Academic literature on the topic 'Pyrolyzer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pyrolyzer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Pyrolyzer"

1

Osman, Noridah Binti, Yoshimitsu Uemura, Hafizah Afif, and Ahmad H. Rajab Aljuboori. "Pyrolyzed Waste Engine Oil Properties by Microwave-Induced Reactor." Applied Mechanics and Materials 625 (September 2014): 673–76. http://dx.doi.org/10.4028/www.scientific.net/amm.625.673.

Full text
Abstract:
This study investigates the properties of pyrolyzed waste engine oil to determine the fuel properties for recycling purpose. Waste engine oil was pyrolyzed in a microwave-induced pyrolyzer at 400 °C under vacuum and the N2 was used to purge the pyrolysis zone to minimize O2. The fresh and waste engine oils were pyrolyzed and determined it by-products yield, and then the original and pyrolyzed waste engine oils were analyzed its chemical composition for their fuel properties following the standard method. The by-products fuel-related properties obtained from the only waste engine oil were comparable to those mixing oil with particulate carbon and different media of microwave and conventional electric heating reactors. In term of its feasibility application to energy and chemical industries this finding could be better with lower production cost.
APA, Harvard, Vancouver, ISO, and other styles
2

Novita, Sri Aulia, Santosa Santosa, Nofialdi Nofialdi, Andasuryani Andasuryani, and Ahmad Fudholi. "Artikel Review: Parameter Operasional Pirolisis Biomassa." Agroteknika 4, no. 1 (June 30, 2021): 53–67. http://dx.doi.org/10.32530/agroteknika.v4i1.105.

Full text
Abstract:
Artikel ini menjelaskan definisi pirolisis dan pentingnya proses pirolisis dalam konversi termokimia biomassa menjadi bahan bakar. Teknologi pirolisis berpotensi untuk dikembangkan karena ketersediaan sumber bahan biomassa yang sangat melimpah, teknologinya mudah untuk dikembangkan, bersifat ramah lingkungan dan menguntungkan secara ekonomi. Dalam teknik pirolisis, beberapa parameter yang mempengaruhi proses pirolisis adalah perlakuan awal biomassa, kadar air dan ukuran partikel bahan, komposisi senyawa biomassa, suhu, laju pemanasan, laju alir gas, waktu tinggal, jenis pirolisis, jenis reaktor pirolisis dan final produk pirolisis. Reaktor pirolisis adalah alat pengurai senyawa-senyawa organik yang dilakukan dengan proses pemanasan tanpa berhubungan langsung dengan udara luar dengan suhu 300-6000C. Beberapa jenis reaktor pirolisis yang sering digunakan adalah Fixed-Bed Pyrolyzer, Bubbling Fluidized-Bed Reactors, Circulating Fluidized Bed, Ultra–Rapid Pyrolyzer, Rotating Cone, Ablative Pyrolyzer dan Vacuum Pyrolyzer. Teknik pirolisis menghasilkan tiga macam produk akhir, yaitu bio-oil, arang (biochar) dan gas.
APA, Harvard, Vancouver, ISO, and other styles
3

P, Rakhesh I., and Rajkumar S. R. "Experimental Comparison of Yield of Bio-Oil in Fixed Bed Pyrolyzer." International Journal of Trend in Scientific Research and Development Volume-2, Issue-2 (February 28, 2018): 860–63. http://dx.doi.org/10.31142/ijtsrd9526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

YAMASHITA, Hiromi, Wei-Chun Xu, Toshiya JINOKA, Vidyadhar SHROTRI, Masayuki HAJIMA, and Akira TOMIT. "Flash Hydropyrolysis of Coal using Curie-point Pyrolyzer." Journal of the Japan Institute of Energy 71, no. 3 (1992): 189–94. http://dx.doi.org/10.3775/jie.71.189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

WADA, Makio, Shouei FUJISHIGE, Shigeki UCHINO, and Naoki OGURI. "Pyrolysis of Disaccharides Using a Curie-Point Pyrolyzer." KOBUNSHI RONBUNSHU 53, no. 3 (1996): 201–8. http://dx.doi.org/10.1295/koron.53.201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kwon, Gu-Joong, Dae-Young Kim, Satoshi Kimura, and Shigenori Kuga. "Rapid-cooling, continuous-feed pyrolyzer for biomass processing." Journal of Analytical and Applied Pyrolysis 80, no. 1 (August 2007): 1–5. http://dx.doi.org/10.1016/j.jaap.2006.12.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Poddar, S., S. De, and R. Chowdhury. "Catalytic pyrolysis of lignocellulosic bio-packaging (jute) waste – kinetics using lumped and DAE (distributed activation energy) models and pyro-oil characterization." RSC Advances 5, no. 120 (2015): 98934–45. http://dx.doi.org/10.1039/c5ra18435e.

Full text
Abstract:
The present study concentrates on the catalytic pyrolysis of a waste bio-packaging material, namely, jute, under iso-thermal and non-isothermal conditions using a 50 mm diameter and 164 mm long semi-batch pyrolyzer and a TGA set-up, respectively.
APA, Harvard, Vancouver, ISO, and other styles
8

HIGUCHI, Tetsuo. "Development and Applications of Tandem Pyrolyzer-GC-MS System." Journal of the Mass Spectrometry Society of Japan 51, no. 1 (2003): 317–18. http://dx.doi.org/10.5702/massspec.51.317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Van Buren, Daniel J., Thomas J. Mueller, Christopher J. Rosenker, John A. Barcase, and Kelly A. Van Houten. "Custom pyrolyzer for the pyrolysis of chemical warfare agents." Journal of Analytical and Applied Pyrolysis 154 (March 2021): 105007. http://dx.doi.org/10.1016/j.jaap.2020.105007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gao, Xi, Liqiang Lu, Mehrdad Shahnam, William A. Rogers, Kristin Smith, Katherine Gaston, David Robichaud, et al. "Assessment of a detailed biomass pyrolysis kinetic scheme in multiscale simulations of a single-particle pyrolyzer and a pilot-scale entrained flow pyrolyzer." Chemical Engineering Journal 418 (August 2021): 129347. http://dx.doi.org/10.1016/j.cej.2021.129347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Pyrolyzer"

1

Aquino, Jean FranÃa Santos. "Study of behavior of glasses as a function of temperature for use as substrate in photovoltaic applications and the theoretical study of a pyrolyzer." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12592.

Full text
Abstract:
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior
O uso de substrato de vidro para ser utilizado em sistema fotovoltaico à muito comum, no entanto, os substratos sÃo submetidos a elevadas temperaturas como no caso de obtenÃÃo de vidro recoberto com SnO2 (diÃxido de estanho), onde a temperatura de operaÃÃo atinge valores prÃximos a 600ÂC. Desta forma, um estudo do comportamento da dilataÃÃo do vidro em diferentes espessuras e sob a temperatura de 600ÂC foi realizado com o objetivo de observar a influÃncia dos mesmos nos vidros utilizados como substratos e, assim, prevenir os possÃveis defeitos de trinca e quebra de vidro dentro do forno. AlÃm do estudo associado ao vidro, um projeto teÃrico de um pirolisador com essas caracterÃsticas foi idealizado para a obtenÃÃo das camadas de SnO2 sobre o vidro, agregando inovaÃÃes como o uso de gÃs natural queimando em meio poroso como fonte de calor e o uso de um pirolisador para substituir os fornos resistivos.
The use of a glass substrate for use in photovoltaic system is very common, however, the substrates are subjected to high temperatures as in the case of obtaining glass covered with SnO2 (tin dioxide), where the operating temperature reaches values close to 600 Â C. Thus, a study of the glass expansion behavior with different thicknesses under temperature of 600 Â C was conducted in order to observe the influence of the same glass used as substrates, and thus, prevent possible defects cracks and broken glass inside the oven. Besides the study associated with the glass, a theoretical design of a pyrolyzer with these characteristics has been designed for obtaining layers of SnO2 on the glass, adding innovations such as the use of natural gas burning in porous media as heat source and the use of a pyrolyzer to replace the resistive furnaces.
APA, Harvard, Vancouver, ISO, and other styles
2

Fischer, Andreas [Verfasser], Wolfram [Akademischer Betreuer] Sander, and Martina [Akademischer Betreuer] Havenith. "Development of a molecular beam mass spectrometer and a supersonic jet expansion pyrolyzer for the characterization of reactive organic intermediates / Andreas Fischer. Gutachter: Wolfram Sander ; Martina Havenith." Bochum : Ruhr-Universität Bochum, 2016. http://d-nb.info/1089006306/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Smith, Phillip R. "Generation of Biomarkers from Anthrax Spores by Catalysis and Analytical Pyrolysis." Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd1005.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Krauss, Hans-Joachim. "Laserstrahlinduzierte Pyrolyse präkeramischer Polymere." Bamberg Meisenbach, 2006. http://d-nb.info/986458899/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bandlamudi, Bhagat Chandra. "An investigation of carbon residue from pyrolyzed scrap tires." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=1084.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 1999.
Title from document title page. Document formatted into pages; contains ix, 129 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 114-120).
APA, Harvard, Vancouver, ISO, and other styles
6

Coben, Collin. "Use of Pyrolyzed Soybean Hulls as Fillers in Polyolefins." University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1590601881643166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tam, Tina Sui-Man. "Pyrolysis of oil shale in a spouted bed pyrolyser." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26742.

Full text
Abstract:
Pyrolysis of a New Brunswick oil shale has been studied in a 12.8cm diameter spouted bed reactor. The aim of the project was to study the effect of pyrolysis temperature, shale particle size, feed rate and bed material on oil yield. Gas and spent shale yields were also determined. Shale of different particle size ranging from 0.5mm to 4mm was studied using an electrically heated reactor containing sand or spent shale which was spouted with nitrogen or nitrogen/carbon dioxide mixtures. For a given particle size and feed rate, there is a maximum in oil yield with temperature. For particles of 1-2mm at a feed rate of about 1.4kg/hr, the optimum temperature is at 475°C with an oil yield of 7.1% which represents 89.3% of the modified Fischer Assay yield. For the 2-4mm and the same feed rate, the optimum temperature is 505°C with an oil yield equal to 7.4% which is 94.3% of the modified Fischer Assay value. At a fixed temperature of about 500°C, the oil yield increases with increasing particle size. This trend is in agreement with the Fischer Assay values which showed oil yields increasing from 5.2% to about 8% as the particle size was increased. In the spouted bed, the oil yield decreases as the oil shale feed rate increases at a given temperature. The use of spent shales as the spouting solids in the bed also has a negative effect on oil yield. The gas yields which were low (less than 2.1%) and difficult to measure do not seem to be affected by particle sizes, feed rate and bed material. Hydrogen, methane and other hydrocarbons are produced in very small amounts. C0₂ and CO are not released in measurable yield in the experiments. The trend of the spent shale yield has not been successfully understood due to the unreliability of the particle collection results. Attrition of the spent shale appears to be a serious problem. Results of the experiments are rationalized with the aid of a kinetic model in which the kerogen in the oil shale decomposes to yield a bitumen and other by products and the bitumen undergoes further decomposition into oil. The spouted bed is treated as a backmixed reactor with respect to the solids. A heat transfer model is used to predict the temperature rise of the shale entering the pyrolyzer.
Applied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
8

Grioui, Najla. "Etude thermocinétique de la pyrolyse du bois : application à la pyrolyse du bois d'olivier." Nancy 1, 2006. http://www.theses.fr/2006NAN10111.

Full text
Abstract:
Une étude théorique et expérimentale de la thermocinétique de la pyrolyse des particules de bois thermiquement épaisses est développée. Les caractéristiques thermophysiques du bois d'olivier à savoir la masse volumique apparente, la densité, la porosité. La perméabilité et la conductivité thermique ont été déterminées expérimentalement par différentes méthodes de mesure. Les mesures cinétiques sont réalisées de manière isotherme au sein d'une thermobalance dans un intervalle de température compris entre 498 K et 648 K. Les courbes expérimentales obtenues sont interprétées par un modèle cinétique il plusieurs étapes de décomposition qui permet de représenter de manière très satisfaisante les résultats expérimentaux. Le couplage du modèle cinétique avec l’équation de conservation de l'énergie permet d'obtenir une équation différentielle décrivant l'évolution de la température il l'intérieur du morceau cylindrique de bois. Cette équation est résolue en utilisant une méthode purement implicite des différences finies. Le modèle élaboré est tout d'abord validé avec plusieurs données expérimentales disponibles dans la littérature, puis appliqué à la carbonisation d'une particule cylindrique de bois d'olivier dans différentes conditions opératoires pour déterminer l’effet de la température du réacteur et de l’épaisseur de la particule sur l'évolution du profile de la température et de la masse résiduelle à l’intérieur de la particule
A theoretical and experimental study of thermo-kinetic of this wood particles pyrolysis has been developed. The thermophysical properties of the olive wood such as apparent density, porosity, permeability and thermal conductivity have been determined experimentally by different measurement methods. A kinetic measurements are carried out by thermogravimetric analysis in isothermal mode in the temperature range between 498 K and 648 K. The experimental curves obtained are interpreted by a kinetic model based on several decomposition stages. The kinetic model coupled with energy conservation equation leads to a non linear equations system which has been solved iteratively by using an implicit finite differences method. The obtained results are in good agreement with the available experimental data. The developed model is then applied to the pyrolysis of a cylindrical olive wood particle in different operating condition to simulate the effect of the reactor temperature and the particle size on the evolution of the temperature profile as well as the residual mass inside the thick particle
APA, Harvard, Vancouver, ISO, and other styles
9

LE, BLEVEC JEAN MARC. "Ultra-pyrolyse du 1,2-dichloroethane." Compiègne, 1993. http://www.theses.fr/1993COMP585S.

Full text
Abstract:
La pyrolyse du 1,2-dichloroethane est etudiee entre 400 et 750c a des temps de passage compris entre 80 et 500 ms. La pression partielle initiale en 1,2-dichlororethane varie entre 30 et 200 torr. La reaction est menee dans un tube en inconel 600 de rapport surface: volume egal a 3,2 cm#-#1. Chlorure de vinyle et acide chlorhydrique sont les produits principaux de la reaction qui est du 1er ordre par rapport au 1,2-dichloethane. Les mecanismes cinetiques proposes dans la litterature sont examines et modifies pour expliquer nos observations experimentales. Ethylene, acetylene, 2-chlorobutadiene-1,3 et dans une moindre mesure le 1,1-dichloroethylene sont les principaux sous-produits de la reaction pour des taux de conversion eleves (60%). L'analyse de la repartition de ces sous-produits fournit des donnees cinetiques sur ces reactions secondaires. La formation d'une trentaine de sous-produits est egalement discutee
APA, Harvard, Vancouver, ISO, and other styles
10

Sorge, Cornelia. "Struktur der organischen Substanz in Böden und Partikelgrössenfraktionen : Pyrolyse-Gaschromatographie Massenspektrometrie und Pyrolyse-Feldionisation Massenspektrometrie /." Kiel : Institut für Pflanzenernährung und Bodenkunde, Universität Kiel, 1995. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=006976086&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Pyrolyzer"

1

Brauer, Samuel. Advanced structural non-pyrolyzed fibers. Norwalk, CT: Business Communications Co., 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Thorndyke, S. J. Evaluation of a prototype RDF pyrolyser for Ontario Ministry of Energy. Mississauga, ON: Ontario Research Foundation, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Graf, Frank. Pyrolyse- und Aufkohlungsverhalten von C2H2 bei der Vakuumaufkohlung von Stahl. Karlsruhe: Univ.-Verl. Karlsruhe, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Khan, Rafi Ullah. Vacuum gas carburizing - fate of hydrocarbons. Karlsruhe: Univ.-Verl. Karlsruhe, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

J, Thomé-Kozmiensky Karl, ed. Pyrolyse von Abfällen. Berlin: EF-Verlag, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Abfallbehandlung in thermischen Verfahren: Verbrennung, Vergasung, Pyrolyse, Verfahrens- und Anlagenkonzepte. Wiesbaden: Vieweg+Teubner Verlag, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Étude de performance d'une unité de developpement de procédé pour la pyrolyse sous vide de la biomasse. Ottawa: Bioenergy Development Program, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Biomass Combustion Science Technology And Engineering. Woodhead Publishing Ltd, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hudlic'ky, Milos. Fluorine Chemistry for Organic Chemists. Oxford University Press, 2000. http://dx.doi.org/10.1093/oso/9780195131567.001.0001.

Full text
Abstract:
This book is a synthesis of two of Hudlicky's earlier books outlining the many unpredictable properties of fluorine and its compounds that are not analogous to the properties of any other halogens and their compounds. It is divided into two separate sections, the first presenting peculiar reactions as problems to be solved. Each reaction can be analyzed in the lab without the help of the second section, however if a solution is not easily reached, the second section provides discussion of the problems, outlining the products of the reactions and their mechanisms. Among the 105 reactions outlined are the introduction of fluorine into organic molecules, reduction and oxidation of fluorine compounds, reactions of fluorocompounds with halogens and their derivatives, nitration, acid catalyzed reactions, organometallic syntheses, and pyrolyses. The reactions are documented in the experimental material of the earlier volumes and will be important background knowledge for anyone working in organic chemistry.
APA, Harvard, Vancouver, ISO, and other styles
10

Valcárcel, M. Automatic methods of analysis. Elsevier, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Pyrolyzer"

1

Klinger, Denise, Steffen Krzack, Christian Berndt, Philipp Rathsack, Mathias Seitz, Wilhelm Schwieger, Thomas Hahn, et al. "Pyrolyse." In Stoffliche Nutzung von Braunkohle, 297–426. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-46251-5_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hofbauer, Hermann, Martin Kaltschmitt, Frerich Keil, Dietrich Meier, and Johannes Welling. "Pyrolyse." In Energie aus Biomasse, 1183–265. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-47438-9_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Meier, Dietrich, Johannes Welling, Bernward Wosnitza, and Hermann Hofbauer. "Pyrolyse." In Energie aus Biomasse, 671–709. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85095-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Scholz, Reinhard, Michael Beckmann, and Frank Schulenburg. "Pyrolyse." In Abfallbehandlung in thermischen Verfahren, 115–21. Wiesbaden: Vieweg+Teubner Verlag, 2001. http://dx.doi.org/10.1007/978-3-322-90854-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schulten, H. R., and B. Plage. "Pyrolyse-Massenspektrometrie." In Analytiker-Taschenbuch, 225–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-72590-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schulten, H. R., and B. Plage. "Pyrolyse-Massenspektrometrie." In Analytiker-Taschenbuch, 225–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75204-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Peng, Zhiwei, Jiann-Yang Hwang, Wayne Bell, Matthew Andriese, and Shuqian Xie. "Microwave Dielectric Properties of Pyrolyzed Carbon." In 2nd International Symposium on High-Temperature Metallurgical Processing, 77–83. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118062081.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Israel, G., M. Cabane, J. F. Brun, H. Niemann, S. Way, W. Riedler, M. Steller, F. Raulin, and D. Coscia. "Huygens Probe Aerosol Collector Pyrolyser Experiment." In The Cassini-Huygens Mission, 433–68. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-3251-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Masson, Ir H. A. "A Twin Fluid Bed Pyrolyser Combustor System." In Research in Thermochemical Biomass Conversion, 725–43. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2737-7_55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Angelina Thanga Ajisha, M., Jaslin J. Christopher, A. S. Jebamalar, and I. Regina Mary. "Enhancement of Soil Using Pyrolyzed Cocus nucifera Midrib Carbon." In Springer Proceedings in Materials, 565–74. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8319-3_56.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Pyrolyzer"

1

Marmur, Breanna L., and Theodore J. Heindel. "Effect of Biomass Inlet Concentration on Mixing in a Double Screw Pyrolyzer." In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-34422.

Full text
Abstract:
The renewable energy industry relies on double screw pyrolyzers to convert cellulosic biomass into bio-oil. Bio-oil can then be converted into synthetic gasoline, diesel, and other transportation fuels, or can be converted into biobased chemicals for a wide range of applications. One of the processes by which bio-oil is produced in industry today is through fast pyrolysis, the fast thermal decomposition of organic material in the absence of oxygen. One type of pyrolyzer, a double screw pyrolyzer, features two intermeshing screws encased in a reactor which mechanically conveys and mixes the biomass and heat carrier media. The mixing effectiveness of the two materials in the pyrolyzer is directly correlated to the bio-oil yield — the better the mixing, the higher the yields. This study investigates the effects of varying biomass inlet concentrations on mixing effectiveness. Using 300–500 μm glass beads as simulated heat carrier media and 500–6350 μm red oak particles as biomass, a cold-flow double screw mixer with 360° of optical access and full sampling capabilities was used to collect mixing data. Advanced optical visualization and composition analysis paired with statistical analysis was used to evaluate the effects of varying the biomass inlet concentrations. Biomass inlet concentrations in terms of glass beads to red oak mass flow rate ratios (GB:RO) of 10:1, 20:1, 30:1, 40:1, and 50:1 were investigated, and correspond to biomass mass fractions of 9%, 4.7%, 3.2%, 2.4% and 1.9%. Both qualitative and quantitative analysis indicates that a counter rotating down pumping particle flow is best, and smaller biomass inlet concentrations noticeably reduce mixing effectiveness.
APA, Harvard, Vancouver, ISO, and other styles
2

Serio, Michael, Joseph E. Cosgrove, Marek A. Wójtowicz, Kanapathipillai Wignarajah, and John W. Fisher. "A Prototype Microwave Pyrolyzer for Solid Wastes." In 43rd International Conference on Environmental Systems. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-3371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Serio, Michael A., Erik Kroo, Rosemary Bassilakis, Marek A. Wójtowicz, and Eric M. Suuberg. "A Prototype Pyrolyzer for Solid Waste Resource Recovery in Space." In 31st International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-2349.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Serio, Michael A., Erik Kroo, Marek A. Wójtowicz, Eric M. Suuberg, and Tom Filburn. "An Improved Pyrolyzer for Solid Waste Resource Recovery in Space." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2002. http://dx.doi.org/10.4271/2002-01-2402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kingston, Todd A., and Theodore J. Heindel. "Visualization and Composition Analysis to Quantify Mixing in a Screw Pyrolyzer." In ASME 2013 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/fedsm2013-16054.

Full text
Abstract:
Characterizing the mixing effectiveness of systems or processes in granular applications is difficult due to ineffective sampling procedures and a lack of quantifiable measurement techniques. The mixing effectiveness of a screw pyrolyzer consisting of a binary mixture of 500–6350 μm red oak chips and 300–500 μm glass beads is evaluated using optical visualization and composition analysis techniques. The mass fraction of binary mixture samples is determined and the weighted sample variance from four outlet ports is used to evaluate the mixing effectiveness. The effect of dimensionless screw pitch on the mixing effectiveness is investigated at levels of p/D = 0.75, 1.25, and 1.75. Optical visualization is captured across the entire mixing region’s periphery allowing qualitative observations to be made, leading to the visual observation that increasing the dimensionless screw pitch increases the mixing effectiveness. Quantitative composition analysis utilizing a one-way analysis of variance (ANOVA) statistical model confirms that increasing the dimensionless screw pitch from 0.75 to 1.25 results in a significant increase in mixing effectiveness. However, diminishing increases in mixing effectiveness were shown as the dimensionless screw pitch increased from 1.25 to 1.75, and statistically these two conditions could not be distinguished given the amount of data in this study. Results are compared to previous granular mixing measurement techniques found in the literature, and similar results are reported.
APA, Harvard, Vancouver, ISO, and other styles
6

Fantozzi, Francesco, and Umberto Desideri. "Micro Scale Slow-Pyrolysis Rotary Kiln for Syngas and Char Production From Biomass and Waste: Design and Construction of a Reactor Test Bench." In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-54186.

Full text
Abstract:
Slow pyrolysis of waste and biomass may represent an interesting solution for renewable energy conversion in highly regenerative Gas Turbine (GT) or Internal Combustion Engines (ICE) based power cycles. The combined production of a medium LHV gas to fuel the GT or the ICE and of a high LHV byproduct (tar and/or char) that may contribute to maintain the pyrolysis process, makes pyrolysis highly competitive when compared to gasification. Nevertheless few simulations of such integrated plants are available in literature also because of the lack of general and robust modeling tools for the pyrolysis process. A pilot scale rotary kiln pyrolyzer was built at the University of Perugia to investigate the main benefits and drawbacks of the technology. The pyrolyzer will provide the experimental data that are necessary both to evaluate mass and energy balances, and to support the pyrolysis simulation activity that the authors are carrying out. Namely the test rig will provide, for each given quantity and composition of the biomass or waste in input, the gas, char and tar yields and compositions and the energy provided to maintain the process. This paper describes the main features and operational possibilities of the plant.
APA, Harvard, Vancouver, ISO, and other styles
7

Fantozzi, Francesco, Bruno D’Alessandro, Pietro Bartocci, Umberto Desideri, and Gianni Bidini. "Performance Evaluation of the IPRP Technology When Fueled With Biomass Residuals and Waste Feedstocks." In ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-59891.

Full text
Abstract:
The Integrated Pyrolysis Regenerated Plant (IPRP) concept is based on a rotary kiln pyrolyzer that converts biomass or wastes (B&W) in a rich gas used to fuel a gas turbine (GT); the combustion of pyrolysis by-products (char or tar), is used to provide heat to the pyrolyzer together with the GT exhaust gases. The IPRP concept was modelled through an homemade software, that utilizes thermodynamic relations, energy balances and data available in the Literature for BW pyrolysis products. The analysis was carried out investigating the influence on the plant performances of main thermodynamic parameters like the Turbine Inlet Temperature (TIT), the Regeneration Ratio (RR) and the manometric compression ratio (β) of the gas turbine; when data on the pyrolysis process where available for different pyrolysis temperature, also the different pyrolysis temperature (TP) was considered. Finally, data obtained from the analysis where collected for the typical parameters of different GT sizes, namely the manometric compression ratio and the turbine inlet temperature. For the other parameters, where considered the ones that give the highest efficiencies. The paper shows the IPRP efficiency, when fuelled with different biomass or wastes materials and for different GT (plant) size.
APA, Harvard, Vancouver, ISO, and other styles
8

Fantozzi, Francesco, Bruno D’Alessandro, and Umberto Desideri. "An IPRP (Integrated Pyrolysis Regenerated Plant) Microscale Demonstrative Unit in Central Italy." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-28000.

Full text
Abstract:
The Integrated Pyrolysis Regenerated Plant (IPRP) concept is based on a Gas Turbine (GT) fuelled by pyrogas produced in a rotary kiln slow pyrolysis reactor; pyrolysis process by-product, char, is used to provide the thermal energy required for pyrolysis. An IPRP demonstration unit based on an 80 kWE microturbine was built at the Terni facility of the University of Perugia. The plant is made of a slow pyrolysis rotary kiln pyrolyzer, a wet scrubbing section for tar and water vapor removal, a micro gas turbine and a treatment section for the exhaust gases. This paper describes the plant layout and expected performance with different options for waste heat recovery.
APA, Harvard, Vancouver, ISO, and other styles
9

Colantoni, Simone, Alessandro Corradetti, Umberto Desideri, and Francesco Fantozzi. "Thermodynamic Analysis and Possible Applications of the Integrated Pyrolysis Fuel Cell Plant (IPFCP)." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27713.

Full text
Abstract:
Biomass and waste are generally considered as a very promising option for fossil fuel substitution and greenhouse effect reduction in a sustainable energy scenario. This paper examines the possible lay-out and performance of an innovative energy system based on the integration of a high temperature fuel cell with a pyrolysis reactor. The pyrolyzer converts biomass or solid waste into syngas, which is cleaned from impurities and feeds a Solid Oxide Fuel Cell (SOFC), operating at 1000°C. A combustor supplies the energy required for pyrolysis, burning the solid and liquid fraction of the pyrolysis yield, as well as the un-oxidized fuel leaving the cell anode. Literature data have been used for determining pyrolysis yield as a function of reactor temperature and evaluating its effect on the plant thermodynamic efficiency. The coupling of the system to a gas turbine using the fuel cell as its combustion chamber is also evaluated. Results show that very interesting efficiencies are obtainable in the 20%–30% range.
APA, Harvard, Vancouver, ISO, and other styles
10

Arnulfi, Gianmario L., and Marco Fabris. "A Stand-Alone Syngas-Fuelled Small-Size CHP GT." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-63656.

Full text
Abstract:
Efforts are being made to achieve environmental sustainability by combining heat and power production and exploiting renewable resources, in order to save primary energy and reduce greenhouse gas emissions. This study concerns a stand-alone 1-megawatt plant composed of a wood pyrolyzer and a combined heat and power plant based on a gas turbine. Care is devoted to saving the solid-state product of the pyrolysis reaction (biochar), both to produce agricultural fertilizer and to sequester carbon dioxide, i.e., the emissions avoided by not burning biochar. The plant is simulated by three in-house codes: gas turbine off-design performance, pyrolysis process and time-by-time integrated plant working. A quasi steady-state, lumped parameter approach is adopted. While components models are taken from the literature, solver algorithms are partly original. In this first step of the research, a stand-alone plant with a zero-volume syngas tank is analyzed. Technical aspects alone, without considering economic or legal implications, are investigated. Our simulation suggests that there is no primary energy saving in comparison with separate heat and power systems, as shaft efficiency is too low, but that a remarkable saving in greenhouse gas emissions can be achieved.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Pyrolyzer"

1

Contescu, Cristian I., and Nidia C. Gallego. Characterization and Activation Study of Black Chars Derived from Cellulosic Biomass Pyrolyzed at Very High Temperature. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1352790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

de Boer, Herman, Karst Brolsma, Bas Fleurkens, Anneke Schoonbergen, and Petra van Vliet. Pyrolyse ter bepaling van de kwaliteit van organische stof in mest. Wageningen: Wageningen Livestock Research, 2020. http://dx.doi.org/10.18174/517478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Donner, Sebastian. Development of Carbon Based optically Transparent Electrodes from Pyrolyzed Photoresist for the Investigation of Phenomena at Electrified Carbon-Solution Interfaces. Office of Scientific and Technical Information (OSTI), January 2007. http://dx.doi.org/10.2172/933140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography