To see the other types of publications on this topic, follow the link: Pyrolysis conditions.

Journal articles on the topic 'Pyrolysis conditions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Pyrolysis conditions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Urbanovičs, Igors, Gaļina Dobele, Vilhelmīne Jurkjane, Valdis Kampars, and Ēriks Samulis. "PYROLYTIC OIL - A PRODUCT OF FAST PYROLYSIS OF WOOD RESIDUES FOR ENERGY RESOURCES." Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference 1 (June 23, 2007): 16. http://dx.doi.org/10.17770/etr2007vol1.1742.

Full text
Abstract:
The application of renewable energy resources for energy production becomes increasingly urgent worldwide. Fast pyrolysis is one of the trends of obtaining liquid fuel from solid biomass.The aim of the present study was to investigate the yield, chemical composition, physical properties and water amount of hardwood pyrolytic oil (PO) depending on the pyrolysis and pre-treatment conditions in an ablative type reactor.The results of the analysis of the heat capacity of pyrolytic oil show an increase in this parameter from 12 MJ/kg (without drying) to 15-16 MJ/kg, drying the wood, and then pyrolysing it.Pyrolytic oil with a decreased amount of pyrolytic water and a high heat capacity was obtained in an ablative type reactor, drying the wood and then pyrolysing it. For the pyrolytic oil obtained in the two-stage fast pyrolysis equipment process, pH increases.
APA, Harvard, Vancouver, ISO, and other styles
2

Alagu, R. M., and E. Ganapathy Sundaram. "Experimental Studies on Thermal and Catalytic Slow Pyrolysis of Groundnut Shell to Pyrolytic Oil." Applied Mechanics and Materials 787 (August 2015): 67–71. http://dx.doi.org/10.4028/www.scientific.net/amm.787.67.

Full text
Abstract:
Pyrolysis process in a fixed bed reactor was performed to derive pyrolytic oil from groundnut shell. Experiments were conducted with different operating parameters to establish optimum conditions with respect to maximum pyrolytic oil yield. Pyrolysis process was carried out without catalyst (thermal pyrolysis) and with catalyst (catalytic pyrolysis). The Kaolin is used as a catalyst for this study. The maximum pyrolytic oil yield (39%wt) was obtained at 450°C temperature for 1.18- 2.36 mm of particle size and heating rate of 60°C/min. The properties of pyrolytic oil obtained by thermal and catalytic pyrolysis were characterized through Fourier Transform Infrared Spectroscopy (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS) techniques to identify the functional groups and chemical components present in the pyrolytic oil. The study found that catalytic pyrolysis produce more pyrolytic oil yield and improve the pH value, viscosity and calorific value of the pyrolytic oil as compared to thermal pyrolysis.
APA, Harvard, Vancouver, ISO, and other styles
3

Chlup, Zdeněk, Martin Černý, Adam Strachota, and Ivo Dlouhý. "Role of Pyrolysis Conditions on Fracture Behaviour of Fibre Reinforced Composites." Key Engineering Materials 465 (January 2011): 455–58. http://dx.doi.org/10.4028/www.scientific.net/kem.465.455.

Full text
Abstract:
Fracture response of matrix prepared by pyrolysis of polysiloxane resin used for composite reinforced by long fibres was the main goal of this contribution. A set of composites with matrix prepared by partial pyrolysis of polysiloxane resin was studied. An effect of pyrolysis temperature on the composite behaviour and fracture resistance was monitored. An optimal procedure of pyrolysis was established. Heat treatment at 1550°C in air atmosphere was conducted on fully pyrolysed matrix to explore its high temperature potential. Determination of reliable parameters characterising microstructural changes in the matrix by instrumented indentation technique was used. Both optical and scanning electron microscopy was employed in microstructural observations and fracture mechanism qualification. Observation of indents and associated cracking caused by microstructural changes as well as 3D surface reconstruction using confocal microscopy was employed.
APA, Harvard, Vancouver, ISO, and other styles
4

Aliyev, A. M., A. R. Safarov, I. V. Balayev, I. I. Osmanova, and A. M. Guseynova. "CONTROL OF PROPANE PYROLYSIS PROCESS IN NONSTATIONARY CONDITIONS." Azerbaijan Chemical Journal, no. 1 (March 12, 2020): 6–10. http://dx.doi.org/10.32737/0005-2531-2020-1-6-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Acosta, Rolando, Claudia Tavera, Paola Gauthier-Maradei, and Debora Nabarlatz. "Production of Oil and Char by Intermediate Pyrolysis of Scrap Tyres: Influence on Yield and Product Characteristics." International Journal of Chemical Reactor Engineering 13, no. 2 (June 1, 2015): 189–200. http://dx.doi.org/10.1515/ijcre-2014-0137.

Full text
Abstract:
Abstract Scrap tyres represent a severe environmental problem that must be solved by developing technologies allowing the processing of high quantities of this residue. This work presents the results of pyrolysis oil and pyrolytic char production by intermediate pyrolysis of rubber recovered from scrap tyres. The influence of process variables such as particle size, temperature and reaction time on the characteristics of the products obtained was analysed. Maximal yields of 52.56 and 39.50 wt% of pyrolysis oil and pyrolytic char, respectively, were obtained, under operational conditions that favoured the production of pyrolysis oil. The products obtained were a pyrolytic char with a maximal surface area of 85.16 m2/g and fixed carbon content of 78.55 wt%; and pyrolysis oil with a higher heating value of 42.94 MJ/kg, real density of 0.948 g/mL, viscosity 2.29×10−3 Pa s and acidity between 0.39 and 1.57 mg KOH/g. The highest total aromatics (benzene, toluene, xylenes and ethylbenzene) yield in pyrolysis oil was obtained at a temperature of 466°C and volumetric gas flow of 155 NmL/min. In addition, at these conditions, the pyrolysis oil having the maximum aromatic yield showed the lowest acidity. Nevertheless, it was observed that the highest pyrolysis oil yield does not necessarily lead to a higher yield of aromatics.
APA, Harvard, Vancouver, ISO, and other styles
6

Banciu, MD, RFC Brown, KJ Coulston, FW Eastwood, C. Jurss, I. Mavropoulos, M. Stanescu, and UE Wiersum. "Formation of Cyclopent[hi]acephenanthrylene From 1,2-, 1,3-, 1,4- and 2,3-Triphenylenedicarboxylic Acid Derivatives on Flash Vacuum Pyrolysis at >900°C." Australian Journal of Chemistry 49, no. 9 (1996): 965. http://dx.doi.org/10.1071/ch9960965.

Full text
Abstract:
The processes involved in the conversion of triphenylene , C18H12, into cyclopent [hi] acephenanthrylene, C18H10, under flash vacuum pyrolytic conditions at 900-1100°C have been investigated by pyrolysing triphenylene-1,2- and -2,3-dicarboxylic anhydrides and diallyl triphenylene-1,3- and -1,4-dicarboxylates to give the corresponding didehydrotriphenylenes in the gas phase. These didehydro intermediates are converted into mixtures of cyclopent [hi] acephenanthrylene and triphenylene in different yields and proportions. Pyrolysis of 9,10-diethynylphenanthrene. C18H10, yields cyclopent [hi] acephenanthrylene in good yield. Pyrolysis of 1-nitrotriphenylene and allyl triphenylene-2-carboxylate to give the triphenylen-1-yl and -2-yl radicals leads to formation of the same products. Mechanisms involving radical rearrangements (C18H11 species) and benzyne-cyclopentadienylidenecarbene and ethyne-ethenylidene rearrangements (C18H10 species) are discussed.
APA, Harvard, Vancouver, ISO, and other styles
7

Sarkar, Aparna, Sudip De Sarkar, Michael Langanki, and Ranjana Chowdhury. "Studies on Pyrolysis Kinetic of Newspaper Wastes in a Packed Bed Reactor: Experiments, Modeling, and Product Characterization." Journal of Energy 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/618940.

Full text
Abstract:
Newspaper waste was pyrolysed in a 50 mm diameter and 640 mm long reactor placed in a packed bed pyrolyser from 573 K to 1173 K in nitrogen atmosphere to obtain char and pyro-oil. The newspaper sample was also pyrolysed in a thermogravimetric analyser (TGA) under the same experimental conditions. The pyrolysis rate of newspaper was observed to decelerate above 673 K. A deactivation model has been attempted to explain this behaviour. The parameters of kinetic model of the reactions have been determined in the temperature range under study. The kinetic rate constants of volatile and char have been determined in the temperature range under study. The activation energies 25.69 KJ/mol, 27.73 KJ/mol, 20.73 KJ/mol and preexponential factors 7.69 min−1, 8.09 min−1, 0.853 min−1of all products (solid reactant, volatile, and char) have been determined, respectively. A deactivation model for pyrolysis of newspaper has been developed under the present study. The char and pyro-oil obtained at different pyrolysis temperatures have been characterized. The FT-IR analyses of pyro-oil have been done. The higher heating values of both pyro-products have been determined.
APA, Harvard, Vancouver, ISO, and other styles
8

Jasminská, Natália, Tomáš Brestovič, and Mária Čarnogurská. "THE EFFECT OF TEMPERATURE PYROLYSIS PROCESS OF USED TIRES ON THE QUALITY OF OUTPUT PRODUCTS." Acta Mechanica et Automatica 7, no. 1 (March 1, 2013): 20–25. http://dx.doi.org/10.2478/ama-2013-0004.

Full text
Abstract:
Abstract Pyrolysis together with gasification and combustion create a group of so called thermic processes. Unlike the combustion it is based on thermic decomposition of organic materials without any access of oxidative media. Within the pyrolytic process, three main fractions are created: solid residue, pyrolytic gas and organic liquid product - pyrolytic oil. The presented article examines the effects of pyrolysis operational conditions (above all, temperature) on gas products, solid residues and liquid fractions.
APA, Harvard, Vancouver, ISO, and other styles
9

Raclavská, Helena, Hana Škrobánková, Petr Pavlík, and Veronika Sassmanová. "The Properties of Material from Recovered TetraPak Beverage Cartons." Applied Mechanics and Materials 832 (April 2016): 3–9. http://dx.doi.org/10.4028/www.scientific.net/amm.832.3.

Full text
Abstract:
Energy utilization (pyrolysis) of residue from fibre recycling of used beverage cartons is very important. Identification the optimal technology for separation of aluminium from pyrolytic carbon and assessment of its quality in relationship to the pyrolysis conditions is necessary for recycling of Al. The particles of pyrolytic carbon are not pure carbon, they contain only from 65 to 83 % of carbon, the rest in ash coming from sorting and collection of waste (glass, porcelain). Process of pyrolysis and/or utilization of charge reactor influenced the chemical composition of Al particles by carbon enrichment at the rim of particles up to 30 % leading to decrease of reactivity of Al surface.
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Wen Yan, Lei Qiang Zhao, Hang Tao Liao, and Qiang Lu. "Production and Characterization of Rice Husk Chars Obtained under Different Conditions." Advanced Materials Research 805-806 (September 2013): 228–31. http://dx.doi.org/10.4028/www.scientific.net/amr.805-806.228.

Full text
Abstract:
Rice husk was subjected to slow and fast pyrolysis under different reaction conditions, to investigate the effects of several pyrolysis factors on the physicochemical properties of the rice husk chars, including the pyrolysis heating rate, cooling rate and resident time. The results indicated that the char yield did not show great changes during the slow pyrolysis process, while it was gradually decreased along with the resident time during the fast pyrolysis process. With the elevating of the pyrolysis conditions, the carbon content of the chars was increased monotonically, while the oxygen content was decreased. Moreover, the rice husk and its chars greatly differed in their functional groups, resulting from various decompositon, decarbonylation and aromatization reactions during the pyrolysis process.
APA, Harvard, Vancouver, ISO, and other styles
11

Shi, Kai Qi, Tao Wu, Hai Tao Zhao, Edward Lester, Philip Hall, and Yao Dong Wang. "Microwave Induced Pyrolysis of Biomass." Applied Mechanics and Materials 319 (May 2013): 127–33. http://dx.doi.org/10.4028/www.scientific.net/amm.319.127.

Full text
Abstract:
Microwave heating has attracted much attention recently due to its nature of volumetric heating and instant heating. In this study, microwave heating was adopted not only as a heating method but also an approach to enhance the pyrolysis of biomass. Microwave induced pyrolysis was carried out at 500°C with silicon carbide as a microwave energy absorber. Conventional pyrolysis of gumwood was also conducted under the same operating temperature as microwave-enhanced pyrolysis. The yields of pyrolytic bio-oil and bio-gas under microwave heating are 8.52 wt% and 73.26 wt% respectively, which are higher than the products obtained via conventional methods under similar operating conditions. A series tests were performed to compare the difference between the yields of pyrolytic products, i.e. gaseous products (bio-gas), liquid products (bio-oil) and solid products( bio-char). Scanning Electron Microscope (SEM), Gas Chromatograph/Mass Spectrum (GC-MS) and Gas Chromatograph (GC) were used in this study to characterize the morphology of bio-chars, the composition of bio-gas and bio-oil respectively. The bio-oil produced via microwave pyrolysis has simpler constituents compared with that produced via conventional pyrolysis. The proportion of syngas (H2+CO) and methane (CH4) in the gas product produced under microwave-enhanced pyrolysis are 62.52 vol % and 22.41vol % respectively, which are higher than those in the products of conventional pyrolysis. It is clear that microwave-enhanced pyrolysis has shown a great potential as an alternative method for biomass conversion.
APA, Harvard, Vancouver, ISO, and other styles
12

Baloyi, Hope, and Gary Dugmore. "Pyrolytic topping of coal-algae composite under mild inert conditions." Journal of Energy in Southern Africa 30, no. 3 (September 19, 2019): 44–51. http://dx.doi.org/10.17159/2413-3051/2019/v30i3a5763.

Full text
Abstract:
Co-processing of coal and biomass has been a focus of several research studies aimed at addressing the negative environmental attributes associated with thermal processing of coal alone, as well as improving the thermal behaviour of coal. Biomass materials are regarded as a clean, renewable source, so thermal co-processing of biomass with coal is considered an effective way to utilise coal in a sustainable manner. In this study, coal fines were blended with Scenedesmus microalgae slurry to form a coal-algae composite. Pyrolytic topping of coal-algae composite was performed at 450 ºC on a batch reactor. Parent fuels and resultant chars were analysed for their proximate properties using an Eltra thermostep TGA; a Vario EL cube Elementar was used to determine the elemental composition of the chars and oils. A simulated distillation (SimDis) method was used to determine the boiling point distribution of the produced oils. The objective of the study was to examine the effects of microalgae slurry on the pyrolytic behaviour of waste coal fines with respect to product yields, composition and quality. Results showed that the yields of volatile components from pyrolysis of coal-algae composite were high compared with those from pyrolysis of coal alone. A significant degree of deoxygenation, dehydrogenation and denitrification was observed in coal-algae char than coal char. SimDis results showed that the fossil bio-crude oil has different boiling point characteristics from coal tar. The study has shown that microalgae slurry has potential to influence the pyrolytic behaviour of waste coal under mild inert conditions.
APA, Harvard, Vancouver, ISO, and other styles
13

Januszewicz, Katarzyna, Paweł Kazimierski, Wojciech Kosakowski, and Witold M. Lewandowski. "Waste Tyres Pyrolysis for Obtaining Limonene." Materials 13, no. 6 (March 17, 2020): 1359. http://dx.doi.org/10.3390/ma13061359.

Full text
Abstract:
This review deals with the technologies of limonene production from waste tyre pyrolysis. Thermal decomposition is attractive for tackling the waste tyre disposal problem, as it enables both: energy to be recovered and limonene to be obtained. This material management recycling of tyres is environmentally more beneficial than the burning of all valuable products, including limonene. Given this recoverability of materials from waste tyres, a comprehensive evaluation was carried out to show the main effect of process conditions (heating rate, temperature, pressure, carrier gas flow rate, and type of volatile residence and process times) for different pyrolytic methods and types of apparatus on the yield of limonene. All the results cited are given in the context of the pyrolysis method and the type of reactor, as well as the experimental conditions in order to avoid contradictions between different researchers. It is shown that secondary and side reactions are very sensitive to interaction with the above-mentioned variables. The yields of all pyrolytic products are also given, as background for limonene, the main product reported in this study.
APA, Harvard, Vancouver, ISO, and other styles
14

Wu, Fengze, Haoxi Ben, Yunyi Yang, Hang Jia, Rui Wang, and Guangting Han. "Effects of Different Conditions on Co-Pyrolysis Behavior of Corn Stover and Polypropylene." Polymers 12, no. 4 (April 22, 2020): 973. http://dx.doi.org/10.3390/polym12040973.

Full text
Abstract:
The pyrolysis behavior of corn stover and polypropylene during co-pyrolysis was studied using a tube furnace reactor. The effects of mixing ratio of corn stover and polypropylene, pyrolysis temperature, addition amount of catalyst (HZSM-5) and reaction atmosphere (N2 and CO2) on the properties of pyrolysis products were studied. The results showed that co-pyrolysis of corn stover and polypropylene can increase the yield of pyrolysis oil. When corn stover:polypropylene = 1:3, the yield of pyrolysis oil was as high as 52.1%, which was 4.5% higher than the theoretical value. With the increase of pyrolysis temperature, the yield of pyrolysis oil increased first and then decreased, and reached the optimal yield at 550 °C. The addition of catalyst (HZSM-5) reduced the proportion of oxygenates and promoted the generation of aromatic hydrocarbons. CO2 has a certain oxidation effect on the components of pyrolysis oil, which promoted the increase of oxygen-containing aromatics and the reduction of deoxy-aromatic hydrocarbons. This study identified the theoretical basis for the comprehensive utilization of plastic and biomass energy.
APA, Harvard, Vancouver, ISO, and other styles
15

Williams, P. T., S. Besler, and D. T. Taylor. "The Batch Pyrolysis of Tyre Waste—Fuel Properties of the Derived Pyrolytic Oil and Overall Plant Economics." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 207, no. 1 (February 1993): 55–63. http://dx.doi.org/10.1243/pime_proc_1993_207_007_02.

Full text
Abstract:
Estimates for the generation of scrap tyres in the European Community are of the order of 1.5 million tonnes per year, including approximately 0.4 million tonnes per year from the United Kingdom. The majority of the tyre waste is dumped in open or landfill sites but represents a large wasted energy potential. Incineration has been considered as an alternative to dumping in an effort to utilize the high calorific value of scrap tyres; however, this disposal route may not maximize the potential economic recovery of energy and chemical materials from the waste. Pyrolysis of tyres is currently receiving renewed attention, since the derived oils may be used directly as fuels or added to petroleum refinery feedstocks; they may also be an important source of refined chemicals. The derived gases are also useful as fuel and the solid char has the potential to be used either as smokeless fuel, carbon black or activated carbon. In this paper, halved and whole scrap tyres were pyrolysed in a commercial two tonne per day batch pyrolysis unit at furnace temperatures from 700 to 950°C. The proportion of derived products was dependent on pyrolysis conditions, with a maximum yield of 30 per cent oil. The fuel properties of the derived oils, including calorific value, flash point, carbon residue, viscosity, sulphur content, etc., were analysed and compared to refined petroleum products. In addition the benzene, xylene, toluene, limonene and styrene concentration of the oils was determined to assess the potential of the oils as a source of chemical feedstocks. The oils were also analysed in terms of their chemical composition via liquid chromatography and Fourier transform infra-red spectroscopy and molecular mass range. The pyrolytic oils derived from tyres showed properties that were dependent on pyrolytic conditions and showed fuel properties comparable to those of petroleum products.
APA, Harvard, Vancouver, ISO, and other styles
16

Zhou, Jun, Zhe Yang, Wen Zhi Shang, Yong Hui Song, and Xin Zhe Lan. "Research on the Microwave Pyrolysis of Coal under N2 Atmosphere." Applied Mechanics and Materials 672-674 (October 2014): 672–75. http://dx.doi.org/10.4028/www.scientific.net/amm.672-674.672.

Full text
Abstract:
Microwave pyrolysis of low rank coal is a new technology of cleaner production. The effect of microwave power and flow rate of N2 on the yield of pyrolysis products under N2 atmosphere was explored. The results showed that the higher microwave power was, the higher all the terminal temperature, the yield of liquid products and the weight loss rate were. The flow rate of N2 had little influence on the yield of pyrolysis solid products, while it exerted a greater influence on the yield of pyrolysis liquid products. When the low rank coal was pyrolysised under the conditions of microwave power of 800W and flow rate of N2 of 4.0×10-4 m3/min, the yield of Bluecoke and liquid products respectively reached 65.8% and 18%.
APA, Harvard, Vancouver, ISO, and other styles
17

Astafev, Alexander, Ivan Shanenkov, Kanipa Ibraeva, Roman Tabakaev, and Sergei Preis. "Autothermal Siberian Pine Nutshell Pyrolysis Maintained by Exothermic Reactions." Energies 15, no. 19 (September 28, 2022): 7118. http://dx.doi.org/10.3390/en15197118.

Full text
Abstract:
The global energy industry works towards an increased use of carbon-neutral biomass. Nutshell represents a regional bio-waste, i.e., a bio-energy resource. Pyrolysis is a common method for processing biomass into valuable energy products. The heat demand, however, limits pyrolysis applications. Yet, such demand may be addressed via exothermic pyrolysis reactions under selected operation conditions. Making the pyrolysis of Siberian pine nutshell autothermic comprised the objective of the study. The study involved analytical methods together with a pyrolysis experiment. The analytical methods included a thermogravimetric analysis combined with differential scanning calorimetry and an integrated gas analyzer. Thermophysical characterization was executed using a thermal diffusivity analyzer with the laser flash method. At 650 °C, pyrolytic heat was released in the amount of 1224.6 kJ/kg, exceeding the heat demand of 1179.5 kJ/kg. Pyrolysis at a lower temperature of 550 °C remained endothermic, although the combusted gas product provided 847.7 kJ/kg of heat, which, together with exothermic release, covered the required heat demand for the pyrolysis process.
APA, Harvard, Vancouver, ISO, and other styles
18

Attai, Youssef A., Osayed SM Abu-Elyazeed, Rashad Elbeshbeshy, Hassan Gassour, and Mohammed S. Gad. "Experimental cyclic variations of diesel engine burning pyrolysis castor oil blends." Advances in Mechanical Engineering 12, no. 10 (October 2020): 168781402096718. http://dx.doi.org/10.1177/1687814020967180.

Full text
Abstract:
Pyrolysis of castor oil with anhydrous sodium hydroxide as a catalyst was performed to produce Catalytic Castor pyrolytic oil (CCPO). The physical and chemical properties of the pyrolytic and gas oils were recorded according to ASTM standards. Gas oil was blended with castor pyrolytic oil at different volumetric ratios of 0%, 25%, 75%, and 100% as CCPO00, CCPO25, CCPO75, and CCPO100, respectively. Coefficient of variation (COV) of combustion parameters proved to be a profound method of assessing combustion characteristics and engine performance. COV of combustion parameters (IMEP, Pmax, and dP/dΘmax) for gas oil blends with pyrolysis oil were measured. Recorded pressure crank angle traces of 150 consecutive cycles were used for COV’s determination. A single cylinder diesel engine equipped with calibrated measuring techniques was used at different engine loads. Higher volumetric blending ratios of pyrolytic oil with diesel oil increased the COV’s within an acceptable range of engine operating conditions. Minor modifications might be valuable for engines fueled by pyrolysis oil blends to obtain smoother, lower noise operation, and combustion stability.
APA, Harvard, Vancouver, ISO, and other styles
19

Le, Duyen Khac, Nghiep Quoc Pham, and Kien Anh Le. "Characteristics of carbon aerogel at variation in pyrolysis conditions." Science and Technology Development Journal 19, no. 3 (September 30, 2016): 88–95. http://dx.doi.org/10.32508/stdj.v19i3.572.

Full text
Abstract:
Carbon aerogel was obtained by pyrolysis of organic aerogel by ambient pressure drying technique. The effect of pyrolysis conditions on characteristics of carbon aerogel such as density, specific surface area and conductivity was studied. The properties and structure of carbon aerogel samples were investigated by nitrogen adsorption, four-point probe method and XRD diffraction. The results showed that carbon aerogel had structure between amorphous and graphite state. The highest specific surface area was 800 m2/g at pyrolysis temperature of 700oC. The pore-size was distributed in microporous, with the maximum total pore volume of 0.44 cm3/g. The electrical conductivity of carbon aerogel was highest at pyrolysis temperature of 800-900oC with the value in the range of 1.744-1.923 S/cm.
APA, Harvard, Vancouver, ISO, and other styles
20

Partata, Andréia Ramos, Priciane Martins Parreira, Humberto Molinar Henrique, and Carlos Eduardo Batista Avelar. "An Alternative Fuel for Lime Industry: Evaluation the Pyrolysis of the Scrap Tires." Materials Science Forum 591-593 (August 2008): 206–11. http://dx.doi.org/10.4028/www.scientific.net/msf.591-593.206.

Full text
Abstract:
Scrap tire is considered an environmental concern with inadequate final disposal. A good alternative can be to use the tire as an energy source. Pyrolysis is a thermal process that can transform the rubber portion of used tires into oil, gas and pyrolytic carbon. This type of carbon can be converted into carbon black (CB). The lime industry that demands great amount of energy could be one of the ways to take advantage the scrap tires adequately as energy source. This work aimed to study the operational conditions of the pyrolysis process as well as investigating the possibility to use the pyrolysis products from used tires as industrial fuel. A batch pilot-scale pyrolysis unit was built. Temperatures from 400 to 600oC and relative pressures from 0 to -500 mmHg were investigated in order to evaluate product distribution and quality. Experimental results showed that as the reactor temperature was increased the pyrolytic carbon yield remained constant with a mean of 39.8 wt % and the pyrolytic oil yield reached a maximum value of 45.1 wt % at 500 °C. It is also possible to show that the pyrolytic oil can be used as liquid fuels because of its high heating value (40-42 MJ/kg), excellent viscosity (1.6-3.7 cS), and reasonable sulfur content (0.97-1.54wt %). In addition, chemical and physical characterization was made in order to compare the pyrolytic carbon and oil with currently fuels used in Brazilian lime industries (wood charcoal and coke of petroleum).
APA, Harvard, Vancouver, ISO, and other styles
21

Kaliappan, S., M. Karthick, Pravin P. Patil, P. Madhu, S. Sekar, Ravi Mani, Francisca D. Kalavathi, S. Mohanraj, and Solomon Neway Jida. "Utilization of Eco-Friendly Waste Eggshell Catalysts for Enhancing Liquid Product Yields through Pyrolysis of Forestry Residues." Journal of Nanomaterials 2022 (June 7, 2022): 1–10. http://dx.doi.org/10.1155/2022/3445485.

Full text
Abstract:
In this study, catalytic and noncatalytic pyrolysis of Prosopis juliflora biomass was carried out in a fluidized bed reactor. This study highlights the potential use of forestry residues with waste eggshells under a nitrogen environment. The experiments were conducted to increase the yield of bio-oil by changing the parameters such as pyrolysis temperature, particle size, and catalyst ratio. Under noncatalytic pyrolysis, a maximum bio-oil yield of 40.9 wt% was obtained when the feedstock was pyrolysed at 500°C. During catalytic pyrolysis, the yield of bio-oil was increased by up to 16.95% compared to the noncatalytic process due to the influence of Ca-rich wastes on devolatilization behavior. In particular, the existence of alkali and alkaline-earth metals present in eggshells might have positive effects on the decomposition of biomass material. The bio-oil obtained through catalytic pyrolysis under maximum yield conditions was analyzed for its physical and chemical characterization by Fourier transform infrared (FT-IR) spectroscopy and gas chromatography mass spectroscopy (GC-MS).
APA, Harvard, Vancouver, ISO, and other styles
22

AlMohamadi, Hamad, Abdulrahman Aljabri, Essam R. I. Mahmoud, Sohaib Z. Khan, Meshal S. Aljohani, and Rashid Shamsuddin. "Catalytic Pyrolysis of Municipal Solid Waste: Effects of Pyrolysis Parameters." Bulletin of Chemical Reaction Engineering & Catalysis 16, no. 2 (March 17, 2021): 342–52. http://dx.doi.org/10.9767/bcrec.16.2.10499.342-352.

Full text
Abstract:
Burning municipal solid waste (MSW) increases CO2, CH4, and SO2 emissions, leading to an increase in global warming, encouraging governments and researchers to search for alternatives. The pyrolysis process converts MSW to oil, gas, and char. This study investigated catalytic and noncatalytic pyrolysis of MSW to produce oil using MgO-based catalysts. The reaction temperature, catalyst loading, and catalyst support were evaluated. Magnesium oxide was supported on active carbon (AC) and Al2O3 to assess the role of support in MgO catalyst activity. The liquid yields varied from 30 to 54 wt% based on the experimental conditions. For the noncatalytic pyrolysis experiment, the highest liquid yield was 54 wt% at 500 °C. The results revealed that adding MgO, MgO/Al2O3, and MgO/AC declines the liquid yield and increases the gas yield. The catalysts exhibited significant deoxygenation activity, which enhances the quality of the pyrolysis oil and increases the heating value of the bio-oil. Of the catalysts that had high deoxygenation activity, MgO/AC had the highest relative yield. The loading of MgO/AC varied from 5 to 30 wt% of feed to the pyrolysis reactor. As the catalyst load increases, the liquid yield declines, while the gas and char yields increase. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
APA, Harvard, Vancouver, ISO, and other styles
23

Ding, Shang Hui, Mei Yu Gu, Ying Dong Jia, Teng Fei Chang, Ge Wang, and Chu Yang Tang. "Research Progress in Pyrolysis of Low-Rank Coals under Different Conditions." Advanced Materials Research 953-954 (June 2014): 1131–34. http://dx.doi.org/10.4028/www.scientific.net/amr.953-954.1131.

Full text
Abstract:
Coal is absolute dominance in reserves-to-production ratio terms. The development of fuels derived from pyrolysis of low-rank coals is beneficial to lower fossil fuels cost and greenhouse gas emissions. The research proposal briefly summarized energy situation and sustainable development strategy as they were by 2013 at first. Then some recent process in the understanding of the pyrolysis behaviors of coal was reviewed. The influencing factors of atmospheres, additives, and catalysts during coal pyrolysis will be followed to literature. The review paper on pyrolysis characteristics will achieve the development of advanced technologies for the clean and efficient utilization of low-rank coals
APA, Harvard, Vancouver, ISO, and other styles
24

Luo, Yan, Kang Wang, and Ling Fei. "The effects of activation conditions on physical properties of activated carbon." BioResources 15, no. 4 (August 21, 2020): 7640–47. http://dx.doi.org/10.15376/biores.15.4.7640-7647.

Full text
Abstract:
Porous carbons with a high porosity were successfully produced from fast pyrolysis pine wood char via a thermochemical method in which KOH was used as chemical activator. The effects of various weight ratios of KOH to pyrolysis char (0.65:1, 0.7:1, 1.0:1, 1.35:1, and 1.7:1) on the physical properties of activated carbons were investigated. When the weight ratio of KOH to pyrolysis char was 1.35:1, the prepared activated carbon had the highest surface area of 1140 m2/g with a total pore volume of 0.71 cm3/g, a microporous surface area of 957 m2/g, and a microporous specific volume of 0.51 cm3/g. As the weight ratio of KOH to pyrolysis char increased from 0.65 to 1.35, the prepared activated carbon had increases in total surface area, total pore volume, microporous surface area, and specific volume of micropores. However, there was a reverse trend when the weight ratio of KOH to pyrolysis char was higher than 1.35. The use of nitrogen as a flow gas resulted in much more developed activated carbon than without nitrogen. The experiment results suggested that activated carbon with high surface area could be prepared from pyrolysis char by adjusting the activation conditions.
APA, Harvard, Vancouver, ISO, and other styles
25

Tolkach, P. G., V. A. Basharin, and S. V. Chepur. "Toxic pulmonary edema due to inhalation of pyrolyzed polytetrafluoroethylene products in lab animals." Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situations, no. 3 (September 28, 2018): 80–85. http://dx.doi.org/10.25016/2541-7487-2018-0-3-80-85.

Full text
Abstract:
Relevance.Thermal decomposition of various polymeric materials occur in emergency situations associated with fires, with pulmonotoxicants releasing in the environment. During pyrolysis of polytetrafluoroethylene (Teflon), a highly toxic perfluoroisobutylene is produced.Intention.To create an experimental animal model of toxic pulmonary edema due to products of thermal decomposition of polytetrafluoroethylene.Methodology.Polytetrafluoroethylene underwent pyrolysys at 440–750 0С during 6 minutes. Toxic pulmonary edema was modeled on rats via inhalation of pyrolysis products of polytetrafluoroethylene. An amount of polytetrafluoroethylene burned under these conditions with resulting death of 50 % of rats during 1 day was (2.68 ± 0.60) g. The toxic pulmonary edema diagnosis was confirmed histologically and by lung/body ratio.Results.In the pyrolysis products of polytetrafluoroethylene, highly toxic perfluoroisobutylene was found via gas chromatography with mass spectrometric detection, with relative content of 85.9 %. Such an exposure during 15 min increased (p = 0.01) lung/body ratio in laboratory animals in 3 hours. The toxic pulmonary edema diagnosis was confirmed histologically (signs of alveolar edema). Animals started to die 7 hours after the pyrolysis products inhalation.Conclusion.In the study on rats, toxic pulmonary edema was modeled via inhalation of pyrolysis products of polytetrafluoroethylene. This model can be used for searching etiotropic and pathogenetic therapy for poisoning with pulmonotoxicants.
APA, Harvard, Vancouver, ISO, and other styles
26

Zhang, Guangwen, Zhongxing Du, Yaqun He, Haifeng Wang, Weining Xie, and Tao Zhang. "A Sustainable Process for the Recovery of Anode and Cathode Materials Derived from Spent Lithium-Ion Batteries." Sustainability 11, no. 8 (April 20, 2019): 2363. http://dx.doi.org/10.3390/su11082363.

Full text
Abstract:
The recovery of cathode and anode materials plays an important role in the recycling process of spent lithium-ion batteries (LIBs). Organic binders reduce the liberation efficiency and flotation efficiency of electrode materials derived from spent LIBs. In this study, pyrolysis technology is used to improve the recovery of cathode and anode materials from spent LIBs by removing organic binders. Pyrolysis characteristics of organics in electrode materials are investigated, and on this basis, the effects of pyrolysis parameters on the liberation efficiency of electrode materials are studied. Afterwards, flotation technology is used to separate cathode material from anode material. The results indicate that the optimum liberation efficiency of electrode materials is obtained at a pyrolysis temperature of 500 °C, a pyrolysis time of 15 min and a pyrolysis heating rate of 10 °C/min. At this time, the liberation efficiency of cathode materials is 98.23% and the liberation efficiency of anode materials is 98.89%. Phase characteristics of electrode materials cannot be changed under these pyrolysis conditions. Ultrasonic cleaning was used to remove pyrolytic residues to further improve the flotation efficiency of electrode materials. The cathode material grade was up to 93.89% with a recovery of 96.88% in the flotation process.
APA, Harvard, Vancouver, ISO, and other styles
27

Açıkalın, Korkut, Fatma Karaca, and Esen Bolat. "Pyrolysis of pistachio shell: Effects of pyrolysis conditions and analysis of products." Fuel 95 (May 2012): 169–77. http://dx.doi.org/10.1016/j.fuel.2011.09.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Honma, Sensho, Toshimitsu Hata, and Takashi Watanabe. "Effect of Catalytic Pyrolysis Conditions Using Pulse Current Heating Method on Pyrolysis Products of Wood Biomass." Scientific World Journal 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/720527.

Full text
Abstract:
The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800°C with Fe3O4. Pyrolysis oil compositions changed remarkably when formed in the presence of a catalyst compared to that obtained from the uncatalyzed pyrolysis of wood meal. We observed a tendency toward an increase in the ratio of polyaromatic hydrocarbons in the pyrolysis oil composition after catalytic pyrolysis at 800°C. Pyrolysis of biomass using pulse current heating and an adequate amount of catalyst is expected to yield a higher content of specific polyaromatic compounds.
APA, Harvard, Vancouver, ISO, and other styles
29

Raveh-Amit, Hadas, Florent Lemont, Gabriela Bar-Nes, Ofra Klein-BenDavid, Nissim Banano, Svetlana Gelfer, Patrice Charvin, Tahriri Bin Rozaini, Johann Sedan, and François Rousset. "Catalytic Pyrolysis of High-Density Polyethylene: Decomposition Efficiency and Kinetics." Catalysts 12, no. 2 (January 24, 2022): 140. http://dx.doi.org/10.3390/catal12020140.

Full text
Abstract:
Organic waste is generally characterized by high volume-to-weight ratios, requiring implementation of waste minimization processes. In the present study, the decomposition of high-density polyethylene (HDPE), was studied under thermal and catalytic pyrolysis conditions on two experimental systems. Firstly, pyrolytic conditions for HDPE decomposition were optimized in a laboratory-scale batch reactor. In order to maximize gas yields and minimize secondary waste, the effects of aluminosilicate catalysts, catalyst loading, and reaction temperature on decomposition efficiency were examined. Secondly, kinetics and reaction temperatures were studied on a large capacity thermobalance, especially adjusted to perform experiments under pyrolytic conditions at a larger scale (up to 20 g). The addition of catalysts was shown to enhance polymer decomposition, demonstrated by higher gas conversions. Condensable yields could be further minimized by increasing the catalyst to polymer ratio from 0.1 to 0.2. The most prominent reduction in pyrolysis temperature was obtained over ZSM-5 catalysts with low Si/Al ratios; however, this impact was accompanied by a slower reaction rate. Of the zeolites tested, the ZSM-5 catalyst with a Si/Al of 25 was found to be the most efficient catalyst for waste minimization and organic destruction, leading to high gas conversions (~90 wt%.) and a 30-fold reduction in solid waste mass.
APA, Harvard, Vancouver, ISO, and other styles
30

Ore, Odunayo T., and Festus M. Adebiyi. "A review on current trends and prospects in the pyrolysis of heavy oils." Journal of Petroleum Exploration and Production Technology 11, no. 3 (February 13, 2021): 1521–30. http://dx.doi.org/10.1007/s13202-021-01099-0.

Full text
Abstract:
AbstractIncreasing global demand for energy is an aftermath of an upsurge in world population and industrialization. The exploration of heavy oils such as oil sands, tight oils, and heavy oils, is thus becoming a necessity in a bid to alleviating the energy crisis. The processing of fossil fuels using conventional methods is known to have devastating effects on global warming and ocean acidification. This has brought about innovation and development of environmental-friendly processing technologies. Of these processing technologies available to date, pyrolysis is the most widely employed due to low operating complexity and economic cost. As revealed by the reviewed studies, the distribution of products formed during pyrolytic processes is a function of residence time, heating rate, the temperature of reaction, and reactor design. The latter significantly influenced the qualitative and quantitative yield of products formed during pyrolysis. Operating conditions of temperature, pressure, and catalyst are also influential factors in determining the product yields. Most research efforts in the last 30 years have identified that optimum production of pyrolytic oils occurred between thermal cracking temperature of 350 °C and 500 °C. The plausible mechanisms of pyrolysis are the free radical chain mechanism involving the homolytic cleavage of the C–C bond, and the electron transfer mechanism. This review pointed out the current status of the adoption of pyrolysis by petroleum and petrochemical industries as a processing technology for low-value heavy oils into high-value light fractions. The findings of the studies reviewed can help for better understanding of the optimum pyrolysis conditions required for maximum production of oils and gases. It will also help in carefully choosing the most sustainable approach in a bid to averting economic and environmental risks.
APA, Harvard, Vancouver, ISO, and other styles
31

Ahmad, Shahzad, Muhammad Ahmad, Khawar Naeem, Muhammad Humayun, S. Sebt-E-Zaeem, and Farrukh Faheem. "Oxidative desulfurization of tire pyrolysis oil." Chemical Industry and Chemical Engineering Quarterly 22, no. 3 (2016): 249–54. http://dx.doi.org/10.2298/ciceq150609038a.

Full text
Abstract:
This paper presents a low cost method for the purification of oils obtained from the pyrolysis of used tires. Oxidative desulfurization is a promising route for purification of tire pyrolysis oils as hydro-desulfurization may not be affordable for small scale industries. Different additives and acids have been employed for the enhancement of properties of pyrolytic oils. The experimental conditions were kept identical throughout, i.e. atmospheric pressure and 50?C temperature for comparison of performance of various additives. The use of hydrogen peroxide-acetic acid mixture (10 wt.%) was found more economical and effective in desulfurization and improvement of fuel properties of sample oils. The contribution of sulfuric acid in desulfurization and decreasing viscosity was also satisfactory but due to high price of concentrated sulfuric acid its use may not be economical. Calcium oxide and Fuller?s earth was not found to be effective in desulfurization. Results indicate that oxidative desulfurization could render tire pyrolysis oils suitable for blending as heating fuel.
APA, Harvard, Vancouver, ISO, and other styles
32

Mulholland, George W., Marit Meyer, David L. Urban, Gary A. Ruff, Zeng-guang Yuan, Victoria Bryg, Thomas Cleary, and Jiann Yang. "Pyrolysis Smoke Generated Under Low-Gravity Conditions." Aerosol Science and Technology 49, no. 5 (March 6, 2015): 310–21. http://dx.doi.org/10.1080/02786826.2015.1025125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Rushdi, Ahmed I., Gilles Ritter, Joan O. Grimalt, and Bernd R. T. Simoneit. "Hydrous pyrolysis of cholesterol under various conditions." Organic Geochemistry 34, no. 6 (June 2003): 799–812. http://dx.doi.org/10.1016/s0146-6380(03)00016-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Mohr, K., Ch Nonn, and J. Jager. "Behaviour of PCDD/F under pyrolysis conditions." Chemosphere 34, no. 5-7 (March 1997): 1053–64. http://dx.doi.org/10.1016/s0045-6535(97)00407-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Tas, Albert C., and Jan van der Greef. "Pyrolysis—mass spectrometry under soft ionization conditions." TrAC Trends in Analytical Chemistry 12, no. 2 (February 1993): 60–66. http://dx.doi.org/10.1016/0165-9936(93)87052-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bykov, V. I., S. M. Lomakin, S. B. Tsybenova, and S. D. Varfolomeev. "Optimal temperature conditions of carbonaceous feedstock pyrolysis." Doklady Chemistry 470, no. 2 (October 2016): 302–6. http://dx.doi.org/10.1134/s0012500816100025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Mingazzini, Claudio, Alida Brentari, Federica Burgio, Emiliano Burresi, Matteo Scafè, Luciano Pilloni, Daniele Caretti, and Daniele Nanni. "Optimization of a Pyrolysis Procedure for Obtaining SiC-SiCf CMC by PIP for Thermostructural Applications." Advances in Science and Technology 77 (September 2012): 153–58. http://dx.doi.org/10.4028/www.scientific.net/ast.77.153.

Full text
Abstract:
Polymer Impregnation Pyrolysis (PIP) is a cost effective technique for obtaining Ceramic Matrix Composites (CMC) modified with nanoparticles. Commercial UBE polymeric precursor (Tyranno polymer VL-100, diluted in xylene) of a SiC ceramic matrix (with 11 wt% O and 2 wt% Ti) was used to infiltrate 100x85x3 mmSuperscript text3 SiC felts (Tyranno ZM fibers, diameter 14 microns, 800 filament/yarn, 270 g/mSuperscript text2, with 9 wt% O and 1 wt% Zr), applying different pyrolysis procedures. In particular, pyrolysis was performed in two conditions: 1) at 1000 °C for 60 min; 2) at 900 °C for 120 min. A pyrolysis at 900 °C could be more convenient since it can be easily performed in a steel furnace, without a refractory lining. The SiC felts were pretreated by CVD (Chemical Vapour Deposition) in order to deposit a pyrolytic carbon interphase (about 0.1 microns). Impregnation was performed under vacuum, and drying was carried out in an explosion-proof heating oven. Pyrolysis at 900°C was performed in a AISI 310S austenitic steel furnace, under nitrogen flow. Geometric density was monitored during densification. Mechanical characterisation (bending tests at room temperature, following UNI EN 658-3:2002) was performed after 11 PIP cycles. The results were used to compare the influence of pyrolysis temperature on densification.
APA, Harvard, Vancouver, ISO, and other styles
38

Dong, Fuke, Zijun Feng, Dong Yang, Yangsheng Zhao, and Derek Elsworth. "Permeability Evolution of Pyrolytically-Fractured Oil Shale under In Situ Conditions." Energies 11, no. 11 (November 5, 2018): 3033. http://dx.doi.org/10.3390/en11113033.

Full text
Abstract:
In-situ injection of steam for heating of the subsurface is an efficient method for the recovery of oil and gas from oil shale where permeability typically evolves with temperature. We report measurements on Jimusar oil shales (Xinjiang, China) at stepped temperatures to 600 °C and under recreated in situ triaxial stresses (15 MPa) and recover permeability evolution with temperature and stress. Initial very low permeability evolves with the temperature above an initial threshold temperature at high rate before reaching a plateau in permeability above a peak temperature. The threshold temperature triggering the initial rapid rise in permeability is a function of triaxial stresses. For Jimusar oil shale, this threshold temperature ranges from 200 °C to 250 °C for burial depths of 500 m and from 350 °C to 400 °C for burial depths of 1000 m. This rapid rise in permeability correlates with the vigor of pyrolysis and directly scales with the production rate of pyrolysis-derived gas production. The permeability increases with temperature to a plateau in peak permeability that occurs at a peak-permeability temperature. This peak temperature is insensitive to stress and is in the range 450 °C to 500 °C for all Jimusar samples. Pyrolysis plays an important role in the stage of rapid permeability evolution with this effect stopping once pyrolysis is essentially complete. At these ultimate high temperatures, permeability exhibits little reduction due to stress and remains elevated due to the vigor of the pyrolysis. These results effectively demonstrate that oil shale may be transformed by pyrolysis from a tight porous medium into highly permeable medium and that oil and gas may be readily recovered from it.
APA, Harvard, Vancouver, ISO, and other styles
39

Ganapathy Sundaram, E., and E. Natarajan. "Pyrolysis of Coconut Shell: An Experimental Investigation." Journal of Engineering Research [TJER] 6, no. 2 (December 1, 2009): 33. http://dx.doi.org/10.24200/tjer.vol6iss2pp33-39.

Full text
Abstract:
Fixed-bed slow pyrolysis experiments of coconut shell have been conducted to determine the effect of pyrolysis temperature, heating rate and particle size on the pyrolysis product yields. The effect of vapour residence time on the pyrolysis yield was also investigated by varying the reactor length. Pyrolysis experiments were performed at pyrolysis temperature between 400 and 600°C with a constant heating rate of 60°C/min and particle sizes of 1.18-1.80 mm. The optimum process conditions for maximizing the liquid yield from the coconut shell pyrolysis in a fixed bed reactor were also identified. The highest liquid yield was obtained at a pyrolysis temperature of 550 °C, particle size of 1.18-1.80 mm, with a heating rate of 60 °C/min in a 200 mm length reactor. The yield of obtained char, liquid and gas was 22-31 wt%, 38-44 wt% and 30-33 wt% respectively at different pyrolysis conditions. The results indicate that the effects of pyrolysis temperature and particle size on the pyrolysis yield are more significant than that of heating rate and residence time. The various characteristics of pyrolysis oil obtained under the optimum conditions for maximum liquid yield were identified on the basis of standard test methods.
APA, Harvard, Vancouver, ISO, and other styles
40

Song, Xuyan, Min Wei, Qiang Gao, Xi Pan, Junpeng Yang, Fan Wu, and Hongyun Hu. "Influence of Phenethyl Acetate and Naphthalene Addition before and after Pyrolysis on the Quantitative Analysis of Bio-Oil." Energies 13, no. 23 (November 25, 2020): 6202. http://dx.doi.org/10.3390/en13236202.

Full text
Abstract:
The condensation-collection and quantitative analysis of bio-oil limit its component investigation and utilization. In order to find a convenient method for the analysis of bio-oil, the present study conducted an attempt for bio-oil quantitative analysis with the addition of internal standards before pyrolysis. Based on their good thermal stability, phenethyl acetate and naphthalene were selected as standards in the study and experiments were carried out to compare the effects of two added modes (adding into the biowaste before pyrolysis or adding into bio-oil after pyrolysis) on the bio-oil analysis. The results showed that both phenethyl acetate and naphthalene were mainly volatilized under testing conditions, which could be transferred into the oil with the volatile matters during biowaste pyrolysis. Through the co-pyrolysis experiments of the internal standards with lignin and cellulose, almost no interactions were found between the internal standards and such components. Furthermore, adding these standards before pyrolysis hardly affected the properties of noncondensable gas and biochar from the used biowaste samples (tobacco and sawdust waste). Compared with the bio-oil analysis results via traditional methods by adding standards into the bio-oil after pyrolysis, the results regarding the component distribution characteristics of the bio-oil were similar using the proposed method through the addition of standards before pyrolysis. Considering adequate mixing of the added standards (before pyrolysis) in the generated bio-oil, the proposed method could partly help to avoid inaccurate analysis of bio-oil components caused by incomplete collection of the pyrolytic volatiles.
APA, Harvard, Vancouver, ISO, and other styles
41

Helleur, R. J., and Pierre Thibault. "Optimization of pyrolysis–desorption chemical ionization mass spectrometry and tandem mass spectrometry of polysaccharides." Canadian Journal of Chemistry 72, no. 2 (February 1, 1994): 345–51. http://dx.doi.org/10.1139/v94-053.

Full text
Abstract:
The operating conditions for pyrolysis–desorption ammonia chemical ionization mass spectrometry and tandem mass spectrometry have been optimized and the technique evaluated for the production and analysis of structurally-informative pyrolytic fragmentation ions corresponding to intact anhydrohexose oligosaccharides, using amylose as the model polysaccharide. Among the various parameters examined it was found that the nature of the solvent used to adhere the sample to the emitter coil and the configuration of the emitter and the rate at which it is heated all play important roles in determining the efficiency of the pyrolytic process and the production of high mass fragment ions. Adjustment of reagent gas pressure together with source temperature also influence the chemical integrity of high mass oligomeric pyrolysis products. Under optimal operating conditions using ammonia reagent gas, the analyses of cellulose, laminarin, agars, and chitin gave relatively abundant ions corresponding to ammonium (or protonated) adducts of up to anhydrohexose tetrasaccharide. More importantly, the generation of such higher mass fragment ions provided a sustained ionic current of sufficient duration to perform tandem mass spectrometric analyses.
APA, Harvard, Vancouver, ISO, and other styles
42

Zhou, Rui, Hanwu Lei, and James Julson. "The effects of pyrolytic conditions on microwave pyrolysis of prairie cordgrass and kinetics." Journal of Analytical and Applied Pyrolysis 101 (May 2013): 172–76. http://dx.doi.org/10.1016/j.jaap.2013.01.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Pereira, J., F. A. Agblevor, and S. H. Beis. "The Influence of Process Conditions on the Chemical Composition of Pine Wood Catalytic Pyrolysis Oils." ISRN Renewable Energy 2012 (December 19, 2012): 1–9. http://dx.doi.org/10.5402/2012/167629.

Full text
Abstract:
Pine wood samples were used as model feedstock to study the properties of catalytic fast pyrolysis oils. The influence of two commercial zeolite catalysts (BASF and SudChem) and pretreatment of the pine wood with sodium hydroxide on pyrolysis products were investigated. The pyrolysis oils were first fractionated using column chromatography and characterized using GC-MS. Long chain aliphatic hydrocarbons, levoglucosan, aldehydes and ketones, guaiacols/syringols, and benzenediols were the major compounds identified in the pyrolysis oils. The catalytic pyrolysis increased the polycyclic hydrocarbons fraction. Significant decreases in phthalate derivatives using SudChem and long chain aliphatics using BASF catalyst were observed. Significant amounts of aromatic heterocyclic hydrocarbons and benzene derivatives were formed, respectively, using BASF and SudChem catalysts. Guaiacyl/syringyl and benzenediols derivatives were partly suppressed by the zeolite catalysts, while the sodium hydroxide treatment enriched phenolic derivatives. Zeolite catalyst and sodium hydroxide were employed together; they showed different results for each catalyst.
APA, Harvard, Vancouver, ISO, and other styles
44

Kim, Ji Hyun, Bhum Keun Song, Kyoung Jae Min, Jung Chul Choi, and Hwa Seong Eun. "Optimizing Heat Treatment Conditions for Measuring CFRP and GFRP Resin Impregnation." Materials 15, no. 22 (November 17, 2022): 8182. http://dx.doi.org/10.3390/ma15228182.

Full text
Abstract:
As the use of carbon-fiber-reinforced plastic (CFRP) and glass-fiber-reinforced plastic is frequent in the field of construction, a method for measuring FRP resin content is needed. Herein, thermal gravimetric analysis (TGA) was employed to optimize the heat treatment conditions (temperature and time) for determining the resin content in which only the resin was removed without fiber heat loss. Accordingly, the measurement was performed in 100 °C increments at a resin pyrolysis temperature up to 800 °C with a heat treatment time of 4 h to continuously observe the degree of thermal decomposition of the resin. The thermal decomposition of unsaturated polyester was confirmed at the melting point (350 ℃) regardless of the type of fibers used as reinforcement. In the case of CFRP, most of the resin decomposition occurred at 300 °C. Notably, the resin was removed at a pyrolysis temperature of 400 ℃ and almost no change in weight was observed. However, at a pyrolysis temperature of 500 °C or higher, the thermal decomposition of the fibers occurred partially. The results show that the composite resin was removed within 10 min at a pyrolysis temperature of 400 °C in an air atmosphere when using TGA.
APA, Harvard, Vancouver, ISO, and other styles
45

Nugraha, Aji Satria, Setiadi, and Tania Surya Utami. "The Effect of pyrolysis conditions to produce levoglucosan from rice straw." E3S Web of Conferences 67 (2018): 03026. http://dx.doi.org/10.1051/e3sconf/20186703026.

Full text
Abstract:
The industrial sectors that produce synthetic chemicals and and polymers rely heavily on fossil resources. Rice straw is very abundant in Indonesia and can be used as a substitute for fossil resources to produce petrochemical precursors. It is known that cellulose component is the main source for LG formation. Due to high contain of cellulose, the potential of rice straw can be transform by pyrolysis to produce bio-oils and derivative products towards levoglucosan (LG) should be developed. Levoglucosan is an important intermediate compound as it can be convert to the precursor of bio-polymer adipic acid, bio-ethanol, etc. Nowadays it’s still rarely research focused on this mechanism route producing LG through pyrolysis. LG then can run into a further reaction and produce derivative products. In order to obtain the highest yield of LG in bio-oil, a condition that may inhibit the further reaction of LG during pyrolysis takes place. The factor of biomass source and composition, temperature, and holding time (adjusted by N2 feed) most likely greatly affect the product composition formed at the end of pyrolysis. In this study, fast-pyrolysis of rice straw was performed in fixed-bed reactor (5 grams of biomass) under different temperature ranges (450 to 600 °C), N2 flow rate (1200 to 1582 ml/min) to maximize the yield of LG. The content of LG on bio-oil was measured by GC-MS instrument. The maximum yield of LG (67.78% of area) was obtained at an optimal temperature of 500°C with holding time of 1.35 s.
APA, Harvard, Vancouver, ISO, and other styles
46

Ola, F. A., and S. O. Jekayinfa. "Pyrolysis of sandbox (Hura crepitans) shell: Effect  of pyrolysis parameters on biochar yield." Research in Agricultural Engineering 61, No. 4 (June 2, 2016): 170–76. http://dx.doi.org/10.17221/69/2013-rae.

Full text
Abstract:
Pyrolysis of sandbox shell was carried out with the aim of investigating the effect of pyrolysis parameters on the pyrolysis process and identifies production conditions for the yield of biochar. Parameters investigated were heating temperature (400, 500 and 600&deg;C), heating time (10, 20, and 30 min) and particle size of feedstock (0&ndash;1.0, 1.0&ndash;2.5 and 2.5&ndash;5.0&nbsp;mm) in a laboratory batch pyrolysis process. The experiment was designed by applying response surface methodology through a three-factor full factorial design. The quadratic polynomial model obtained explains adequately the modelled response with coefficient of correlation, R<sup>2</sup> value of 0.8698. All the three variables significantly affected the biochar yield from sandbox shell, with heating temperature being the most effective followed by heating time and particle size of feedstock. Maximum biochar yield of 39.65% wt. occurred at 400&deg;C heating temperature and 10 min heating time with 1.0&ndash;2.5 mm particle size.
APA, Harvard, Vancouver, ISO, and other styles
47

Zhang, Guang Ying, Ying Fei Hou, Chun Hu Li, Wei Zhu, and Jian Zhang. "Process Optimization of Preparation and Performance Characterization of Oily Sludge-Based Adsorbent Material by Pyrolysis." Advanced Materials Research 79-82 (August 2009): 1971–74. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.1971.

Full text
Abstract:
The oily sludge-based adsorbents for flue gas desulfurization were prepared by pyrolysis. Based on benzene adsorptivity, the conditions of pyrolysis process were optimized. The optimum prepared conditions of adsorbent material were in nitrogen atmosphere and 550°C, 4h, 10°C/min for the pyrolysis temperature, pyrolysis time and heating rate, respectively. In this case, the maximum benzene adsorbability was 60.12mg/g. Moreover, the main influencing factor was pyrolysis temperature, secondly was pyrolysis time and finally was heating rate. The sludge-based adsorbents were appropriate for flue gas desulfurization. The sulfur capacity of adsorbents via a flue gas desulfurization test after subsequent processing was about 3% and breakthrough time could keep to 109 min.
APA, Harvard, Vancouver, ISO, and other styles
48

Liu, Lu, Yali Zheng, Peng Gong, Guangcai Shao, and Xu Huang. "Influence of preparation conditions on the physical structure and surface properties of enteromorpha clathrate bio-char." MATEC Web of Conferences 358 (2022): 01032. http://dx.doi.org/10.1051/matecconf/202235801032.

Full text
Abstract:
Bio-char with rich pore structure was obtained by pyrolysis of enteromorpha clathrate (EC) and subsequent activation process. The effect of pyrolysis methods, KOH concentrations used in activation and heating rate was studied. A new method that combined pyrolysis and activation into one step was proposed. The bio-char obtained via slow pyrolysis at 450°C and 700°C had a certain pore structure. The bio-char obtained via fast pyrolysis had almost no effective pore structure and a large amount of organic matters still exist in the bio-char, while it had the largest specific surface area after activation by KOH at 800°C. Therefore, bio-char that is a kind of by-product in the process of making bio-oil by fast pyrolysis of EC is worthy of further exploration. As the KOH concentration of the impregnated solution increased, the specific surface area first increased and then decreased. The bio-char obtained via impregnation and activation with 3 mol/L KOH had the highest specific surface area (1128.85 m2/g) and pore volume (0.789 cm3/g). If the processes of pyrolysis and activation were combined into one step via mixing KOH and EC, the structure of cell tissue in the EC was reserved. The sample that prepared by mixing 2 g dried EC with 0.1 g KOH powder has the highest specific surface area (724.66 m2/g) and better pore structure. The best heating rate was 5°C/min for impregnation method and 2°C/min for one step method.
APA, Harvard, Vancouver, ISO, and other styles
49

Chen, Guan-Bang, Jia-Wen Li, Hsien-Tsung Lin, Fang-Hsien Wu, and Yei-Chin Chao. "A Study of the Production and Combustion Characteristics of Pyrolytic Oil from Sewage Sludge Using the Taguchi Method." Energies 11, no. 9 (August 28, 2018): 2260. http://dx.doi.org/10.3390/en11092260.

Full text
Abstract:
Sewage sludge is a common form of municipal solid waste, and can be utilized as a renewable energy source. This study examines the effects of different key operational parameters on sewage sludge pyrolysis process for pyrolytic oil production using the Taguchi method. The digested sewage sludge was provided by the urban wastewater treatment plant of Tainan, Taiwan. The experimental results indicate that the maximum pyrolytic oil yield, 10.19% (18.4% on dry ash free (daf) basis) by weight achieved, is obtained under the operation conditions of 450 °C pyrolytic temperature, residence time of 60 min, 10 °C/min heating rate, and 700 mL/min nitrogen flow rate. According to the experimental results, the order of sensitivity of the parameters that affect the yield of sludge pyrolytic oil is the nitrogen flow rate, pyrolytic temperature, heating rate and residence time. The pyrolysis and oxidation reactions of sludge pyrolytic oil are also investigated using thermogravimetric analysis. The combustion performance parameters, such as the ignition temperature, burnout temperature, flammability index and combustion characteristics index are calculated and compared with those of heavy fuel oil. For the blend of sludge pyrolytic oil with heavy fuel oil, a synergistic effect occurs and the results show that sludge pyrolytic oil significantly enhances the ignition and combustion of heavy fuel oil.
APA, Harvard, Vancouver, ISO, and other styles
50

Wang, Wan Fu, Peng Liu, Li Duan, and Jing Jing Wang. "Study on the Technology of Resources Utilization of Oilfield Heavy Oil Sewage Sludge." Advanced Materials Research 524-527 (May 2012): 1755–62. http://dx.doi.org/10.4028/www.scientific.net/amr.524-527.1755.

Full text
Abstract:
The paper introduces the whole process ideas of pyrolysis and resources utilization of the heavy oil sewage sludge. Experiments of pyrolysis temperature optimization, the yields and composition analysis of pyrolysis products, the conditions optimization experiment of recycling aluminum salt from pyrolysis residue and the analysis of pyrolysis residue adsorptivity were carried out. These experiments shown that: when pyrolysis temperature was 600°C, oil content of pyrolysis residue could be controlled within 3.0‰, oil recovery rate could hit 10%, and C1-C3 hydrocarbons components of pyrolysis gas could reach 90%; gasoline, kerosene, diesel and other light components in pyrolysis oil could be amounted to 60%. When the following conditions were chosen: decarburization temperature of pyrolysis residue was 700-750°C, calcination time was 0.5-1h, acid dissolution time at normal temperature was 2-5h, concentration of HCl was 25-30%, molar ratio of Al and HCl was 1:1.0-1:1.2, aluminum dissolution rate could hit 90%, aluminum concentration of dissolved liquid could hit 10%. When pyrolysis final temperature was 600°C, residue with adsorption properties on the removal effect of COD and oil from oilfield oil sewage could be better than activated carbon.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography