To see the other types of publications on this topic, follow the link: Pyramidal inversion.

Journal articles on the topic 'Pyramidal inversion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Pyramidal inversion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Damewood, James R., and Christopher M. Hadad. "Pyramidal inversion in silyl anions." Journal of Physical Chemistry 92, no. 1 (1988): 33–36. http://dx.doi.org/10.1021/j100312a011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Remmele, T., M. Albrecht, K. Irmscher, R. Fornari, and M. Straßburg. "Pyramidal inversion domain boundaries revisited." Applied Physics Letters 99, no. 14 (2011): 141913. http://dx.doi.org/10.1063/1.3644132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rogers, Jimmy R., Timothy P. S. Wagner, and Dennis S. Marynick. "Metal-Assisted Pyramidal Inversion in Metal-Phosphido Complexes." Inorganic Chemistry 33, no. 14 (1994): 3104–10. http://dx.doi.org/10.1021/ic00092a015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Davies, Mark W., Michael Shipman, James H. R. Tucker, and Tiffany R. Walsh. "Control of Pyramidal Inversion Rates by Redox Switching." Journal of the American Chemical Society 128, no. 44 (2006): 14260–61. http://dx.doi.org/10.1021/ja065325f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kuhn, Norbert, and Hans Schumann. "Pyramidal inversion in cydopentadienyliron derivatives of dimethyl chalcogenides." Inorganica Chimica Acta 116, no. 1 (1986): L11—L12. http://dx.doi.org/10.1016/s0020-1693(00)84602-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gonzalo, Isabel, and Miguel A. Antón. "Entangling non planar molecules via inversion doublet transition with negligible spontaneous emission." Physical Chemistry Chemical Physics 21, no. 20 (2019): 10523–31. http://dx.doi.org/10.1039/c8cp07764a.

Full text
Abstract:
We analyze theoretically the entanglement between two non-planar and light identical molecules (e.g., pyramidal NH<sub>3</sub>) that present inversion doubling due to the internal spatial inversion of their nuclear conformations by tunneling.
APA, Harvard, Vancouver, ISO, and other styles
7

Nesterova, E. G., R. M. Minyaev, and V. I. Minkin. "Inversion of Pyramidal Configuration of Pnictogenic Center in Diazapnictolenes." Russian Journal of Organic Chemistry 39, no. 8 (2003): 1167–73. http://dx.doi.org/10.1023/b:rujo.0000010188.03569.8f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Damewood, James R. "Pyramidal inversion and electron delocalization in the silacyclopentadienyl anion." Journal of Organic Chemistry 51, no. 25 (1986): 5028–29. http://dx.doi.org/10.1021/jo00375a058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hough, Alexander J., Ivan Prokes, James H. R. Tucker, Michael Shipman, and Tiffany R. Walsh. "Photochemical control of molecular motion associated with pyramidal inversion." Chemical Communications 49, no. 59 (2013): 6683. http://dx.doi.org/10.1039/c3cc43036g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Boldyrev, A. I., and O. P. Charkin. "Inversion of pyramidal and tetrahedral molecules AX3 and AX4." Journal of Structural Chemistry 26, no. 3 (1985): 451–75. http://dx.doi.org/10.1007/bf00749387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lik, Artur, Denis Kargin, Stefan Isenberg, Zsolt Kelemen, Rudolf Pietschnig, and Holger Helten. "PBP bridged [3]ferrocenophane: a bisphosphanylborane with a redox trigger." Chemical Communications 54, no. 20 (2018): 2471–74. http://dx.doi.org/10.1039/c7cc09759j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Werstiuk, Nick Henry, and Sujit Banerjee. "Towards a complete account of diastereotopic hydrogen isotope exchange of carbon acids. III. Base-catalyzed exchange of sulfoxides. Evidence for exchange by inversion." Canadian Journal of Chemistry 63, no. 8 (1985): 2100–2109. http://dx.doi.org/10.1139/v85-346.

Full text
Abstract:
The rate constants for deuteroxide and hydroxide catalyzed H → D and D → H exchange of benzodihydrothiophene oxide (1a) and several of its deuterated analogs 1b, 1c, and 1d at 30.00 ± 0.05 °C are reported along with the rate constants for D → H exchange of deuterated benzyl methyl sulfoxides 2b and 2c. Application of the steady-state assumption to schemes involving equilibrating pyramidal anions yield equations which are used to fit experimentally determined (kf/ks)H → D and (kf/ks)D → H ratios. The analysis supports our view that exchange of the diastereotopic protons (deuterons) occurs by in
APA, Harvard, Vancouver, ISO, and other styles
13

Ellis, Carol A., Seik Weng Ng, Edward R. T. Tiekink та James L. Wardell. "μ-1,4-Diazabicyclo[2.2.2]octane-κ2 N:N′-bis[bis(O,O′-dicyclohexyl dithiophosphato-κ2 S,S′)cadmium(II)]". Acta Crystallographica Section E Structure Reports Online 63, № 3 (2007): m806—m807. http://dx.doi.org/10.1107/s1600536807007155.

Full text
Abstract:
The dinuclear title molecule, [Cd2(C12H22O2PS2)4(C6H12N2)], is disordered and located on a centre of inversion, and features a coordination geometry intermediate between square-pyramidal and trigonal-bipyramidal.
APA, Harvard, Vancouver, ISO, and other styles
14

Jensen, Per, and Manfred Winnewisser. "Prediction of higher inversion energy levels for isocyanamide H2NNC." Collection of Czechoslovak Chemical Communications 51, no. 7 (1986): 1373–81. http://dx.doi.org/10.1135/cccc19861373.

Full text
Abstract:
The lowest inversion energies of the pyramidal molecule isocyanamide H2NNC have been predicted using the semirigid invertor model. The calculation was based on an ab initio inversion potential function which we have refined by fitting it to the experimental data available for H2NNC. It is hoped that the predicted energies will make it possible to assign further transitions of H2NNC.
APA, Harvard, Vancouver, ISO, and other styles
15

Santiago, Régis T., and Roberto L. A. Haiduke. "Relativistic effects on inversion barriers of pyramidal group 15 hydrides." International Journal of Quantum Chemistry 118, no. 14 (2018): e25585. http://dx.doi.org/10.1002/qua.25585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Špirko, Vladimír, Svatopluk Civiš, Stanislav Beran, Petr Čársky, and Jürgen Fabian. "Reduced double-minimum potential curves for XY3 pyramidal molecules." Collection of Czechoslovak Chemical Communications 50, no. 7 (1985): 1519–36. http://dx.doi.org/10.1135/cccc19851519.

Full text
Abstract:
The reduced potential curve (RPC) method used by Jenc and Pliva for studying the diatomic potentials is adapted for three-parameter studies of the inversional double-minimum potential functions of XY3 pyramidal molecules. Reduced double-minimum potential curves (RDMPC's) of the first, second and third row hydrides (CH3-, NH3, OH3+; SiH3-, PH3, SH3+; GeH3-, AsH3, SeH3+) are constructed using CNDO/2 and ab initio MBPT(2) theoretical potentials. The theoretical RDMPC's corresponding to a group of isoelectronic hydrides coincide to a high degree of approximation, so that they can be represented by
APA, Harvard, Vancouver, ISO, and other styles
17

Meng, Lin, Lin Yan Yang та Jing Min Shi. "Tetra-μ-acetato-κ8O:O′-bis[(N2,N2-dimethylpyrazin-2-amine-κN4)copper(II)]". Acta Crystallographica Section E Structure Reports Online 65, № 6 (2009): m646. http://dx.doi.org/10.1107/s160053680901719x.

Full text
Abstract:
The title binuclear complex, [Cu2(C2H3O2)4(C6H9N3)2], lies on an inversion center with four acetate ligands bridging two CuIIions and two monodentateN,N-dimethylpyrazine-2-amine ligands coordinating each CuIIionviaN atoms, forming slightly distorted square-pyramidal environments.
APA, Harvard, Vancouver, ISO, and other styles
18

Hoge, Garrett. "Stereoselective Cyclization and Pyramidal Inversion Strategies for P-Chirogenic Phospholane Synthesis." Journal of the American Chemical Society 126, no. 32 (2004): 9920–21. http://dx.doi.org/10.1021/ja048079l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kamigata, Nobumasa, Hideo Taka, Ayumi Matsuhisa, and Toshio Shimizu. "Kinetic studies on the pyramidal inversion of optically active selenonium imides." Journal of Physical Organic Chemistry 8, no. 3 (1995): 139–42. http://dx.doi.org/10.1002/poc.610080303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Fueno, Hiroyuki, Shigeru Ikuta, Haruo Matsuyama, and Nobumasa Kamigata. "Pyramidal inversion energies of hypervalent selenoxides. An ab initio MO study." Journal of the Chemical Society, Perkin Transactions 2, no. 11 (1992): 1925. http://dx.doi.org/10.1039/p29920001925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Shields, Mason R., Ilia A. Guzei, and James G. Goll. "Crystal structure of nitrido[5,10,15,20-tetrakis(4-methylphenyl)porphyrinato]manganese(V)." Acta Crystallographica Section E Structure Reports Online 70, no. 10 (2014): 242–45. http://dx.doi.org/10.1107/s1600536814020558.

Full text
Abstract:
The title compound, [Mn(C48H36N4)(N)], is a manganese(V) complex with the transition metal in a square-pyramidal coordination geometry and a nitride as the axial ligand. The complex resides on a crystallographic inversion center and only one half of it is symmetry independent. The MnVatom and the nitride N atom are equally disordered across the inversion center. The Mn[triple-bond]N distance is 1.516 (4) Å. The MnVatom is displaced from the plane defined by the four equatorial nitrogen atoms toward the nitride ligand by 0.3162 (6) Å.
APA, Harvard, Vancouver, ISO, and other styles
22

N. Hughes, Alan, and Kenneth E. Edgecombe. "Optimized Geometries and Pyramidal Inversion in s3l3-Phosphole: A Brief Theoretical Treatment." HETEROCYCLES 33, no. 2 (1992): 563. http://dx.doi.org/10.3987/com-91-s25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Machida, Takashi, Takeshi Iwasa, Tetsuya Taketsugu, Kazuki Sada, and Kenta Kokado. "Photoinduced Pyramidal Inversion Behavior of Phosphanes Involved with Aggregation‐Induced Emission Behavior." Chemistry – A European Journal 26, no. 36 (2020): 7965. http://dx.doi.org/10.1002/chem.202002358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Machida, Takashi, Takeshi Iwasa, Tetsuya Taketsugu, Kazuki Sada, and Kenta Kokado. "Photoinduced Pyramidal Inversion Behavior of Phosphanes Involved with Aggregation‐Induced Emission Behavior." Chemistry – A European Journal 26, no. 36 (2020): 8028–34. http://dx.doi.org/10.1002/chem.202000264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Marom, Hili, P. Ulrich Biedermann, and Israel Agranat. "Pyramidal inversion mechanism of simple chiral and achiral sulfoxides: A theoretical study." Chirality 19, no. 7 (2007): 559–69. http://dx.doi.org/10.1002/chir.20417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Wiegrefe, Andreas, Thomas Brinkmann, and Horst C. Uzar. "Effect of solvent on the inversion of pyramidal sulfonium and selenonium compounds." Journal of Physical Organic Chemistry 14, no. 4 (2001): 205–9. http://dx.doi.org/10.1002/poc.352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Bohle, D. Scott, and Yuxuan Gu. "Facile dimethylarsenic exchange and pyramidal inversion in its cysteine and glutathione adducts." Organic & Biomolecular Chemistry 11, no. 16 (2013): 2578. http://dx.doi.org/10.1039/c3ob40268a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Izod, Keith, Ewan R. Clark, and John Stewart. "Edge- versus Vertex-Inversion at Trigonal Pyramidal Ge(II) Centers—A New Aromatic Anchimerically Assisted Edge-Inversion Mechanism." Inorganic Chemistry 50, no. 8 (2011): 3651–61. http://dx.doi.org/10.1021/ic200012v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Forsyth, David A., Weiyi Zhang, and John A. Hanley. "Nitrogen Inversion Barrier of 2-Methyl-2-azabicyclo[2.2.1]heptane. The Role of Torsional Strain in Pyramidal Inversion." Journal of Organic Chemistry 61, no. 4 (1996): 1284–89. http://dx.doi.org/10.1021/jo951940i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zhao, Ning. "Bis[μ-2-({2-[2-(2-chlorophenoxy)-1-oxidoethylidene]hydrazinylidene}methyl)phenolato]bis[pyridinecopper(II)] methanol disolvate". Acta Crystallographica Section C Crystal Structure Communications 69, № 4 (2013): 348–50. http://dx.doi.org/10.1107/s0108270113005118.

Full text
Abstract:
In the title compound, [Cu2(C15H11ClN2O3)2(C5H5N)2]·2CH3OH, the coordination geometry of the metal centre can be described as square pyramidal. Pairs of pentacoordinated metal centres are bridged by symmetry-related phenolate O atoms about the inversion centre at (1 \over 2, 0, 1 \over 2), resulting in a binuclear metal clusterviaedge-sharing.
APA, Harvard, Vancouver, ISO, and other styles
31

Lungu, Mihai, and Romulus Lungu. "Adaptive Neural Network-Based Satellite Attitude Control by Using the Dynamic Inversion Technique and a VSCMG Pyramidal Cluster." Complexity 2019 (January 6, 2019): 1–16. http://dx.doi.org/10.1155/2019/1645042.

Full text
Abstract:
The paper presents an adaptive system for the control of small satellites’ attitude by using a pyramidal cluster of four variable-speed control moment gyros as actuators. Starting from the dynamic model of the pyramidal cluster, an adaptive control law is designed by means of the dynamic inversion method and a feed-forward neural network-based nonlinear subsystem; the control law has a proportional-integrator component (for the control of the reduced-order linear subsystem) and an adaptive component (for the compensation of the approximation error associated with the function describing the dy
APA, Harvard, Vancouver, ISO, and other styles
32

Jia, Zhi-Fang, Jian-Fang Ma, Lai-Ping Zhang та Ting-Ting Han. "(μ-3,4:9,10:17,18:23,24-Tetrabenzo-1,12,15,26-tetraaza-5,8,19,22-tetraoxacyclooctacosane-κ4 N 1,N 26:N 12,N 15)bis[aquadichloridocopper(II)]". Acta Crystallographica Section E Structure Reports Online 63, № 11 (2007): m2652—m2653. http://dx.doi.org/10.1107/s1600536807047678.

Full text
Abstract:
In the title compound, [Cu2Cl4(C36H44N4O4)(H2O)2], the dinuclear complex molecule lies on an inversion centre. Each CuII atom shows a tetragonal–pyramidal coordination geometry formed by two Cl atoms, two N atoms from the macrocyclic ligand and one water molecule. The coordinated water molecules are hydrogen-bonded to the Cl atoms in adjacent molecules, generating a one-dimensional structure.
APA, Harvard, Vancouver, ISO, and other styles
33

Reichl, Kyle D., Daniel H. Ess, and Alexander T. Radosevich. "Catalyzing Pyramidal Inversion: Configurational Lability of P-Stereogenic Phosphines via Single Electron Oxidation." Journal of the American Chemical Society 135, no. 25 (2013): 9354–57. http://dx.doi.org/10.1021/ja404943x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Srivastava, Alaka, Vandana Srivastava, Shiva M. Verma, and E. Subramanian. "Restricted Inversion of Pyramidal Nitrogen through .pi.-Electronic Interaction in an Acyclic System." Journal of Organic Chemistry 59, no. 13 (1994): 3560–63. http://dx.doi.org/10.1021/jo00092a012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Denisov, G. S., V. A. Gindin, N. S. Golubev, A. I. Koltsov, S. N. Smirnov, and M. A. And L. Rospenk Koll Sobczyk. "Pyramidal nitrogen inversion hindered by a strong intramolecular hydrogén bond in 2-diethylaminomethylphenols." Magnetic Resonance in Chemistry 31, no. 11 (1993): 1034–37. http://dx.doi.org/10.1002/mrc.1260311116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kuznetsov, V. V. "Simulation of Pyramidal Inversion of Nitrogen in Tetrahydro-1,3-Oxazines in Polar Medium." Journal of Structural Chemistry 59, no. 6 (2018): 1374–80. http://dx.doi.org/10.1134/s0022476618060173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Pramanik, Avijit, Frank R. Fronczek, Ramaiyer Venkatraman та Md Alamgir Hossain. "Hexa-μ-acetato-1:2κ4O,O′;1:2κ2O:O;2:3κ4O,O′;2:3κ2O:O-bis(4,4′-dimethyl-2,2′-bipyridine)-1κ2N,N′;3κ2N,N′-2-calcium-1,3-dizinc". Acta Crystallographica Section E Structure Reports Online 69, № 12 (2013): m643—m644. http://dx.doi.org/10.1107/s1600536813030122.

Full text
Abstract:
In the centrosymmetric trinuclear ZnII...CaII...ZnIItitle complex, [CaZn2(CH3COO)6(C12H12N2)2], the CaIIion lies on an inversion centre and is octahedrally coordinated by six acetate O atoms. The ZnIIion is coordinated by two N atoms from a bidentate dimethylbipyridine ligand and three O atoms from acetate ligands bridging to the CaIIion, leading to a distorted square-pyramidal coordination sphere. The Zn...Ca distance is 3.4668 (5) Å.
APA, Harvard, Vancouver, ISO, and other styles
38

Chetioui, Souheyla, Noudjoud Hamdouni, Christian G. Bochet, Jean-Pierre Djukic та Corinne Bailly. "Crystal structure of bis{μ-1-[(E)-(3-methoxyphenyl)diazenyl]naphthalen-2-olato-κ3N2,O:O}bis({1-[(E)-(3-methoxyphenyl)diazenyl]naphthalen-2-olato-κ2N2,O}copper(II))". Acta Crystallographica Section E Crystallographic Communications 71, № 12 (2015): m211—m212. http://dx.doi.org/10.1107/s2056989015020824.

Full text
Abstract:
The title dinuclear CuIIcomplex, [Cu2(C17H13N2O2)4], is located on an inversion centre. The CuIIatoms are each five-coordinated in a distorted square-pyramidal geometry by two N atoms and two O atoms from two bidentate ligands and one bridging O atom from another ligand. In the dinuclear complex, the Cu...Cu separation is 3.366 (3) Å. In the crystal, complex molecules are linkedviaweak C—H...O hydrogen bonds, forming a layer parallel to (-101).
APA, Harvard, Vancouver, ISO, and other styles
39

Gao, Shan, та Seik Weng Ng. "(μ-Naphthalene-1,5-disulfonato-κ2 O 1:O 5)bis[triaqua(glycinato-κ2 N,O)copper(II)]". Acta Crystallographica Section E Structure Reports Online 68, № 6 (2012): m730. http://dx.doi.org/10.1107/s1600536812019332.

Full text
Abstract:
In the title compound, [Cu2(C2H4NO2)2(C10H6O6S2)(H2O)6], the naphthalenedisulfonate group lies on a center of inversion and bridges two glycinate-chelated CuII atoms. The CuII atom exists in a CuNO4 square-pyramidal geometry that is distorted towards an octahedron owing to a long Cu—Osulfonate bond [2.636 (2) Å]. In the crystal, extensive N—H...O and O—H...O hydrogen bonds link adjacent molecules into a three-dimensional network
APA, Harvard, Vancouver, ISO, and other styles
40

Cerón, Margarita, Lidia Meléndez, Sylvain Bernès, Maribel Arroyo, and Armando Ramírez-Monroy. "A Dimorphic Os(IV) Complex with Pyramidal Sulfur Inversion in a Sulfanyl Chelating Ligand." Journal of Chemical Crystallography 42, no. 11 (2012): 1119–23. http://dx.doi.org/10.1007/s10870-012-0365-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Urban, Š. "Effective rotational Hamiltonians of pyramidal XY3 molecules with the inversion splittings of energy levels." Journal of Molecular Spectroscopy 131, no. 1 (1988): 133–53. http://dx.doi.org/10.1016/0022-2852(88)90113-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Vineetha, M. C., M. Sithambaresan, Jinsa Mary Jacob та M. R. Prathapachandra Kurup. "Di-μ-acetato-κ4O:O-bis({N′-[(E)-phenyl(pyridin-2-yl-κN)methylidene]benzohydrazidato-κ2N′,O}copper(II))". Acta Crystallographica Section E Structure Reports Online 68, № 8 (2012): m1086—m1087. http://dx.doi.org/10.1107/s1600536812031467.

Full text
Abstract:
The binuclear molecule of the title compound, [Cu2(C19H14N3O)2(CH3COO)2], resides on a crystallographic inversion centre. It has anEconformation with respect to the azomethine double bond and aZconformation about the amide C=N bond. The CuIIatom has a slightly distorted square-pyramidal coordination geometry. The crystal packing involves intermolecular C—H...O, C—H...N and C—H...π and two types of π–π interactions, with centroid–centroid distances of 3.9958 (10) and 3.7016 (13) Å.
APA, Harvard, Vancouver, ISO, and other styles
43

Rusanova, Julia A., Dmytro Bederak та Vladimir N. Kokozay. "Bis{μ-2,2′-[(3,4-dithiahexane-1,6-diyl)bis(nitrilomethanylylidene)]bis(4-bromophenolato)-κ4O,N,N′,O′}dicopper(II)". Acta Crystallographica Section E Crystallographic Communications 74, № 1 (2018): 38–40. http://dx.doi.org/10.1107/s2056989017017790.

Full text
Abstract:
The crystal structure of the title compound, [Cu2(C18H12Br2N4O2S2)2], consists of binuclear complex units which lie across inversion centres and are connected by weak Cu—O coordination bonds forming chains along thebaxis. The CuIIion is five-coordinated by two N atoms and two O atoms of the chelating ligand and one symmetry-related O atom forming a square-pyramidal coordination geometry. In the crystal, short S...Br contacts connect neighbouring chains into a two-dimensional network parallel to (101).
APA, Harvard, Vancouver, ISO, and other styles
44

Bugenhagen, Bernhard Eberhard Christian, та Marc Heinrich Prosenc. "Crystal structure of bis(μ2-4-tert-butyl-2-formylphenolato)-1:2κ3O1,O2:O1;3:4κ3O1,O2:O1-bis(4-tert-butyl-2-formylphenolato)-2κ2O1,O2;4κ2O1,O2-di-μ3-methoxido-1:2:3κ3O;1:3:4κ3O-di-μ2-methoxido-1:4κ2O;2:3κ2O-tetracopper(II)". Acta Crystallographica Section E Crystallographic Communications 71, № 3 (2015): 324–26. http://dx.doi.org/10.1107/s205698901500376x.

Full text
Abstract:
The structure of the title compound, [Cu4(CH3O)4(C11H13O2)4], consists of dimeric dinuclear copper(II) complexes oriented around a centre of inversion. Within each dinuclear fragment, the two CuIIatoms are in a distorted square-planar coordination sphere. Two neighbouring fragments are linked by four apical Cu—O contacts, yielding an overall square-pyramidal coordination environment for each of the four CuIIatoms. The molecules are arranged in layers parallel to (101). Non-classical C—H...O hydrogen-bonding interactions are observed between the layers.
APA, Harvard, Vancouver, ISO, and other styles
45

Luo, Mei, Yong-Hua Huang та Jing-Cheng Zhang. "Tetrakis[μ3-2-(piperidin-1-yl)ethanolato]tetrakis[chloridocopper(II)]". Acta Crystallographica Section E Structure Reports Online 70, № 5 (2014): m194. http://dx.doi.org/10.1107/s1600536814009052.

Full text
Abstract:
In the title tetranuclear compound, [Cu4(C7H14NO)4Cl4], each CuIIcation isN,O-chelated by a piperidineethanolate anion and coordinated by a Cl−anion and two O atoms from neighboring piperidineethanolate anions in a distorted NO3Cl square-pyramidal geometry. The deprotonated hydroxyl groups of the piperidineethanolate anions bridge CuIIcations, forming the tetranuclear complex. All piperidine rings display a chair conformation. In the crystal, there are no significant intermolecular interactions present. The crystal studied was an inversion twin refined with a minor component of 0.18 (5).
APA, Harvard, Vancouver, ISO, and other styles
46

Bruda, Sandra, Mark M. Turnbull та Jan L. Wikaira. "Aqua(azido)[N-(pyridin-2-ylcarbonyl)pyridine-2-carboxamido-κ3N,N′,N′′]copper(II)". Acta Crystallographica Section E Structure Reports Online 69, № 11 (2013): m598—m599. http://dx.doi.org/10.1107/s1600536813027499.

Full text
Abstract:
The title compound, [Cu(C12H8N3O2)(N3)(H2O)], was formed by the air oxidation of 2-(aminomethyl)pyridine in 95% ethanol in the presence of copper(II) nitrate and sodium azide with condensation of the resulting picolinamide molecules to generate the imide moiety. The CuIIion has a square-pyramidal coordination sphere, the basal plane being occupied by four N atoms [two pyridine (py) N atoms, the imide N atom and an azide N atom] in a nearly planar array [mean deviation = 0.048 (6) Å] with the CuIIion displaced slightly from the plane [0.167 (5) Å] toward the fifth ligand. The apical position is
APA, Harvard, Vancouver, ISO, and other styles
47

Bussey, Katherine A., Annie R. Cavalier, Margaret E. Mraz та ін. "Crystal structure of [bis(2-aminoethyl-κN)(2-{[4-(trifluoromethyl)benzylidene]amino}ethyl)amine-κN]dichloridocopper(II)". Acta Crystallographica Section E Crystallographic Communications 72, № 1 (2016): 83–86. http://dx.doi.org/10.1107/s2056989015024147.

Full text
Abstract:
The CuIIatom in the title compound, [CuCl2(C14H21F3N4)], adopts a coordination geometry that is between distorted square-based pyramidal and very Jahn–Teller-elongated octahedral. It is coordinated by three N atoms from the bis(2-aminoethyl)(2-{[4-(trifluoromethyl)benzylidene]amino}ethyl)amine and two chloride ligands. The two crystallographically unique copper complexes present in the asymmetric unit exhibit noticeable differences in the coordination bond lengths. Considering the CuIIatoms as having square-pyramidal geometry, the basal Cu—Cl bond lengths are typical [2.2701 (12) and 2.2777 (1
APA, Harvard, Vancouver, ISO, and other styles
48

Kuznetsova, M. V., and V. V. Kuznetsov. "Theoretical estimation of the barrier to pyramidal inversion of ammonia and trimethylamine encapsulated in fullerenes." Russian Journal of Organic Chemistry 49, no. 12 (2013): 1845–47. http://dx.doi.org/10.1134/s1070428013120257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Riggs, NV, and L. Radom. "Ab initio Studies on Hydrazines: 1H-Pyrrol-1-amine (N-Aminopyrrole)." Australian Journal of Chemistry 41, no. 3 (1988): 397. http://dx.doi.org/10.1071/ch9880397.

Full text
Abstract:
The geometries of four stationary structures of 1H-pyrrol-1-amine have been optimized with the 3-21G and 3-21G(N*) basis sets. The lowest- energy and only equilibrium structure is the 'perpendicular' CS form (4) in which a pyramidal NH2 group is bisected by the plane of the pyrrole ring. The transition structure for inversion at the NH2 group is the perpendicular C2V form (2). After zero-point vibrational -energy corrections, it lies 24.5 kJ mol-1 [3-21G(N*)] above (4). The transition structure for rotation about the N-NH2 bond is the 'parallel' CS form (3) in which a plane of symmetry bisects
APA, Harvard, Vancouver, ISO, and other styles
50

Kireenko, Marina M., Kirill V. Zaitsev, Sergey S. Karlov, Mikhail P. Egorov та Andrei V. Churakov. "Crystal structure of a mixed-valence μ-oxide Sn12cluster". Acta Crystallographica Section E Structure Reports Online 70, № 11 (2014): m378—m379. http://dx.doi.org/10.1107/s1600536814023460.

Full text
Abstract:
The mixed-valence μ-oxide Sn12cluster, decacarbonyltetra-μ4-oxido-hexa-μ3-oxido-tetrakis[μ-2,2′-(pyridine-2,6-diyl)bis(1,1-diphenylethanolato)]decatin(II)ditin(IV)dimolybdenum(O)(2Mo—Sn) toluene heptasolvate, [Mo2Sn12(C33H27NO2)4O10(CO)10]·7C7H8, has a crystallographically imposed inversion centre. The asymmetric unit also contains three and a half toluene solvent molecules, one of which is disordered about a centre of symmetry. The complex molecule comprises six distinct Sn atom species with four different coordination numbers, namely 3, 4, 5, and 6. The SnIIatoms forming the central Sn10O10c
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!