Academic literature on the topic 'Pyrolyzer'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pyrolyzer.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pyrolyzer"
Osman, Noridah Binti, Yoshimitsu Uemura, Hafizah Afif, and Ahmad H. Rajab Aljuboori. "Pyrolyzed Waste Engine Oil Properties by Microwave-Induced Reactor." Applied Mechanics and Materials 625 (September 2014): 673–76. http://dx.doi.org/10.4028/www.scientific.net/amm.625.673.
Full textNovita, Sri Aulia, Santosa Santosa, Nofialdi Nofialdi, Andasuryani Andasuryani, and Ahmad Fudholi. "Artikel Review: Parameter Operasional Pirolisis Biomassa." Agroteknika 4, no. 1 (June 30, 2021): 53–67. http://dx.doi.org/10.32530/agroteknika.v4i1.105.
Full textP, Rakhesh I., and Rajkumar S. R. "Experimental Comparison of Yield of Bio-Oil in Fixed Bed Pyrolyzer." International Journal of Trend in Scientific Research and Development Volume-2, Issue-2 (February 28, 2018): 860–63. http://dx.doi.org/10.31142/ijtsrd9526.
Full textYAMASHITA, Hiromi, Wei-Chun Xu, Toshiya JINOKA, Vidyadhar SHROTRI, Masayuki HAJIMA, and Akira TOMIT. "Flash Hydropyrolysis of Coal using Curie-point Pyrolyzer." Journal of the Japan Institute of Energy 71, no. 3 (1992): 189–94. http://dx.doi.org/10.3775/jie.71.189.
Full textWADA, Makio, Shouei FUJISHIGE, Shigeki UCHINO, and Naoki OGURI. "Pyrolysis of Disaccharides Using a Curie-Point Pyrolyzer." KOBUNSHI RONBUNSHU 53, no. 3 (1996): 201–8. http://dx.doi.org/10.1295/koron.53.201.
Full textKwon, Gu-Joong, Dae-Young Kim, Satoshi Kimura, and Shigenori Kuga. "Rapid-cooling, continuous-feed pyrolyzer for biomass processing." Journal of Analytical and Applied Pyrolysis 80, no. 1 (August 2007): 1–5. http://dx.doi.org/10.1016/j.jaap.2006.12.012.
Full textPoddar, S., S. De, and R. Chowdhury. "Catalytic pyrolysis of lignocellulosic bio-packaging (jute) waste – kinetics using lumped and DAE (distributed activation energy) models and pyro-oil characterization." RSC Advances 5, no. 120 (2015): 98934–45. http://dx.doi.org/10.1039/c5ra18435e.
Full textHIGUCHI, Tetsuo. "Development and Applications of Tandem Pyrolyzer-GC-MS System." Journal of the Mass Spectrometry Society of Japan 51, no. 1 (2003): 317–18. http://dx.doi.org/10.5702/massspec.51.317.
Full textVan Buren, Daniel J., Thomas J. Mueller, Christopher J. Rosenker, John A. Barcase, and Kelly A. Van Houten. "Custom pyrolyzer for the pyrolysis of chemical warfare agents." Journal of Analytical and Applied Pyrolysis 154 (March 2021): 105007. http://dx.doi.org/10.1016/j.jaap.2020.105007.
Full textGao, Xi, Liqiang Lu, Mehrdad Shahnam, William A. Rogers, Kristin Smith, Katherine Gaston, David Robichaud, et al. "Assessment of a detailed biomass pyrolysis kinetic scheme in multiscale simulations of a single-particle pyrolyzer and a pilot-scale entrained flow pyrolyzer." Chemical Engineering Journal 418 (August 2021): 129347. http://dx.doi.org/10.1016/j.cej.2021.129347.
Full textDissertations / Theses on the topic "Pyrolyzer"
Aquino, Jean FranÃa Santos. "Study of behavior of glasses as a function of temperature for use as substrate in photovoltaic applications and the theoretical study of a pyrolyzer." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12592.
Full textO uso de substrato de vidro para ser utilizado em sistema fotovoltaico à muito comum, no entanto, os substratos sÃo submetidos a elevadas temperaturas como no caso de obtenÃÃo de vidro recoberto com SnO2 (diÃxido de estanho), onde a temperatura de operaÃÃo atinge valores prÃximos a 600ÂC. Desta forma, um estudo do comportamento da dilataÃÃo do vidro em diferentes espessuras e sob a temperatura de 600ÂC foi realizado com o objetivo de observar a influÃncia dos mesmos nos vidros utilizados como substratos e, assim, prevenir os possÃveis defeitos de trinca e quebra de vidro dentro do forno. AlÃm do estudo associado ao vidro, um projeto teÃrico de um pirolisador com essas caracterÃsticas foi idealizado para a obtenÃÃo das camadas de SnO2 sobre o vidro, agregando inovaÃÃes como o uso de gÃs natural queimando em meio poroso como fonte de calor e o uso de um pirolisador para substituir os fornos resistivos.
The use of a glass substrate for use in photovoltaic system is very common, however, the substrates are subjected to high temperatures as in the case of obtaining glass covered with SnO2 (tin dioxide), where the operating temperature reaches values close to 600 Â C. Thus, a study of the glass expansion behavior with different thicknesses under temperature of 600 Â C was conducted in order to observe the influence of the same glass used as substrates, and thus, prevent possible defects cracks and broken glass inside the oven. Besides the study associated with the glass, a theoretical design of a pyrolyzer with these characteristics has been designed for obtaining layers of SnO2 on the glass, adding innovations such as the use of natural gas burning in porous media as heat source and the use of a pyrolyzer to replace the resistive furnaces.
Fischer, Andreas [Verfasser], Wolfram [Akademischer Betreuer] Sander, and Martina [Akademischer Betreuer] Havenith. "Development of a molecular beam mass spectrometer and a supersonic jet expansion pyrolyzer for the characterization of reactive organic intermediates / Andreas Fischer. Gutachter: Wolfram Sander ; Martina Havenith." Bochum : Ruhr-Universität Bochum, 2016. http://d-nb.info/1089006306/34.
Full textSmith, Phillip R. "Generation of Biomarkers from Anthrax Spores by Catalysis and Analytical Pyrolysis." Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd1005.pdf.
Full textKrauss, Hans-Joachim. "Laserstrahlinduzierte Pyrolyse präkeramischer Polymere." Bamberg Meisenbach, 2006. http://d-nb.info/986458899/04.
Full textBandlamudi, Bhagat Chandra. "An investigation of carbon residue from pyrolyzed scrap tires." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=1084.
Full textTitle from document title page. Document formatted into pages; contains ix, 129 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 114-120).
Coben, Collin. "Use of Pyrolyzed Soybean Hulls as Fillers in Polyolefins." University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1590601881643166.
Full textTam, Tina Sui-Man. "Pyrolysis of oil shale in a spouted bed pyrolyser." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26742.
Full textApplied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
Grioui, Najla. "Etude thermocinétique de la pyrolyse du bois : application à la pyrolyse du bois d'olivier." Nancy 1, 2006. http://www.theses.fr/2006NAN10111.
Full textA theoretical and experimental study of thermo-kinetic of this wood particles pyrolysis has been developed. The thermophysical properties of the olive wood such as apparent density, porosity, permeability and thermal conductivity have been determined experimentally by different measurement methods. A kinetic measurements are carried out by thermogravimetric analysis in isothermal mode in the temperature range between 498 K and 648 K. The experimental curves obtained are interpreted by a kinetic model based on several decomposition stages. The kinetic model coupled with energy conservation equation leads to a non linear equations system which has been solved iteratively by using an implicit finite differences method. The obtained results are in good agreement with the available experimental data. The developed model is then applied to the pyrolysis of a cylindrical olive wood particle in different operating condition to simulate the effect of the reactor temperature and the particle size on the evolution of the temperature profile as well as the residual mass inside the thick particle
LE, BLEVEC JEAN MARC. "Ultra-pyrolyse du 1,2-dichloroethane." Compiègne, 1993. http://www.theses.fr/1993COMP585S.
Full textSorge, Cornelia. "Struktur der organischen Substanz in Böden und Partikelgrössenfraktionen : Pyrolyse-Gaschromatographie Massenspektrometrie und Pyrolyse-Feldionisation Massenspektrometrie /." Kiel : Institut für Pflanzenernährung und Bodenkunde, Universität Kiel, 1995. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=006976086&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textBooks on the topic "Pyrolyzer"
Brauer, Samuel. Advanced structural non-pyrolyzed fibers. Norwalk, CT: Business Communications Co., 1997.
Find full textThorndyke, S. J. Evaluation of a prototype RDF pyrolyser for Ontario Ministry of Energy. Mississauga, ON: Ontario Research Foundation, 1986.
Find full textGraf, Frank. Pyrolyse- und Aufkohlungsverhalten von C2H2 bei der Vakuumaufkohlung von Stahl. Karlsruhe: Univ.-Verl. Karlsruhe, 2007.
Find full textKhan, Rafi Ullah. Vacuum gas carburizing - fate of hydrocarbons. Karlsruhe: Univ.-Verl. Karlsruhe, 2008.
Find full textAbfallbehandlung in thermischen Verfahren: Verbrennung, Vergasung, Pyrolyse, Verfahrens- und Anlagenkonzepte. Wiesbaden: Vieweg+Teubner Verlag, 2001.
Find full textÉtude de performance d'une unité de developpement de procédé pour la pyrolyse sous vide de la biomasse. Ottawa: Bioenergy Development Program, 1988.
Find full textBiomass Combustion Science Technology And Engineering. Woodhead Publishing Ltd, 2013.
Find full textHudlic'ky, Milos. Fluorine Chemistry for Organic Chemists. Oxford University Press, 2000. http://dx.doi.org/10.1093/oso/9780195131567.001.0001.
Full textBook chapters on the topic "Pyrolyzer"
Klinger, Denise, Steffen Krzack, Christian Berndt, Philipp Rathsack, Mathias Seitz, Wilhelm Schwieger, Thomas Hahn, et al. "Pyrolyse." In Stoffliche Nutzung von Braunkohle, 297–426. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-46251-5_19.
Full textHofbauer, Hermann, Martin Kaltschmitt, Frerich Keil, Dietrich Meier, and Johannes Welling. "Pyrolyse." In Energie aus Biomasse, 1183–265. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-47438-9_14.
Full textMeier, Dietrich, Johannes Welling, Bernward Wosnitza, and Hermann Hofbauer. "Pyrolyse." In Energie aus Biomasse, 671–709. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85095-3_12.
Full textScholz, Reinhard, Michael Beckmann, and Frank Schulenburg. "Pyrolyse." In Abfallbehandlung in thermischen Verfahren, 115–21. Wiesbaden: Vieweg+Teubner Verlag, 2001. http://dx.doi.org/10.1007/978-3-322-90854-4_6.
Full textSchulten, H. R., and B. Plage. "Pyrolyse-Massenspektrometrie." In Analytiker-Taschenbuch, 225–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-72590-6_7.
Full textSchulten, H. R., and B. Plage. "Pyrolyse-Massenspektrometrie." In Analytiker-Taschenbuch, 225–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75204-9_7.
Full textPeng, Zhiwei, Jiann-Yang Hwang, Wayne Bell, Matthew Andriese, and Shuqian Xie. "Microwave Dielectric Properties of Pyrolyzed Carbon." In 2nd International Symposium on High-Temperature Metallurgical Processing, 77–83. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118062081.ch10.
Full textIsrael, G., M. Cabane, J. F. Brun, H. Niemann, S. Way, W. Riedler, M. Steller, F. Raulin, and D. Coscia. "Huygens Probe Aerosol Collector Pyrolyser Experiment." In The Cassini-Huygens Mission, 433–68. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-3251-2_12.
Full textMasson, Ir H. A. "A Twin Fluid Bed Pyrolyser Combustor System." In Research in Thermochemical Biomass Conversion, 725–43. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2737-7_55.
Full textAngelina Thanga Ajisha, M., Jaslin J. Christopher, A. S. Jebamalar, and I. Regina Mary. "Enhancement of Soil Using Pyrolyzed Cocus nucifera Midrib Carbon." In Springer Proceedings in Materials, 565–74. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8319-3_56.
Full textConference papers on the topic "Pyrolyzer"
Marmur, Breanna L., and Theodore J. Heindel. "Effect of Biomass Inlet Concentration on Mixing in a Double Screw Pyrolyzer." In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-34422.
Full textSerio, Michael, Joseph E. Cosgrove, Marek A. Wójtowicz, Kanapathipillai Wignarajah, and John W. Fisher. "A Prototype Microwave Pyrolyzer for Solid Wastes." In 43rd International Conference on Environmental Systems. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-3371.
Full textSerio, Michael A., Erik Kroo, Rosemary Bassilakis, Marek A. Wójtowicz, and Eric M. Suuberg. "A Prototype Pyrolyzer for Solid Waste Resource Recovery in Space." In 31st International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-2349.
Full textSerio, Michael A., Erik Kroo, Marek A. Wójtowicz, Eric M. Suuberg, and Tom Filburn. "An Improved Pyrolyzer for Solid Waste Resource Recovery in Space." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2002. http://dx.doi.org/10.4271/2002-01-2402.
Full textKingston, Todd A., and Theodore J. Heindel. "Visualization and Composition Analysis to Quantify Mixing in a Screw Pyrolyzer." In ASME 2013 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/fedsm2013-16054.
Full textFantozzi, Francesco, and Umberto Desideri. "Micro Scale Slow-Pyrolysis Rotary Kiln for Syngas and Char Production From Biomass and Waste: Design and Construction of a Reactor Test Bench." In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-54186.
Full textFantozzi, Francesco, Bruno D’Alessandro, Pietro Bartocci, Umberto Desideri, and Gianni Bidini. "Performance Evaluation of the IPRP Technology When Fueled With Biomass Residuals and Waste Feedstocks." In ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-59891.
Full textFantozzi, Francesco, Bruno D’Alessandro, and Umberto Desideri. "An IPRP (Integrated Pyrolysis Regenerated Plant) Microscale Demonstrative Unit in Central Italy." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-28000.
Full textColantoni, Simone, Alessandro Corradetti, Umberto Desideri, and Francesco Fantozzi. "Thermodynamic Analysis and Possible Applications of the Integrated Pyrolysis Fuel Cell Plant (IPFCP)." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27713.
Full textArnulfi, Gianmario L., and Marco Fabris. "A Stand-Alone Syngas-Fuelled Small-Size CHP GT." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-63656.
Full textReports on the topic "Pyrolyzer"
Contescu, Cristian I., and Nidia C. Gallego. Characterization and Activation Study of Black Chars Derived from Cellulosic Biomass Pyrolyzed at Very High Temperature. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1352790.
Full textde Boer, Herman, Karst Brolsma, Bas Fleurkens, Anneke Schoonbergen, and Petra van Vliet. Pyrolyse ter bepaling van de kwaliteit van organische stof in mest. Wageningen: Wageningen Livestock Research, 2020. http://dx.doi.org/10.18174/517478.
Full textDonner, Sebastian. Development of Carbon Based optically Transparent Electrodes from Pyrolyzed Photoresist for the Investigation of Phenomena at Electrified Carbon-Solution Interfaces. Office of Scientific and Technical Information (OSTI), January 2007. http://dx.doi.org/10.2172/933140.
Full text