a simplein situloading experiment. Details of the calibration process are presented and the dependence of the resolution and the experimental times required by the transmission geometry on the instrumental variables are studied. Finally, the requirements for a Rietveld-type refinement of transmission data and the advantages and limitations over traditional neutron diffraction peak analysis are discussed.
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Qiansong. "Self-triggering pulsed time-of-flight laser range-finding method." Optical Engineering 42, no. 12 (December 1, 2003): 3608. http://dx.doi.org/10.1117/1.1621407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Chengwei. "Time-of-flight measurement in self-triggering pulsed laser ranging." Optical Engineering 44, no. 3 (March 1, 2005): 034201. http://dx.doi.org/10.1117/1.1868777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lyöri, Veijo, Ari Kilpelä, Guoyong Duan, Antti Mäntyniemi, and Juha Kostamovaara. "Pulsed time-of-flight radar for fiber-optic strain sensing." Review of Scientific Instruments 78, no. 2 (February 2007): 024705. http://dx.doi.org/10.1063/1.2535634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Pulsed time-of-flight"

1

Reshetyuk, Yuriy. "Investigation and calibration of pulsed time-of-flight terrestrial laser scanners." Licentiate thesis, Stockholm : Division of Geodesy, Royal Institute of Technology, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Qu, Guangzhi. "Resolution Limits of Time-of-Flight Mass Spectrometry with Pulsed Source." W&M ScholarWorks, 2016. https://scholarworks.wm.edu/etd/1477068405.

Full text
Abstract:
Matrix Assisted Laser Desorption/Ionization (MALDI) is a time-of-flight mass spectrometry commonly used to detect a wide mass range of biomarkers. However, MALDI requires a high laser pulse energy to create ions with a mass higher than 50,000 Daltons. That high laser energy increases the net ion production but it also degrades the instrument's mass resolution. This project uses a Room Temperature Ionization Liquid (RTIL) as a liquid matrix with a self healing surface instead of a standard crystal matrix to increase shot to shot reproducibility, enabling a systematic study of the origin of the resolution degradation. This study shows that the main source of the resolution degradation is the ionic space charge which delays the ejection of ions into the acceleration region, essentially increasing the ionization pulse time to be as long as hundreds of nanoseconds. This study includes simulation and experimental results to document this effect.
APA, Harvard, Vancouver, ISO, and other styles
3

Hallman, L. (Lauri). "Single photon detection based devices and techniques for pulsed time-of-flight applications." Doctoral thesis, Oulun yliopisto, 2015. http://urn.fi/urn:isbn:9789526210445.

Full text
Abstract:
Abstract In this thesis, a new type of laser diode transmitter using enhanced gain-switching suitable for use with a single photon avalanche diode (SPAD) detector was developed and tested in the pulsed time-of-flight laser range finding (lidar) application. Several laser diode versions were tested and the driving electronics were developed. The driving electronics improvements enabled a pulsing frequency of up to 1 MHz, while the maximum laser output power was about 5–40 W depending on the laser diode dimensions. The large output power is advantageous especially in conditions of strong photon noise emerging from ambient light outdoors. The length of the laser pulse matches the jitter of a typical SPAD detector providing several advantages. The new laser pulser structure enables a compact rangefinder for 50 m distance measurement outdoors in sunny conditions with sub-centimeter precision (σ-value) at a valid distance measurement rate of more than 10 kHz, for example. Single photon range finding techniques were also shown to enable a char bed level measurement of a recovery boiler containing highly attenuating and dispersing flue gas. In addition, gated single photon detector techniques were shown to provide a rejection of fluorescent photons in a Raman spectroscope leading to a greatly improved signal-to-noise ratio. Photonic effects were also studied in the case of a pulsed time-of-flight laser rangefinder utilizing a linear photodetector. It was shown that signal photon noise has an effect on the optimum detector configuration, and that pulse detection jitter can be minimized with an appropriate timing discriminator
Tiivistelmä Tässä työssä kehitettiin uudentyyppinen, tehostettua "gain-switchingiä" hyödyntävä laserdiodilähetin käytettäväksi yksittäisten fotonien avalanche-ilmaisimien (SPAD) kanssa, ja sitä testattiin pulssin lentoaikaan perustuvassa laseretäisyysmittaussovelluksessa. Useita laserdiodiversioita testattiin ja ohjauselektroniikkaa kehitettiin. Ohjauselektroniikan parannukset mahdollistivat jopa 1 MHz pulssitustaajuuden, kun taas laserin maksimiteho oli noin 5–40 W riippuen laserdiodin dimensioista. Suuri lähtöteho on edullinen varsinkin vahvoissa taustafotoniolosuhteissa ulkona. Laserpulssin pituus vastaa tyypillisen SPAD-ilmaisimen jitteriä tarjoten useita etuja. Uusi laserpulssitinrakenne mahdollistaa esimerkiksi kompaktin etäisyysmittarin 50 m mittausetäisyydelle ulkona aurinkoisessa olosuhteessa mm–cm -mittaustarkkuudella (σ-arvo) yli 10 kHz mittaustahdilla. Yksittäisten fotonien lentoaikamittaustekniikan osoitettiin myös mahdollistavan soodakattilan keon korkeuden mittauksen, jossa on voimakkaasti vaimentavaa ja dispersoivaa savukaasua. Lisäksi portitetun yksittäisten fotonien ilmaisutekniikan osoitettiin hylkäävän fluoresenssin synnyttämiä fotoneita Raman-spektroskoopissa, joka johtaa selvästi parempaan signaali-kohinasuhteeseen. Fotoni-ilmiöitä tutkittiin myös lineaarista valoilmaisinta hyödyntävän pulssin kulkuaikamittaukseen perustuvan lasertutkan tapauksessa. Osoitettiin, että signaalin fotonikohina vaikuttaa optimaaliseen ilmaisinkonfiguraatioon, ja että pulssin ilmaisujitteri voidaan minimoida sopivalla ajoitusdiskriminaattorilla
APA, Harvard, Vancouver, ISO, and other styles
4

Moser, Matthew A. "Micro-and pulsed-plasmas fine tuning plasma energies for chemical analysis /." Morgantown, W. Va. : [West Virginia University Libraries], 2002. http://etd.wvu.edu/templates/showETD.cfm?recnum=2534.

Full text
Abstract:
Thesis (Ph. D.)--West Virginia University, 2002.
Title from document title page. Document formatted into pages; contains ix, 99 p. : ill. (some col.). Includes abstract. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
5

Hintikka, M. (Mikko). "Integrated CMOS receiver techniques for sub-ns based pulsed time-of-flight laser rangefinding." Doctoral thesis, Oulun yliopisto, 2019. http://urn.fi/urn:isbn:9789526221625.

Full text
Abstract:
Abstract The goal of this work was to develop a CMOS receiver for a time-of-flight (TOF) laser rangefinder utilizing sub-ns pulses produced by a laser diode operating in gain switching mode (~ 1 nJ transmitter energy). This thesis also discusses the optical detector components and their usability with sub-ns optical pulses in laser rangefinding and the effect of the laser driver electronics on the shape of the sub-ns laser output, and eventually on the timing walk error of the laser rangefinder. The thesis presents the design of an integrated receiver channel IC intended for use in the pulsed TOF rangefinder. This is realized in a low-cost and consumer electronics-friendly CMOS technology (0.18 μm) and is based on a linear receiver and leading edge time discrimination. The measured walk error of the receiver is ~ 500 ps (4.5 cm in distance) within a 1:21,000 dynamic range. The measured jitter of the leading edge, affecting the single-shot precision of the radar, was ~ 12 ps (1.6 mm in distance) at an SNR > 200. In addition, a pulsed TOF rangefinder using the receiver IC developed here was designed and used for demonstrating the possibility of measuring tiny vibrations in a distant non-cooperative target. The radar was used successfully to observe 10 Hz vibrations in a non-cooperative target with an amplitude of 1.5 mm (sub-mm precision after averaging) at a distance of ~ 2 m. One important result was the demonstration of a difference in walk error behaviour between MOSFET and avalanche BJT-based laser pulse transmitters. The practicability of an integrated CMOS AP detector in sub-ns laser rangefinding was also studied
Tiivistelmä Työn tavoitteena oli kehittää CMOS-vastaanotin valon kulkuaikamittaukseen perustuvaan laseretäisyysmittariin, joka hyödyntää ”gain-switching”-tekniikalla toimivan laserdiodin (~ 1 nJ energia) tuottamia alle nanosekuntiluokan laserpulsseja. Väitöskirja tutkii myös valovastaanotinkomponenttien käyttökelpoisuutta alle nanosekuntiluokan laserpulsseja hyödyntävässä laseretäisyysmittauksessa. Työssä tutkitaan myös laserdiodilähettimen elektroniikan vaikutusta alle nanosekuntiluokan laserpulssien muotoon ja lopulta niiden vaikutusta systemaattiseen ajoitusvirheeseen laseretäisyysmittauksessa. Väitöskirja esittelee suunnitellun valopulssin kulkuaikamittaukseen perustuvaan laseretäisyysmittariin soveltuvan integroidun vastaanotinkanavan IC-piirin. Se on toteutettu halvalla, kulutuselektroniikkaan soveltuvalla CMOS tekniikalla (0,18 μm) ja se perustuu lineaariseen vastaanottimeen ja nousevan reunan ilmaisuun. Vastaanottimen mitattu systemaattinen ajoitusvirhe on ~ 500 ps (4,5 cm matkassa) 1:21 000 signaalivoimakkuuden vaihtelualueella. Vastaanottimesta mitattu laseretäisyysmittarin kertamittaustarkkuuteen vaikuttava nousevan reunan satunnainen ajoitusepävarmuus oli ~ 12 ps (1.6 mm matkassa) signaalikohinasuhteella > 200. Lisäksi tässä työssä toteutettiin kehitettyä vastaanotin-IC piiriä hyödyntävä valopulssin kulkuaikamittaukseen perustuva etäisyysmittari, jolla kyettiin havainnollistamaan mahdollisuutta mitata pientä tärinää kaukaisessa passiivisessa kohteessa. Tutkalla onnistuttiin havainnoimaan 1,5 mm vaihteluväliltään olevaa 10 Hz tärinä ~ 2 m etäisyydellä olevasta kohteesta. Väitöskirjan yksi tärkeä tulos oli havainnollistaa systemaattisessa ajoitusvirheessä havaittava ero MOSFET-transistoriin ja vyöry-BJT-transistoriin perustuvan laserpulssilähettimen välillä. Integroidun CMOS AP vastaanotinkomponentin käyttökelpoisuus alle nanosekuntiluokan laseretäisyysmittauksessa tutkittiin myös
APA, Harvard, Vancouver, ISO, and other styles
6

Nissinen, I. (Ilkka). "CMOS time-to-digital converter structures for the integrated receiver of a pulsed time-of-flight laser rangefinder." Doctoral thesis, Oulun yliopisto, 2011. http://urn.fi/urn:isbn:9789514295478.

Full text
Abstract:
Abstract The aim of this thesis was to develop time-to-digital converters (TDC) for the integrated receiver of a pulsed time-of-flight (TOF) laser rangefinder aiming at cm-level accuracy over an input range of 10 m – 15 m. A simple structure, a high integration level and low power consumption are the desired features for such a TDC. From the pulsed TOF laser rangefinder point of view an integrated receiver consisting of both the TDC and the receiver channel on the same die offers the possibility of manufacturing these laser rangefinders with a high integration level and at a low price to fulfil the needs of mass industrial markets. The heart of the TDC is a CMOS ring oscillator, the clock frequency of which is used to calculate the full clock cycles between timing signals, the positions of the timing signals inside the clock period being determined by storing the state of the phase of the ring oscillator for each timing signal. This will improve the resolution of the TDC. Also, additional delay lines are used to generate multiple timing signals, each having a time difference of a fraction of that of the ring oscillator. This will further improve the resolution of the whole TDC. To achieve stable results regardless of temperature and supply voltage variations, the TDC is locked to an on-chip reference voltage, or the resolution of the TDC is calibrated before the actual time interval measurement. The systematic walk error in the receiver channel caused by amplitude variation in the received pulse is compensated for by the TDC measuring the slew rate of the received pulse. This time domain compensation method is not affected by the low supply voltage range of modern CMOS technologies. Three TDC prototypes were tested. A single-shot precision standard deviation of 16 ps (2.4 mm) and a power consumption of 5.3 mW/channel were achieved at best over an input range of 100 ns (15 m). The temperature drifts of an on-chip voltage reference-locked TDC and a TDC based on the calibration method were 90 ppm/°C and 0.27 ps/°C, respectively. The results also showed that a pulsed TOF laser rangefinder with cm-level accuracy over a 0 – 15 m input range can be realized using the integrated receiver with the time domain walk error compensation described here
Tiivistelmä Väitöskirjatyön tavoitteena oli kehittää aika-digitaalimuunninrakenteita valopulssin kulkuajan mittaukseen perustuvan lasertutkan integroituun vastaanottimeen. Tavoitteena oli saavuttaa senttimetriluokan tarkkuus 10 m – 15 m mittausalueella koko lasertutkan osalta. Aika-digitaalimuuntimelta vaaditaan yksinkertaista rakennetta, korkeaa integroimisastetta ja matalaa tehonkulutusta. Integroitu vastaanotin sisältää sekä aika-digitaalimuuntimen että vastaanotinkanavan ja tarjoaa mahdollisuuden korkeasti integroidun lasertutkan valmistukseen halvalla teollisuuden massamarkkinoiden tarpeisiin. Aika-digitaalimuuntimen ytimenä toimii monivaiheinen CMOS-rengasoskillaattori. Aika-digitaalimuunnos perustuu rengasoskillaattorin täysien kellojaksojen laskentaan laskurilla ajoitussignaalien välillä. Lisäksi rengasoskillaatorin jokaisesta vaiheesta otetaan näyte ajoitussignaaleilla niiden paikkojen määrittämiseksi kellojakson sisällä, jolloin aika-digitaalimuuntimen erottelutarkkuutta saadaan parannettua. Erottelutarkkuutta parannetaan lisää viivästämällä ajoitussignaaleja viive-elementeillä ja muodostamalla näin useita erillisiä ajoitussignaaleja, joiden väliset viive-erot ovat murto-osa rengasoskillaattorin viive-elementin viiveestä. Aika-digitaalimuunnin stabiloidaan käyttöjännite- ja lämpötilavaihteluja vastaan lukitsemalla se integroidun piirin sisäiseen jännitereferenssiin, tai sen erottelutarkkuus määritetään ennen varsinaista aikavälinmittausta erillisellä kalibrointimittauksella. Vastaanotetun valopulssin amplitudivaihtelun aiheuttama systemaattinen ajoitusvirhe integroidussa vastaanotinkanavassa kompensoidaan mittaamalla vastaanotetun valopulssin nousunopeus aika-digitaalimuuntimella. Tällainen aikatasoon perustuva kompensointimetodi on myös suorituskykyinen nykyisissä matalakäyttöjännitteisissä CMOS-teknologioissa. Työssä valmistettiin ja testattiin kolme aika-digitaalimuunninprototyyppiä. Muuntimien kertamittaustarkkuuden keskihajonta oli parhaimmillaan 16 ps (2,4 mm) ja tehonkulutus alle 5,3 mW/kanava mittausetäisyyden olessa alle 100 ns (15 m). Sisäiseen jännitereferenssiin lukitun aika-digitaalimuuntimen lämpötilariippuvuudeksi mitattiin 90 ppm/°C ja kalibrointimenetelmällä saavutettiin 0,27 ps/°C lämpötilariipuvuus. Työssä saavutetut tulokset osoittavat lisäksi, että valopulssin kulkuajan mittaukseen perustuvalla lasertutkalla on saavutettavissa senttimetriluokan tarkkuus 0 – 15 m mittausalueella käyttämällä tässä työssä esitettyä integroitua vastaanotinta ja aikatason ajoitusvirhekompensointia
APA, Harvard, Vancouver, ISO, and other styles
7

Kilpelä, A. (Ari). "Pulsed time-of-flight laser range finder techniques for fast, high precision measurement applications." Doctoral thesis, University of Oulu, 2004. http://urn.fi/urn:isbn:9514272625.

Full text
Abstract:
Abstract This thesis describes the development of high bandwidth (~1 GHz) TOF (time-of-flight) laser range finder techniques for industrial measurement applications in the measurement range of zero to a few dozen metres to diffusely reflecting targets. The main goal has been to improve single-shot precision to mm-level in order to shorten the measurement result acquisition time. A TOF laser range finder consists of a laser transmitter, one or two receivers and timing discriminators, and a time measuring unit. In order to improve single-shot precision the slew-rate of the measurement pulse should be increased, so the optical pulse of the laser transmitter should be narrower and more powerful and the bandwidth of the receiver should be higher without increasing the noise level too much. In the transmitter usually avalanche transistors are used for generating the short (3–10 ns) and powerful (20–100 A) current pulses for the semiconductor laser. Several avalanche transistor types were compared and the optimization of the switching circuit was studied. It was shown that as high as 130 A current pulses are achievable using commercially available surface mount avalanche transistors. The timing discriminator was noticed to give the minimum walk error, when high slew rate measurement pulses and a high bandwidth comparator were used. A walk error of less than +/- 1 mm in an input amplitude dynamic range higher than 1:10 can be achieved with a high bandwidth receiver channel. Adding an external offset voltage between the input nodes of the comparator additionally minimized the walk error. A prototype ~1 GHz laser range finder constructed in the thesis consists of a laser pulser and two integrated ASIC receiver channels with silicon APDs (avalanche photodiodes), crossover timing discriminators and Gilbert cell attenuators. The laser pulser utilizes an internal Q-switching mode of a commercially available SH-laser and produces optical pulses with a pulse peak power and FWHM (full-width-at-half-maximum) of 44 W and 74 ps, respectively. Using single-axis optics and 1 m long multimode fibres between the optics and receivers a total accuracy of +/-2 mm in the measurement range of 0.5–34.5 m was measured. The single-shot precision (σ-value) was 14 ps–34 ps (2–5 mm) in the measurement range. The single-shot precision agrees well with the simulations and is better with a factor of about 3-5 as compared to earlier published pulsed TOF laser radars in comparable measuring conditions.
APA, Harvard, Vancouver, ISO, and other styles
8

Palojärvi, P. (Pasi). "Integrated electronic and optoelectronic circuits and devices for pulsed time-of-flight laser rangefinding." Doctoral thesis, University of Oulu, 2003. http://urn.fi/urn:isbn:9514269667.

Full text
Abstract:
Abstract The main focus of this work concerned with the development of integrated electronic and optoelectronic circuits and devices for pulsed time-of-flight laser rangefinding is on the construction of the receiver channel, system level integration aimed at realisation of the laser radar module and in integration of all the receiver functions of laser radar on one chip. Since the timing discriminator is a very important part of a pulsed time-of-flight laser rangefinder, two timing discrimination methods are presented and verified by means of circuit implementations, a leading edge discriminator and a high-pass timing discriminator. The walk error of the high-pass timing discriminator is ±4 mm in a dynamic range of 1:620 and the uncompensatable walk error of the leading edge discriminator is ±30 mm in a dynamic range of 1:4000. Additionally a new way of combining the timing discriminator with time interval measurement is presented which achieves a walk error of ±0.5 mm in a dynamic range of 1:21. The usability of the receiver channel chip is verified by constructing three prototypes of pulsed TOF laser radar module. The laser radar achieves mm-level accuracy in a measurement range from 4 m to 34 m with non-cooperative targets. This performance is similar to that of earlier realisations using discrete components or even better and has markedly reduced power consumption and size. The integration level has been increased further by implementing a photodetector on the same chip as the rest of the receiver electronics. The responsivity of the photodetector is about 0.3 A/W at 850 nm wavelength and the noise of the receiver is reduced by a factor of about two relative to realisations using an external photodetector, because of the absence of parasitic capacitances and inductances caused by packages, PCB wiring, bond wires and ESD and I/O cell structures. The functionality of a multi-channel pulsed TOF laser radar chip is demonstrated using the photodiode structure investigated here. The chip includes four photodetectors with receiver channels and a three-channel time-to-digital converter. The chip together with external optics and a laser pulse transmitter enables distances to be measured in three directions with a single optical pulse, thus showing the feasibility of implementing all the receiver functions of a pulsed time-of-flight imager on a single chip using a current semiconductor process.
APA, Harvard, Vancouver, ISO, and other styles
9

Ruotsalainen, T. (Tarmo). "Integrated receiver channel circuits and structures for a pulsed time-of-flight laser radar." Doctoral thesis, University of Oulu, 1999. http://urn.fi/urn:isbn:9514252160.

Full text
Abstract:
Abstract This thesis describes the development of integrated structures and circuit implementations for the receiver channel of portable pulsed time-of-flight laser rangefinders for industrial measurement applications where the measurement range is from ∼1 m to ∼100 m to noncooperative targets and the required measurement accuracy is from a few millimetres to a few centimetres. The receiver channel is used to convert the current pulse from a photodetector to a voltage pulse, amplify it, discriminate the timing point and produce an accurately timed logic-level pulse for a time-to-digital converter. Since the length of the laser pulse, typically 5 ns, is large compared to the required accuracy, a specific point in the pulses has to be discriminated. The amplitude of the input pulses varies widely as a function of measurement range and the reflectivity of the target, typically from 1 to 100 ... 1000, so that the gain of the amplifier channel needs to be controlled and the discrimination scheme should be insensitive to the amplitude variation of the input signal. Furthermore, the amplifier channel should have low noise in order to minimize timing jitter. Alternative circuit structures are discussed, the treatment concentrating on the preamplifier, gain control circuitry and timing discriminator, which are the key circuit blocks from the performance point of view. New circuit techniques and structures, such as a fully differential transimpedance preamplifier and a current mode gain control scheme, have been developed. Several circuit implementations for different applications are presented together with experimental results, one of them being a differential BiCMOS receiver channel with a bandwidth of 170 MHz, input referred noise of 6 pA/√Hz and maximum transimpedance of 260 kW. It has an accuracy of about +/- 7 mm (average of 10000 measurements), taking into account walk error with an input signal range of 1:624 and jitter (3s). The achievable performance level using integrated circuit technology is comparable or superior to that of the previously developed commercially available discrete component implementations, and the significantly reduced size and power consumption open up new application areas.
APA, Harvard, Vancouver, ISO, and other styles
10

Kurtti, S. (Sami). "Integrated receiver channel and timing discrimination circuits for a pulsed time-of-flight laser rangefinder." Doctoral thesis, Oulun yliopisto, 2013. http://urn.fi/urn:isbn:9789526200460.

Full text
Abstract:
Abstract In this thesis integrated receiver channel techniques and circuit implementations for a pulsed time-of-flight (TOF) laser rangefinder are developed with the aim to achieve centimetre level accuracy within the dynamic range of > 1:10 000 of the input pulse amplitudes. The receiver channel converts the input current pulses produced by the photo detector to voltage pulses and produces a logic-level timing pulse for the time interval measurement. In addition to the minimization of noise, the main design challenge is the minimization of the timing walk error resulting from the varying amplitude of the received optical echo. In automotive perception laser radar application, which was the target application of this work, the input amplitude of the received echo varies in a range of 1:10 000 or even more due to changes in the measured distance and reflectivity and orientation of the target. Two receiver channel and timing discriminator architectures were developed and realized as integrated circuits in 0.35 μm BiCMOS technology, and finally verified by measurements. One of the receiver channels is based on the detection of the zero-crossing of the timing pulse produced with a unipolar-to-bipolar conversion at the input of the receiver. It achieved a timing walk error of ±8 mm in a dynamic range of 1:3000. Another receiver channel is based on the leading edge timing discrimination, in which the timing walk error is being compensated for in time domain by measuring the width of the timing pulse simultaneously with its leading edge time position. An important feature of this technique, suggested in this thesis, is that it is operative also beyond the linear range of the receiver channel, which is typically limited to < 1:100. The receiver channel with leading edge detection and pulse width compensation achieved a compensated walk error of ± 2–3 mm in a dynamic range of ~ 1:100 000. The bandwidth and input referred current noise of the channel were 230 MHz and <100 nArms, respectively. The single-shot timing precision was 120 ps (20 mm in distance) at the SNR of 10. The feasibility of the receiver electronics was verified by two laser radar prototypes. An accuracy of < ± 5 mm was measured in a measurement range from 1 to 55 m, which corresponds to the receiver dynamic range of > 1:10 000 taking into consideration the varying reflectivity of the target materials used
Tiivistelmä Väitöskirjatyössä on suunniteltu integroituja vastaanotintekniikoita ja –piirejä valopulssin kulkuaikamittaustekniikkaan perustuvaan laseretäisyysmittaukseen. Tavoitteena on ollut saavuttaa senttimetriluokan tarkkuus laajalla tulopulssin amplitudin dynaamisella alueella > 1:10 000. Vastaanotinkanava muuntaa valoilmaisimelta saadun tulovirtapulssin jännitepulssiksi ja muodostaa siitä logiikkatasoisen ajoituspulssin aikavälimittauspiirille. Kohinan minimoimisen lisäksi toinen suuri suunnitteluhaaste on minimoida ajoitusvirhe, jota syntyy vastaanotetun optisen tulosignaalin amplitudin vaihdellessa laajalla alueella. Työssä kehitettyjen vastaanotinkanavien yksi sovelluskohdetavoitteista on ollut autoteollisuudessa käytettävät etäisyysmittarit. Näissä tulosignaalin taso vaihtelee erittäin laajalla dynaamisella alueella, joka voi olla > 1:10 000, johtuen laajasta etäisyysmittausalueesta sekä kohteen heijastavuuden ja orientaation vaihteluista. Väitöskirjatyössä kehitettiin ja valmistettiin kaksi vastaanotin- ja ajoitusilmaisurakennetta. Piirit valmistettiin 0,35 μm BiCMOS- teknologialla, ja niiden toiminta varmistettiin mittauksilla. Ensimmäinen vastaanotinkanava-arkkitehtuuri perustuu kanavan tulossa tapahtuvaan unipolaari-bipolaari muutokseen ja sen jälkeiseen nollaylityskohdan ilmaisuun. Piirillä saavutettiin ±8 mm ajoitusvirhe 1:3000 dynaamisella alueella. Toinen vastaanotinkanava-arkkitehtuuri perustuu etureunanilmaisuun, jossa ajoitusvirhe korjataan aikatasossa mittaamalla samanaikaisesti ajoituspulssin paikka ja leveys. Ajoitusvirheenkorjausmenetelmän tärkeä ominaisuus on, että se toimii laajemmalla kuin vastaanottimen lineaarisella alueella (< 1:100). Etureunanilmaisuun ja pulssinleveyden korjaukseen perustuvalla vastaanotinkanavalla saavutettiin korjattu ajoitusvirhe ± 2–3 mm 1:100 000 dynaamisella alueella. Kanavan kaistanleveys oli 230 MHz ja tulon redusoitu virtakohina < 100 nArms. Signaalikohinasuhteella 10 laseretäisyysmittauksen kertamittaustarkkuudeksi mitattiin 120 ps (20 mm etäisyydessä). Väitöskirjatyön yhteydessä valmistettiin lisäksi kaksi prototyyppilasertutkaa, joilla varmistettiin vastaanotinelektroniikan toiminta laajalla > 1:10 000 dynaamisella tulopulssin amplitudin vaihtelualueella. Lasertutkan ajoitusvirheeksi mitattiin < ± 5 mm 1–55 m:n mittausalueella
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Pulsed time-of-flight"

1

Symposium, on Time-of-Flight Diffraction at Pulsed Neutron Sources (1993 Albuquerque N. M. ). Proceedings of the Symposium on Time-of-Flight Diffraction at Pulsed Neutron Sources: At Albuquerque Convention Center, Albuquerque, NM, May 22-28, 1993. Buffalo, NY: American Crystallographic Association, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jorgensen, James D., Y. D. Jorgensen, SYMPOSIUM ON TIME-OF-FLIGHT DIFFRACTION, and Arthur J. Schultz. Proceedings of the Symposium on Time-Of-Flight Diffraction at Pulsed Neutron Sciences (Transactions of the American Crystallographic Association). American Crystallographic Association, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Thompson, Steven Dane. Mixed clusters from the coexpansion of C2F6 and N2 in a pulsed, supersonic expansion cluster ion source and beam deflection time-of-flight mass spectrometer: A first application. 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Eland, John H. D., and Raimund Feifel. Introduction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198788980.003.0001.

Full text
Abstract:
After very brief historical notes, the basis of the TOF-PEPECO technique is explained and other techniques for spectra of doubly charged positive ions are described and compared with this modern method. The meaning of ionisation energies in the context of molecular double ionisation is discussed, with their relationship to electron orbital configurations. With the advent of photoelectron spectroscopy in the 1960s, new techniques allowed complete spectra of valence electron ionisations for each molecule to be revealed in a single measurement. The effects on the spectra of the different major pathways from starting molecules to final doubly ionised states are explained. Details of the experiments are given, including pulsed lamps, synchrotron radiation as light sources, and the magnetic bottle time-of-flight electron spectrometer.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Pulsed time-of-flight"

1

Kiyanagi, Yoshiaki, Takashi Kamiyama, Toshiyuki Nagata, and F. Hiraga. "Application of Spectroscopic Radiography Using Pulsed Neutron Time-of-Flight Method for Material Characterization." In Advanced Nondestructive Evaluation I, 1663–66. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-412-x.1663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Grachev, M. I., S. K. Esin, N. V. Kolmychkov, V. M. Lobashev, V. A. Matveev, V. G. Miroshnichenko, S. F. Sidorkin, and Yu Ya Stavissky. "Complex of Intensive Pulse Neutron Sources of Moscow Meson Factory for Time-of-Flight Experiments." In Nuclear Data for Science and Technology, 490–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-58113-7_140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dorozhovets, Mykhaylo, Olha Zahurska, and Zygmunt L. Warsza. "Method of Improving Accuracy of Measurement of the Acoustic Pulses Time-of-Flight Based on Linear Modulation of Period." In Challenges in Automation, Robotics and Measurement Techniques, 893–902. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29357-8_79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Namba, S., N. Hasegawa, M. Nishikino, M. Kishimoto, T. Kawachi, M. Tanaka, Y. Ochi, K. Nagashima, and K. Takiyama. "Time-of-Flight Measurements of Ion and Electron from Xenon Clusters Irradiated with a Soft X-Ray Laser Pulse." In Springer Proceedings in Physics, 453–59. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9924-3_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Neusser, H. J., and H. Krause. "Decay energetics of molecular clusters studied by multiphoton mass spectrometry and pulsed field threshold ionization." In Time-of-Flight Mass Spectrometry and its Applications, 211–32. Elsevier, 1994. http://dx.doi.org/10.1016/b978-0-444-81875-1.50014-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Martens, A., M. Kersemans, J. Degrieck, W. VanPaepegem, S. Delrue, and K. Van Den Abeele. "Time-Of-Flight recorded Pulsed Ultrasonic Polar Scan for elasticity characterization of composites." In Emerging Technologies in Non-Destructive Testing VI, 141–45. CRC Press, 2015. http://dx.doi.org/10.1201/b19381-22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Granse, G., S. Völlmar, A. Lenk, A. Rupp, and K. Rohr. "Modeling of laser induced plasma, spectroscopic and time of flight experiments in pulsed laser deposition." In Laser Ablation, 97–101. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82412-7.50021-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sekiguchi, Tetsuhiro, Yuji Baba, Iwao Shimoyama, and Krishna G. Nath. "Fragmentation pathways caused by soft X-ray irradiation: The detection of desorption products using a rotatable time-of-flight mass-spectrometer combined with pulsed synchrotron radiation." In Free Electron Lasers 2003, II—69—II—70. Elsevier, 2004. http://dx.doi.org/10.1016/b978-0-444-51727-2.50174-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bondarenko, P. V., P. G. Grant, and R. D. Macfarlane. "Pulse amplitude analysis: a new dimension in single ion time-of-flight mass spectrometry." In Time-of-Flight Mass Spectrometry and its Applications, 181–92. Elsevier, 1994. http://dx.doi.org/10.1016/b978-0-444-81875-1.50012-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kozerke, Sebastian, Redha Boubertakh, and Marc Miquel. "MR angiography." In The EACVI Textbook of Cardiovascular Magnetic Resonance, edited by Massimo Lombardi, Sven Plein, Steffen Petersen, Chiara Bucciarelli-Ducci, Emanuela R. Valsangiacomo Buechel, Cristina Basso, and Victor Ferrari, 34–37. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198779735.003.0007.

Full text
Abstract:
The appearance of blood on magnetic resonance (MR) images is directly linked to its flowing nature. The contrast mechanism relies on the time-of-flight mechanism. In spin echo sequences, the excited blood flows out before the echo is created, resulting in black blood images, whereas in gradient echo images, the rapid succession of radiofrequency pulses saturates stationary signals, while fresh blood continuously flows in, leading to bright blood images. This phenomenon can be exploited to create inflow or time-of-flight angiography. It is also possible to encode the movement by using gradients that create phase differences between stationary and moving tissues. This technique, known as phase contrast angiography, can be used to image the venous and arterial phases separately. It also forms the basics of blood flow quantification. Finally, it is possible to use gadolinium-based agents to acquire contrast-enhanced angiographies.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Pulsed time-of-flight"

1

Kurtti, Sami, and Juha Kostamovaara. "Pulse width time walk compensation method for a pulsed time-of-flight laser rangefinder." In 2009 IEEE Intrumentation and Measurement Technology Conference (I2MTC). IEEE, 2009. http://dx.doi.org/10.1109/imtc.2009.5168610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sondej, Tadeusz, and Ryszard Pelka. "Fuzzy calibration for pulsed time-of-flight laser rangefinder." In 2004 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA). IEEE, 2004. http://dx.doi.org/10.1109/cimsa.2004.4557941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gushenets, Vasily I., Alexey S. Bugaev, Efim M. Oks, Ady Hershcovitch, Timur V. Kulevoj, and Ian G. Brown. "Experimental Comparison of Time-of-Flight Mass-Analysis with Magnetic Mass-Analysis." In 2007 IEEE Pulsed Power Plasma Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/ppps.2007.4345518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Ruiqiang, and Yuesong Jiang. "Measurement method of time-of-flight in pulsed laser ranging." In International Symposium on Optoelectronic Technology and Application 2014, edited by Jurgen Czarske, Shulian Zhang, David Sampson, Wei Wang, and Yanbiao Liao. SPIE, 2014. http://dx.doi.org/10.1117/12.2068379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Jizhong, Shinan Lang, Qiang Wu, and Chuan Liu. "Material Recognition Based on a Pulsed Time-of-Flight Camera." In 2019 IEEE Symposium on Product Compliance Engineering - Asia (ISPCE-CN). IEEE, 2019. http://dx.doi.org/10.1109/ispce-cn48734.2019.8958633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kostamovaara, Juha T., Kari E. Maatta, and Risto A. Myllylae. "Pulsed time-of-flight laser range-finding techniques for industrial applications." In Robotics - DL tentative, edited by Donald J. Svetkoff. SPIE, 1992. http://dx.doi.org/10.1117/12.57988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kostamovaara, Juha T., Antti Maentyniemi, Pasi J. M. Palojaervi, Tero Peltola, Tarmo Ruotsalainen, and Elvi Raeisaenen-Ruotsalainen. "Integrated chip set for a pulsed time-of-flight laser radar." In Symposium on Integrated Optics, edited by Aland K. Chin, Niloy K. Dutta, Kurt J. Linden, and S. C. Wang. SPIE, 2001. http://dx.doi.org/10.1117/12.426895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zheng, Ruitong, and Guanhao Wu. "The constant fraction discriminator in pulsed time-of-flight laser rangefinding." In Photonics and Optoelectronics Meetings 2011, edited by Pierre Galarneau, Xu Liu, and Pengcheng Li. SPIE, 2011. http://dx.doi.org/10.1117/12.916961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Maatta, Kari E., Juha T. Kostamovaara, and Risto A. Myllylae. "Measurement of hot surfaces by pulsed time-of-flight laser radar techniques." In The Hague '90, 12-16 April, edited by Donald W. Braggins. SPIE, 1990. http://dx.doi.org/10.1117/12.20246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jiang, Yan, Ruqing Liu, and Jingguo Zhu. "Integrated multi-channel receiver for a pulsed time-of-flight laser radar." In Selected Proceedings of the Photoelectronic Technology Committee Conferences held August-October 2014, edited by Xiangwan Du, Dianyuan Fan, Jialing Le, Yueguang Lv, Jianquan Yao, Weimin Bao, and Lijun Wang. SPIE, 2015. http://dx.doi.org/10.1117/12.2178459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography