Journal articles on the topic 'Pyrochlore structure'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Pyrochlore structure.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Parshukova, K. N., E. P. Rylchenko, V. A. Muraviev, et al. "SYNTHESIS OF MULTICOMPONENT COMPOUNDS WITH A PIROCHLORE-TYPE STRUCTURE." Steklo i Keramika, no. 10 (October 2022): 34–39. http://dx.doi.org/10.14489/glc.2022.10.pp.034-039.
Full textRushton, M. J. D., Robin W. Grimes, C. R. Stanek, and Scott Owens. "Predicted pyrochlore to fluorite disorder temperature for A2Zr2O7 compositions." Journal of Materials Research 19, no. 6 (2004): 1603–4. http://dx.doi.org/10.1557/jmr.2004.0231.
Full textLivshits, Tatiana, Sergey Yudintsev, Sergey V. Stefanovsky, and Rodney Charles Ewing. "New Actinide Waste Forms with Pyrochlore and Garnet Structures." Advances in Science and Technology 73 (October 2010): 142–47. http://dx.doi.org/10.4028/www.scientific.net/ast.73.142.
Full textWang, Yuhao, Chong Jing, Zhao-Ying Ding, et al. "The Structure, Property, and Ion Irradiation Effects of Pyrochlores: A Comprehensive Review." Crystals 13, no. 1 (2023): 143. http://dx.doi.org/10.3390/cryst13010143.
Full textKhanvilkar, M. B., A. K. Nikumbh, S. M. Patange, et al. "Structural, electrical and magnetic properties of substituted pyrochlore oxide nanoparticles synthesized by the co-precipitation method." Physics and Chemistry of Solid State 22, no. 2 (2021): 353–71. http://dx.doi.org/10.15330/pcss.22.2.353-371.
Full textPetrakov, A. P., K. A. Badanina, A. A. Selyutin та ін. "Research of the properties of a complex oxide Bi2Co1/3Cu1/3Ni1/3Nb2O9+Δ with a pyrochlore structure". Industrial laboratory. Diagnostics of materials 91, № 5 (2025): 38–44. https://doi.org/10.26896/1028-6861-2025-91-5-38-44.
Full textZhuk, Nadezhda A., Sergey V. Nekipelov, Olga V. Petrova, et al. "Synthesis, Phase Formation, and Raman Spectroscopy of Ni and Zn(Mg) Codoped Bismuth Stibate Pyrochlore." Chemistry 7, no. 4 (2025): 110. https://doi.org/10.3390/chemistry7040110.
Full textTan, Phei, Kar Tan, Chwin Khaw, et al. "Substituted Bi3.5Mg1.8Nb2.7O13.8 pyrochlores with transition metals (Zn, Ni and Cd): Doping mechanism, structure and electrical properties." Processing and Application of Ceramics 18, no. 3 (2024): 281–89. http://dx.doi.org/10.2298/pac2403281t.
Full textZhou, Haidong, and Christopher Wiebe. "High-Pressure Routes to New Pyrochlores and Novel Magnetism." Inorganics 7, no. 4 (2019): 49. http://dx.doi.org/10.3390/inorganics7040049.
Full textXue, Yuan, Ningyue Sun, and Guowu Li. "Evolution of Nb–Ta Oxide Minerals and Their Relationship to the Magmatic-Hydrothermal Processes of the Nb–Ta Mineralized Syenitic Dikes in the Panxi Region, SW China." Minerals 11, no. 11 (2021): 1204. http://dx.doi.org/10.3390/min11111204.
Full textWang, Hong, Desheng Zhang, Xiaoli Wang, and Xi Yao. "Effect of La2O3 substitutions on structure and dielectric properties of Bi2O3–ZnO–Nb2O5-based pyrochlore ceramics." Journal of Materials Research 14, no. 2 (1999): 546–48. http://dx.doi.org/10.1557/jmr.1999.0078.
Full textHARRIS, M. J., and M. P. ZINKIN. "FRUSTRATION IN THE PYROCHLORE ANTIFERROMAGNETS." Modern Physics Letters B 10, no. 10 (1996): 417–38. http://dx.doi.org/10.1142/s021798499600047x.
Full textRapenne, L., C. Jiménez, T. Caroff, et al. "High-resolution transmission electron microscopy observations of La2Zr2O7 thin layers on LaAlO3 obtained by chemical methods." Journal of Materials Research 24, no. 4 (2009): 1480–91. http://dx.doi.org/10.1557/jmr.2009.0162.
Full textViladkar, Shrinivas G., and Natalia V. Sorokhtina. "Evolution of pyrochlore in carbonatites of the Amba Dongar complex, India." Mineralogical Magazine 85, no. 4 (2021): 554–67. http://dx.doi.org/10.1180/mgm.2021.50.
Full textLian, Jie, Rodney C. Ewing, L. M. Wang, and K. B. Helean. "Ion-beam irradiation of Gd2Sn2O7 and Gd2Hf2O7 pyrochlore: Bond-type effect." Journal of Materials Research 19, no. 5 (2004): 1575–80. http://dx.doi.org/10.1557/jmr.2004.0178.
Full textMuravyov, Vitaliy A., Maria G. Krzhizhanovskaya, Boris A. Makeev, et al. "Features of the Preparation of Ni-Doped Bismuth Tantalate Pyrochlore." Crystals 13, no. 3 (2023): 474. http://dx.doi.org/10.3390/cryst13030474.
Full textHeath, Megan Muriel, Elise Fosdal Closs, Svein Sunde, et al. "The Potential of Ruthenate Pyrochlores As Anodic Electroctalysts for PEM Water Electrolysisoral Presentation." ECS Meeting Abstracts MA2024-02, no. 42 (2024): 2847. https://doi.org/10.1149/ma2024-02422847mtgabs.
Full textLumpkin, G. R., and R. C. Ewing. "Alpha-decay damage and the aperiodic structure of pyrochlore." Proceedings, annual meeting, Electron Microscopy Society of America 46 (1988): 470–71. http://dx.doi.org/10.1017/s0424820100104418.
Full textMuraviev, V. A., B. A. Makeev, M. G. Krzhizhanovskaya, R. I. Korolev, and N. A. Zhuk. "SYNTHESIS OF Bi2NiTa2O9 WITH A PYROCHLORE-TYPE STRUCTURE." Steklo i Keramika, no. 2 (February 2022): 40–46. http://dx.doi.org/10.14489/glc.2022.02.pp.040-046.
Full textMatsunami, M., T. Hashizume, and A. Saiki. "Ion-Exchange Reaction Of A-Site In A2Ta2O6 Pyrochlore Crystal Structure." Archives of Metallurgy and Materials 60, no. 2 (2015): 941–44. http://dx.doi.org/10.1515/amm-2015-0234.
Full textWang, Hong, and Xi Yao. "Structure and dielectric properties of pyrochlore–fluorite biphase ceramics in the Bi2O3–ZnO–Nb2O5 system." Journal of Materials Research 16, no. 1 (2001): 83–87. http://dx.doi.org/10.1557/jmr.2001.0016.
Full textTarassov, Mihail, and Eugenia Tarassova. "Conditions and Mechanism of Crystallization of Hydrous W-Fe Oxides with a Pyrochlore-Type of Structure (Elsmoreite Group) in the Oxidation Zone of Ore Deposits." Minerals 14, no. 4 (2024): 422. http://dx.doi.org/10.3390/min14040422.
Full textGUO, JING-DONG, and M. STANLEY WHITTINGHAM. "TUNGSTEN OXIDES AND BRONZES: SYNTHESIS, DIFFUSION AND REACTIVITY." International Journal of Modern Physics B 07, no. 23n24 (1993): 4145–64. http://dx.doi.org/10.1142/s0217979293003607.
Full textTeng, Zhen, Yongqiang Tan, and Haibin Zhang. "High-Entropy Pyrochlore A2B2O7 with Both Heavy and Light Rare-Earth Elements at the A Site." Materials 15, no. 1 (2021): 129. http://dx.doi.org/10.3390/ma15010129.
Full textHuang, Shih-Wen, Horng-Tay Jeng, J.-Y. Lin, et al. "Electronic structure of pyrochlore Cd2Re2O7." Journal of Physics: Condensed Matter 21, no. 19 (2009): 195602. http://dx.doi.org/10.1088/0953-8984/21/19/195602.
Full textGoh, Gregory K. L., Sossina M. Haile, Carlos G. Levi, and Fred F. Lange. "Hydrothermal synthesis of perovskite and pyrochlore powders of potassium tantalate." Journal of Materials Research 17, no. 12 (2002): 3168–76. http://dx.doi.org/10.1557/jmr.2002.0458.
Full textZhang, Fu Xiang, and Maik Lang. "Pressure-Induced Cationic Disordering in Pyrochlore Oxides (La1-xCex)2Zr2O7 and Enhancement of Compressibility." Advanced Materials Research 1033-1034 (October 2014): 583–87. http://dx.doi.org/10.4028/www.scientific.net/amr.1033-1034.583.
Full textLumpkin, G. R., and R. C. Ewing. "Transmission electron microscopy of alpha-decay damage and alteration of betafite." Proceedings, annual meeting, Electron Microscopy Society of America 45 (August 1987): 376–77. http://dx.doi.org/10.1017/s0424820100126676.
Full textFan, Long, Yi Xie, and Xiao Yan Shu. "Fabrication of Pyrochlore Gd2Zr2O7 by High Temperature Solid State Reaction." Advanced Materials Research 1061-1062 (December 2014): 87–90. http://dx.doi.org/10.4028/www.scientific.net/amr.1061-1062.87.
Full textKennedy, Brendan, Peter Blanchard, Emily Reynolds, and Zhaoming Zhang. "Transformation from pyrochlore to fluorite by diffraction and X-ray spectroscopy." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C234. http://dx.doi.org/10.1107/s2053273314097654.
Full textvan de Velde, G. M. H., B. C. Lippens, S. J. Korf, and J. Boeijsma. "Powder Diffraction Data for the Imperfect Pyrochlore Terbium Titanate, Tb2Ti2O7." Powder Diffraction 5, no. 4 (1990): 229–31. http://dx.doi.org/10.1017/s088571560001589x.
Full textLi, Pengcheng, Fengai Zhao, Haiyan Xiao, et al. "First-Principles Study of Thermo-Physical Properties of Pu-Containing Gd2Zr2O7." Nanomaterials 9, no. 2 (2019): 196. http://dx.doi.org/10.3390/nano9020196.
Full textChen, Yan, Nina Orlovskaya, Nicholas Miller, et al. "La1.97Sr0.03Zr2O7 Pyrochlore Powder for Advanced Energy Application." Advances in Science and Technology 62 (October 2010): 56–60. http://dx.doi.org/10.4028/www.scientific.net/ast.62.56.
Full textZhang, Rui, Qiang Xu, Wei Pan, Chun Lei Wan, Long Hao Qi, and He Zhuo Miao. "Structure and Ionic Conductivity of Ln2Zr2O7-Type Rare Earth Zirconates." Key Engineering Materials 336-338 (April 2007): 420–23. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.420.
Full textMa, Ting Ting, Rui Shen Zhou, and Xia Li. "Synthesis of Pyrochlore-Type K2Ta2O6 with High Photocatalytic Activity for Dye Degradation." Key Engineering Materials 680 (February 2016): 203–7. http://dx.doi.org/10.4028/www.scientific.net/kem.680.203.
Full textBespalko, Yuliya, Nikita Eremeev, Ekaterina Sadovskaya, et al. "Synthesis and Oxygen Mobility of Bismuth Cerates and Titanates with Pyrochlore Structure." Membranes 13, no. 6 (2023): 598. http://dx.doi.org/10.3390/membranes13060598.
Full textTroyanchuk, I. O., N. V. Kasper, D. D. Khalyavin, H. Szymczak, and A. Nabialek. "Magnetotransport properties of with pyrochlore structure." Journal of Physics: Condensed Matter 10, no. 2 (1998): 401–5. http://dx.doi.org/10.1088/0953-8984/10/2/019.
Full textTaira, Nobuyuki, Makoto Wakeshima, Yukio Hinatsu, Aya Tobo, and Kenji Ohoyama. "Magnetic structure of pyrochlore-type Er2Ru2O7." Journal of Solid State Chemistry 176, no. 1 (2003): 165–69. http://dx.doi.org/10.1016/s0022-4596(03)00384-0.
Full textMitrofanova, Anna V., Elena A. Fortalnova, Marina G. Safronenko, Ekaterina D. Politova, and Alexandr V. Mosunov. "PHASE FORMATION AND PROPERTIES OF BISMUTH FERROTITANATES SUBSTITUTED BY HEAVY LANTHANIDE IONS (Tb, Er, Ho, Yb)." ChemChemTech 68, no. 1 (2024): 48–54. https://doi.org/10.6060/ivkkt.20256801.7085.
Full textDouma, Mohamed, Hossain El, Raquel Trujillano, and Vicente Rives. "Structural determination of new solid solutions [Y2-xMx][Sn2-xMx]o7-3x/2 (M = Mg or Zn) by Rietveld method." Processing and Application of Ceramics 4, no. 4 (2010): 237–43. http://dx.doi.org/10.2298/pac1004237d.
Full textShlyakhtina, Anna V., Nikolay V. Lyskov, Galina E. Nikiforova, et al. "Proton Conductivity of La2(Hf2−xLax)O7−x/2 “Stuffed” Pyrochlores." Applied Sciences 12, no. 9 (2022): 4342. http://dx.doi.org/10.3390/app12094342.
Full textShlyakhtina, Anna V., Nikolay V. Lyskov, Galina E. Nikiforova, et al. "Proton Conductivity of La2(Hf2−xLax)O7−x/2 “Stuffed” Pyrochlores." Applied Sciences 12, no. 9 (2022): 4342. http://dx.doi.org/10.3390/app12094342.
Full textLang, M., F. X. Zhang, R. C. Ewing, Jie Lian, Christina Trautmann, and Zhongwu Wang. "Structural modifications of Gd2Zr2-xTixO7 pyrochlore induced by swift heavy ions: Disordering and amorphization." Journal of Materials Research 24, no. 4 (2009): 1322–34. http://dx.doi.org/10.1557/jmr.2009.0151.
Full textMoroz, Y., M. Lozynskyy, A. Lopanov, K. Chebyshev, and V. Burkhovetsky. "THE RESEARCH OF THE THERMOLYSIS PRODUCTS OF CESIUM TUNGSTOPHOSPHATES." Bulletin of Belgorod State Technological University named after. V. G. Shukhov 5, no. 12 (2021): 126–35. http://dx.doi.org/10.34031/2071-7318-2020-5-12-126-135.
Full textFinkeldei, S., M. C. Stennett, P. M. Kowalski, et al. "Insights into the fabrication and structure of plutonium pyrochlores." Journal of Materials Chemistry A 8, no. 5 (2020): 2387–403. http://dx.doi.org/10.1039/c9ta05795a.
Full textPeters, E., and Hk Müller-Buschbaum. "Synthese eines Pyrochlors mit TiII: (Ta0.67TiII0.33)2Sm2O7/ Synthesis of a Pyrochlore Containing TiII: (Ta0.67TiII0.33)2Sm2O7." Zeitschrift für Naturforschung B 50, no. 9 (1995): 1340–42. http://dx.doi.org/10.1515/znb-1995-0907.
Full textWithers, RL, JG Thompson, PJ Barlow, and JC Barry. "The Defect Fluorite Phase in the ZrO2-PrO1.5 System and Its Relationship to the Structure of Pyrochlore." Australian Journal of Chemistry 45, no. 9 (1992): 1375. http://dx.doi.org/10.1071/ch9921375.
Full textKoroleva, Mariia S., Aleksei G. Krasnov, and Irina V. Piir. "DOPING BISMUTH NIOBATES AS AN APPROACH TO OBTAINING HIGH-ENTROPY PYROCHLORES WITH DIELECTRIC PROPERTIES." Transactions of the Kоla Science Centre of RAS. Series: Engineering Sciences 3, no. 3/2023 (2023): 193–97. http://dx.doi.org/10.37614/2949-1215.2023.14.3.035.
Full textFigueiredo, M. O. "Antimony oxides: the pyrochlore-type structure revisited." Acta Crystallographica Section A Foundations of Crystallography 61, a1 (2005): c496. http://dx.doi.org/10.1107/s0108767305079523.
Full textShul’pina, I. L., N. N. Kolpakova, M. P. Shcheglov, and A. O. Lebedev. "Real structure of Cd2Nb2O7 pyrochlore single crystals." Technical Physics Letters 25, no. 7 (1999): 561–63. http://dx.doi.org/10.1134/1.1262553.
Full text