Dissertations / Theses on the topic 'Pyrimidines – Metabolism'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Pyrimidines – Metabolism.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ibrahim, Mohamed M. "Pyrimidine Metabolism in Rhizobium: Physiological Aspects of Pyrimidine Salvage." Thesis, University of North Texas, 1989. https://digital.library.unt.edu/ark:/67531/metadc330907/.
Full textHughes, Lee E. (Lee Everette). "Pyrimidine Metabolism in Streptomyces griseus." Thesis, University of North Texas, 1994. https://digital.library.unt.edu/ark:/67531/metadc278710/.
Full textPatel, Monal V. "The regulatory roles of PyrR and Crc in pyrimidine metabolism in Pseudomonas aeruginosa." Thesis, University of North Texas, 2001. https://digital.library.unt.edu/ark:/67531/metadc2875/.
Full textBlack, Duncan Arthur. "Aspects of purine and pyrimidine metabolism." Doctoral thesis, University of Cape Town, 1989. http://hdl.handle.net/11427/26590.
Full textScott, Allelia Worrall. "Pyrimidine Nucleoside Metabolism in Pseudomonads and Enteric Bacteria." Thesis, University of North Texas, 1991. https://digital.library.unt.edu/ark:/67531/metadc500941/.
Full textFarajallah, Azizeh M. "Focused chemical libraries targeting pyrimidine metabolism in Plasmodium falciparum /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/8652.
Full textBrichta, Dayna Michelle. "Construction of a Pseudomonas aeruginosa Dihydroorotase Mutant and the Discovery of a Novel Link between Pyrimidine Biosynthetic Intermediates and the Ability to Produce Virulence Factors." Thesis, University of North Texas, 2003. https://digital.library.unt.edu/ark:/67531/metadc4344/.
Full textLee, Yick-Shun. "Pyrimidine Metabolism in Bacteria: Physiological Properties of Nucleoside Hydrolase and Uridine Kinase." Thesis, University of North Texas, 1991. https://digital.library.unt.edu/ark:/67531/metadc798309/.
Full textKumar, Alan P. "Structure-Function Studies on Aspartate Transcarbamoylase and Regulation of Pyrimidine Biosynthesis by a Positive Activator Protein, PyrR in Pseudomonas putida." Thesis, University of North Texas, 2003. https://digital.library.unt.edu/ark:/67531/metadc4362/.
Full textLéger, Dominique. "L'aspartate transcarbamylase, enzyme clef de la regulation du metabolisme des pyrimidines." Paris 6, 1987. http://www.theses.fr/1987PA066181.
Full textRodriguez, Rodriguez Mauricio. "Pyrimidine nucleotide de novo biosynthesis as a model of metabolic control." Texas A&M University, 2005. http://hdl.handle.net/1969.1/4425.
Full textTuran, Y. "Pyrimidine primary and secondary metabolism in plants." Thesis, Swansea University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.639271.
Full textAli, Juma Ahmed Mohmed. "Pyrimidine salvage and metabolism in kinetoplastid parasites." Thesis, University of Glasgow, 2013. http://theses.gla.ac.uk/4664/.
Full textPERIGNON, JEAN-LOUIS. "Metabolisme des pyrimidines dans les cellules lymphoides humaines." Paris 6, 1987. http://www.theses.fr/1987PA066799.
Full textEguae, Samuel Iyamu. "Pyrimidine nucleotide metabolism in Rhizobium meliloti: purification of aspartate transcarbamoylase from a pyrimidine auxotroph." Thesis, University of North Texas, 1990. https://digital.library.unt.edu/ark:/67531/metadc332674/.
Full textFasoli, Marco Oldo. "Pyrimidine transport and salvage metabolism in pathogenic Candida." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315023.
Full textStewart, John E. B. (John Edward Bakos). "Characterization of Aspartate Transcarbamoylase in the Archaebacterium Methanococcus Jannaschii." Thesis, University of North Texas, 1996. https://digital.library.unt.edu/ark:/67531/metadc935724/.
Full textVickrey, John F. (John Fredrick) 1959. "Isolation and Characterization of the Operon Containing Aspartate Transcarbamoylase and Dihydroorotase from Pseudomonas aeruginosa." Thesis, University of North Texas, 1993. https://digital.library.unt.edu/ark:/67531/metadc278859/.
Full textAsFour, Hani. "Effector Response of the Aspartate Transcarbamoylase From Wild Type Pseudomonas Putida and a Mutant with 11 Amino Acids Deleted at the N-terminus of PyrB." Thesis, University of North Texas, 2002. https://digital.library.unt.edu/ark:/67531/metadc3163/.
Full textMasson, Anne. "Etude genetique, physiologique et biochimique du metabolisme des pyrimidines chez lactobacillus plantarum." Université Louis Pasteur (Strasbourg) (1971-2008), 1992. http://www.theses.fr/1992STR13189.
Full textHammerstein, Heidi Carol. "Isolation of a Pseudomonas aeruginosa Aspartate Transcarbamoylase Mutant and the Investigation of Its Growth Characteristics, Pyrimidine Biosynthetic Enzyme Activities, and Virulence Factor Production." Thesis, University of North Texas, 2004. https://digital.library.unt.edu/ark:/67531/metadc4704/.
Full textFields, Christopher J. "Comparative biochemistry and genetic analysis of nucleoside hydrolase in Escherichia coli, Pseudomonas aeruginosa, and Pseudomonas fluorescens." Thesis, University of North Texas, 2002. https://digital.library.unt.edu/ark:/67531/metadc3290/.
Full textHassan, H. F. "Purine and pyrimidine metabolism of Leishmania mexicana mexicana and other parasitic protozoa." Thesis, University of Glasgow, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234859.
Full textKim, Hyunju. "Multiple Activities of Aspartate Transcarbamoylase in Burkholderia cepacia: Requirement for an Active Dihydroorotase for Assembly into the Dodecameric Holoenzyme." Thesis, University of North Texas, 2010. https://digital.library.unt.edu/ark:/67531/metadc33176/.
Full textWehelie, Rahma. "Mycoplasma pyrimidine deoxynucleotide biosynthesis : molecular characterization of a new family flavin-dependent thymidylate synthase /." Uppsala : Dept. of Molecular Biosciences, Swedish University of Agricultural Sciences, 2006. http://epsilon.slu.se/200676.pdf.
Full textLinscott, Andrea J. (Andrea Jane). "Regulatory Divergence of Aspartate Transcarbamoylase from the Pseudomonads." Thesis, University of North Texas, 1996. https://digital.library.unt.edu/ark:/67531/metadc277625/.
Full textBarron, Vincent N. (Vincent Neal). "Comparison of Aspartate Transcarbamoylase and Pyrimidine Salvage in Sporosarcina urea, Sprolactobacillus inulinus, Lactobacillus fermentum, and Micrococcus luteus." Thesis, University of North Texas, 1994. https://digital.library.unt.edu/ark:/67531/metadc278938/.
Full textBARDOT, VALERIE. "Modifications du metabolisme des purines et des pyrimidines dans les tumeurs humaines, relation avec les desequilibres chromosomiques." Paris 7, 1994. http://www.theses.fr/1994PA077200.
Full textBAILLON, JEAN. "Les enzymes du metabolisme des nucleotides pyrimidiques comme cibles dans la chimiotherapie antitumorale." Paris 6, 1987. http://www.theses.fr/1987PA066118.
Full textHongsthong, Apiradee 1970. "Assembly of Pseudomonas putida Aspartate Transcarbamoylase and Possible Roles of the PyrC' Polypeptide in the Folding of the Dodecameric Enzyme." Thesis, University of North Texas, 1999. https://digital.library.unt.edu/ark:/67531/metadc278618/.
Full textDill, Michael T. "Characterization of the Aspartate Transcarbamoylase that is Found in the pyrBC Complex of Bordetella Pertussis." Thesis, University of North Texas, 2001. https://digital.library.unt.edu/ark:/67531/metadc3057/.
Full textHigginbotham, Leah. "Aspartate Transcarbamoylase of Aeromonas Hydrophila." Thesis, University of North Texas, 2000. https://digital.library.unt.edu/ark:/67531/metadc5840/.
Full textHooshdaran, Massoumeh Ziba. "Comparative Biochemistry and Evolution of Aspartate Transcarbamoylase from Diverse Bacteria." Thesis, University of North Texas, 1999. https://digital.library.unt.edu/ark:/67531/metadc500380/.
Full textHermansen, Russell A., Brian K. Mannakee, Wolfgang Knecht, David A. Liberles, and Ryan N. Gutenkunst. "Characterizing selective pressures on the pathway for de novo biosynthesis of pyrimidines in yeast." BioMed Central Ltd, 2015. http://hdl.handle.net/10150/610280.
Full textWei, Shuang. "Modifications du metabolisme des nucleotides en relation avec la differenciation et en reponse a une irradiation dans des cellules tumorales humaines (doctorat : structure et fontionnement des systemes biologiques integres)." Paris 11, 1998. http://www.theses.fr/1998PA114846.
Full textSchurr, Michael J. (Michael John). "Molecular and Kinetic Characterization of the Aspartate Transcarbamoylase Dihydroorotase Complex in Pseudomonas putida." Thesis, University of North Texas, 1992. https://digital.library.unt.edu/ark:/67531/metadc277575/.
Full textFowler, Michael A. (Michael Allen) 1961. "Characterization of Aspartate Transcarbamoylase and Dihydroorotase in Moraxella Catarrhalis." Thesis, University of North Texas, 1998. https://digital.library.unt.edu/ark:/67531/metadc277709/.
Full textCooke, Patrick Alan. "BioInformatics, Phylogenetics, and Aspartate Transcarbamoylase." Thesis, University of North Texas, 2000. https://digital.library.unt.edu/ark:/67531/metadc2580/.
Full textPatel, Seema R. "A Study of the Pyrimidine Biosynthesis Pathway and its Regulation in Two Distinct Organisms: Methanococcus jannaschii and Pseudomonas aeruginosa." Thesis, University of North Texas, 2001. https://digital.library.unt.edu/ark:/67531/metadc3038/.
Full textHORVATH, PHILIPPE. "Dynamique, evolution et expression de genomes de bacteries lactiques : cas du metabolisme des pyrimidines chez lactobacillus plantarum ccm 1904." Université Louis Pasteur (Strasbourg) (1971-2008), 2000. http://www.theses.fr/2000STR13093.
Full textBarbosa, Sara Isabel Cadinha. "Compostos que interferem no metabolismo dos purina- e pirimidina-nucleótidos: utilização como agentes terapêuticos." Master's thesis, [s.n.], 2015. http://hdl.handle.net/10284/5160.
Full textO conteúdo deste trabalho será desenvolvido em dois temas principais, um referente à utilização de compostos que interferem no metabolismo dos purina- e pirimidinanucleótidos como agentes antineoplásicos e outro referente à sua utilização como agentes antivirais. A síntese dos nucleótidos envolve a construção de ácidos nucleicos e a inserção dos derivados de nucleótidos noutras vias bioquímicas, sendo responsável por inúmeras funções do metabolismo celular. Existem patologias que envolvem enzimas essenciais do metabolismo dos nucleótidos, o que levou à síntese de novos fármacos. As doenças oncológicas continuam a matar milhares de pessoas e um tratamento eficaz e com sucesso tem sido um desafio. O mesmo se passa com algumas infeções virais, nomeadamente infeções provocadas pelo HIV. Para contornar os obstáculos enfrentados na terapia destas doenças têm sido usados análogos de nucleótidos e/ou nucleósidos como agentes terapêuticos. Estes têm o propósito de inibir a síntese de novo dos nucleótidos em determinadas etapas, estando envolvidos na replicação e síntese do RNA e DNA nas células em divisão. Atuam por inibição específica de enzimas no metabolismo dos nucleótidos/nucleósidos ou ainda por incorporação no DNA ou no RNA. This study will be developed into two main subjects; one related to the use of compounds which interfere with the metabolism of purine- and pyrimidine- nucleotides as antineoplastic agents; another related to their use as antiviral agents. The nucleotides’ synthesis involves the construction of nucleic acids and the introduction of the nucleotides’ derivatives into other biochemical pathways and it is responsible for numerous functions of cellular metabolism. There are pathologies involving key enzymes from the nucleotides’ metabolism, which led to the synthesis of new drugs. Cancer is a disease that continues killing thousands of people, an effective and successful treatment has been a challenge. The same happens with some viral infections, mainly infections caused by HIV. To overcome the obstacles faced in the therapy of these diseases it has been used nucleotide and/or nucleoside analogues as therapeutic agents. These agents have the purpose of inhibiting the de novo nucleotide synthesis in certain steps, by being involved in RNA and DNA replication and synthesis in dividing cells. They act by specific enzymes inhibition in nucleotide/nucleoside metabolism and by incorporation into DNA or RNA.
Stawska, Agnieszka A. "Purification of Aspartate Transcarbamoylase from Moraxella (Branhamella) catarrhalis." Thesis, University of North Texas, 2001. https://digital.library.unt.edu/ark:/67531/metadc2864/.
Full textLiu, Haiyan 1966. "Attenuation of Escherichia Coli Aspartate Transcarbamoylase Expressed in Pseudomonas Aeruginosa Mutant and Wild Type Strains." Thesis, University of North Texas, 1994. https://digital.library.unt.edu/ark:/67531/metadc279106/.
Full textSpiegel, Erin Kathleen. "Psychomotor deficits in mice transgenic for a mutant adenylosuccinate lyase associated with autism in humans /." Connect to full text via ProQuest. IP filtered, 2006.
Find full textTypescript. Includes bibliographical references (leaves 127-143). Free to UCDHSC affiliates. Online version available via ProQuest Digital Dissertations;
Boussiengui-Boussiengui, Gino. "Analysis of the role of relative nucleotide concentrations on the regulation of carbohydrate in higher plants." Thesis, Stellenbosch : Stellenbosch University, 2010. http://hdl.handle.net/10019.1/5473.
Full textENGLISH ABSTRACT: The current understanding of the regulation of carbohydrate accumulation is still under investigation despite the tremendous work done in this subject. Purine and pyrimidine nucleotides have been implicated in many biochemical processes in plants. Amongst others, they are building blocks for nucleic acid synthesis, an energy source, precursors for the synthesis of primary products such as sucrose, polysaccharides, phospholipids, as well as secondary products. With the aim of placing adenine and uridine nucleotides in the context of sucrose and starch metabolism and carbon partitioning in higher plant, we have investigated the transcripts, enzymes and metabolites in carbohydrate metabolism and both de novo and salvage of purine and pyrimidine nucleotides in both sugarcane and tobacco tissues. For that purpose, adenylate kinase (ADK) and UMP synthase were chosen for silencing and over expression as they are rate limiting steps of de novo adenine and uridine nucleotides biosynthesis, respectively. Sugarcane with repressed ADK activity showed significant increase in both the starch and adenylate pools. Increase in starch content was highly correlated with reduced ADK activity. As a result of decreased ADK activity, the salvage pathway was up regulated via the increased activity of both adenosine kinase (AK) and adenine phosphoribosyl transferase (APRTase) which positively correlated with increase in adenine nucleotide contents. In addition hexose phosphates and ADP glucose, the committed substrate for starch biosynthesis positively correlated with changes in starch content. A high ratio of ATP/ADP was observed in all transgenic lines compared with the untransformed wild type and suggested to favour starch synthesis. Over expression of cytosolic ADK in tobacco demonstrated an expression of the enzyme where 2/3 of the total activity was in the direction of ADP production. As a result of over expression of ADK, starch content increased in all transgenic plants and positively correlated with changes in the activity of ADK. Despite changes in adenine nucleotide content, the salvage pathway was not activated and no significant changes in both AK and APRTase acivities were found between the transgenic and the untransformed plants. Sucrose synthase (SuSy) activity in breakdown direction positively correlated with changes in starch content suggesting a contribution in the starch accumulation in tobacco plants. In addition the ratio of ATP/ADP was low in all transgenic lines compared with the untransformed wild type. This was in line with the higher content in ADP compare to ATP in all transgenic lines and was supported by the over expression of ADK, and predominantly in the direction of ADP production. Repressed UMP synthase in transgenic sugarcane resulted in increases in sucrose, starch and uridinylate. UDP-glucose, hexose phosphates and uridinylate content positively correlated with changes in sucrose content. Transgenic lines had increased sucrose phosphate synthase (SPS) activity and low activity in SuSy, which suggests alteration of carbon flux toward sucrose. As a result of decreased UMP synthase activity, an up regulation of the salvage pathway was observed and predominantly via increased activity of uridine kinase (UK) which positively correlated with changes in the uridinylate pool. In addition to repressed UMP synthase activity, starch content and adenine nucleotides increased in transgenic lines. Tobacco plants transformed with a cytosolic UMP synthase demonstrated an over expression of the enzyme in all transgenic lines. As a result of over expression of UMP synthase, key metabolites were up regulated, amongst them sucrose. Increase in sucrose content positively correlated with both hexoses and hexose phosphates but not the uridinylate pool. SPS activity positively correlated with increase in sucrose content, and accounted for most of the sucrose synthesized in transgenic lines. Despite the increase in the adenylate pool, no significant changes were observed in starch content. The depletion level of UDP-glucose in all transgenic lines was a mere reflection of the higher activity of UDP glucose pyrophosphorylase (UGPase) in the formation of glucose-1-phosphate. In addition, no salvage pathway was up regulated in transgenic lines.
AFRIKAANSE OPSOMMING: Die huidige beskikbare inligting in verband met die reguleering van koolhidraat akkumulasie word steeds ondersoek ten spyte van die groot hoeveelheid navorsing wat reeds in hierdie verband gedoen is. Purien en pirimidien nukleotide speel ‘n rol in baie biochemiese prosesse in plante. Onder andere is hulle boublokke vir nukleïensuur sintese, ‘n energie bron, voorlopers vir die sintese van primêre produkte soos byvoorbeeld sukrose, polisakkariede, fosfolipiede, asook sekondêre produkte. Met die vooruitsig om adenine- en uridiennukleotide in verband te plaas met sukrose en stysel metabolisme en koolstof afskorting in plante, ondersoek ons hier die transkripte, ensieme en metaboliete in koolhidraat metabolisme in beide de novo en berging van purien en pirimidien nukleotide in suikerriet asook tabak weefsel. Vir hierdie doel is adenilaatkinase (ADK) en UMP-sintase gekies vir uitskakeling en ooruitdrukking, juis omdat hulle tempo vermindering stappe van de novo adenine- en uridiennukleotide biosintese is. Suikerriet met onderdrukte ADK aktiwiteit wys betekenisvolle vermeerdering in beide die stysel en adenilaat poele. Verhoging in styselinhoud was hoogs gekorreleerd met verminderde ADK aktiwiteit. As gevolg van ‘n vermindering in ADK aktiwiteit, is die bergingspad opwaards gereguleer via die vermeerdering van beide adenosienkinase (AK) en adenien-fosforibosieltransferase (APRTase) aktiwiteit wat positief korreleer met die vermeerdering in adeniennukleotied-inhoud. Addisioneel word hexosefosfate en ADP-glukose, die toegewysde substraat vir stysel biosintese, positief gekorreleer met veranderinge in styselinhoud. ‘n Hoë verhouding van ATP/ADP was geobserveer in alle transgeniese lyne in vergelyking met die nie-getransformeerde wilde tipe en blyk stysel sintese te begunstig. Ooruitdrukking van sitologiese ADK in tabak demonstreer die uitdrukking van die ensiem waar 2/3 van die totale aktiwiteit in die rigting van ADP produksie was. As ‘n resultaat van ooruitdrukking van ADK, word stysel inhoud vermeerder in alle transgeniese plante en positief gekorreleer met die verandering in die aktiwiteit van ADK. Ten spyte van veranderinge in adeniennukleotide inhoud was die bergingspad nie geaktiveer nie en geen betekenisvolle veranderinge in beide AK en APRTase aktiwiteit was gevind tussen die transgeniese en nie-transgeniese plante nie. Sukrose sintese (SuSy) aktiwiteit tydens afbreking korreleer positief met die veranderinge in stysel inhoud en dui moontlik op ‘n bydrae in die stysel akkumulasie in tabak plante. Verder was die verhouding van ATP/ADP laag in alle transgeniese lyne in vergelyking met die nie-getransformeerde wilde tipe. Hierdie bevinding word ondersteun deur die hoër inhoud in ADP in vergelyking met ATP in alle transgeniese lyne en word verder ondersteun deur die ooruitdrukking van ADK, hoofsaaklik in die rigting van ADP produksie. Onderdrukte UMP-sintase in transgeniese suikerriet lei tot verhogings in sukrose, stysel en uridienilaat. UDP-glukose, hexose-fosfate en uridienilaat inhoud korreleer positief met die verandering in sukrose inhoud. Transgeniese lyne het verhoogde sukrose-fosfaatsintase (SPS) aktiwiteit en lae SuSy aktiwiteit wat dui op ‘n verandering in koolstof vloei in die rigting van sukrose. As gevolg van die afname in UMP-sintese aktiwiteit, word ‘n verhoogde reguleering van die bergingspad gesien, en dít hoofsaaklik via verhoogde aktiwiteit in uridienkinase (UK) wat positief korreleer met veranderinge in die uridienilaat poel. Addisioneel tot die onderdrukking van UMP-sintase was stysel inhoud en adenine- nucleotides in transgeniese lyne verhoog. Tabak plante wat getransformeer is met sitologiese UMP-sintase demonstreer verhoogde uitdrukking van die ensiem in al die transgeniese lyne. As ‘n resultaat van ooruitdrukking van UMP-sintase is sleutel metaboliete, onderandere sucrose, oorgereguleer. ‘n Verhoging in sukrose inhoud korreleer positief met beide hexose en hexose-fosfate maar nie met die uridienilaat poel nie. SPS aktiwiteit korreleer positief met die verhoging in sukrose inhoud en verklaar die meeste van die sukrose vervaardig in transgeniese lyne. Ten spyte van die verhoging in die adenilaat poel word geen noemenswaardige veranderinge gesien in die stysel inhoud nie. Die uitputtingsvlak van die UDP-glukose in alle transgeniese lyne was slegs ‘n aanduiding van die hoër aktiwiteit van UDP-glukose pirofosforilase (UGPase) in die formasie van glukose-1-fosfaat. Verder was geen bergingspad opgereguleer in die transgeniese lyne nie.
The South African Sugarcane Research Institute and the Gabonese Government who provided the financial support for this work
Simpson, Luci N. "Cassette Systems for Creating Intergeneric Hybrid ATCases." Thesis, University of North Texas, 1999. https://digital.library.unt.edu/ark:/67531/metadc2237/.
Full textShen, Weiping. "Regulation of Escherichia coli pyrBI Gene Expression in Pseudomonas fluorescens." Thesis, University of North Texas, 1995. https://digital.library.unt.edu/ark:/67531/metadc278188/.
Full textAzad, Kamran Nikkhah. "Pyrimidine Enzyme Specific Activity at Four Different Phases of Growth in Minimal and Rich Media, and Concomitant Virulence Factors Evaluation in Pseudomonas aeruginosa." Thesis, University of North Texas, 2005. https://digital.library.unt.edu/ark:/67531/metadc4918/.
Full textHooshdaran, Sahar. "Characterization of Moraxella bovis Aspartate Transcarbamoylase." Thesis, University of North Texas, 2001. https://digital.library.unt.edu/ark:/67531/metadc3012/.
Full textXI, XU GUANG. "Les enzymes impliques dans la voie du metabolisme des pyrimidines : 1) etude des mecanismes moleculaires impliques dans la cooperativite et l'allosterie de l'aspartate transcarbamylase d'e. coli; 2) analyse du metabolisme pyrimidique lors du developpement des pneumoconioses." Paris 11, 1991. http://www.theses.fr/1991PA112033.
Full text