To see the other types of publications on this topic, follow the link: Pyrolyzer.

Journal articles on the topic 'Pyrolyzer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Pyrolyzer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Osman, Noridah Binti, Yoshimitsu Uemura, Hafizah Afif, and Ahmad H. Rajab Aljuboori. "Pyrolyzed Waste Engine Oil Properties by Microwave-Induced Reactor." Applied Mechanics and Materials 625 (September 2014): 673–76. http://dx.doi.org/10.4028/www.scientific.net/amm.625.673.

Full text
Abstract:
This study investigates the properties of pyrolyzed waste engine oil to determine the fuel properties for recycling purpose. Waste engine oil was pyrolyzed in a microwave-induced pyrolyzer at 400 °C under vacuum and the N2 was used to purge the pyrolysis zone to minimize O2. The fresh and waste engine oils were pyrolyzed and determined it by-products yield, and then the original and pyrolyzed waste engine oils were analyzed its chemical composition for their fuel properties following the standard method. The by-products fuel-related properties obtained from the only waste engine oil were comparable to those mixing oil with particulate carbon and different media of microwave and conventional electric heating reactors. In term of its feasibility application to energy and chemical industries this finding could be better with lower production cost.
APA, Harvard, Vancouver, ISO, and other styles
2

Novita, Sri Aulia, Santosa Santosa, Nofialdi Nofialdi, Andasuryani Andasuryani, and Ahmad Fudholi. "Artikel Review: Parameter Operasional Pirolisis Biomassa." Agroteknika 4, no. 1 (June 30, 2021): 53–67. http://dx.doi.org/10.32530/agroteknika.v4i1.105.

Full text
Abstract:
Artikel ini menjelaskan definisi pirolisis dan pentingnya proses pirolisis dalam konversi termokimia biomassa menjadi bahan bakar. Teknologi pirolisis berpotensi untuk dikembangkan karena ketersediaan sumber bahan biomassa yang sangat melimpah, teknologinya mudah untuk dikembangkan, bersifat ramah lingkungan dan menguntungkan secara ekonomi. Dalam teknik pirolisis, beberapa parameter yang mempengaruhi proses pirolisis adalah perlakuan awal biomassa, kadar air dan ukuran partikel bahan, komposisi senyawa biomassa, suhu, laju pemanasan, laju alir gas, waktu tinggal, jenis pirolisis, jenis reaktor pirolisis dan final produk pirolisis. Reaktor pirolisis adalah alat pengurai senyawa-senyawa organik yang dilakukan dengan proses pemanasan tanpa berhubungan langsung dengan udara luar dengan suhu 300-6000C. Beberapa jenis reaktor pirolisis yang sering digunakan adalah Fixed-Bed Pyrolyzer, Bubbling Fluidized-Bed Reactors, Circulating Fluidized Bed, Ultra–Rapid Pyrolyzer, Rotating Cone, Ablative Pyrolyzer dan Vacuum Pyrolyzer. Teknik pirolisis menghasilkan tiga macam produk akhir, yaitu bio-oil, arang (biochar) dan gas.
APA, Harvard, Vancouver, ISO, and other styles
3

P, Rakhesh I., and Rajkumar S. R. "Experimental Comparison of Yield of Bio-Oil in Fixed Bed Pyrolyzer." International Journal of Trend in Scientific Research and Development Volume-2, Issue-2 (February 28, 2018): 860–63. http://dx.doi.org/10.31142/ijtsrd9526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

YAMASHITA, Hiromi, Wei-Chun Xu, Toshiya JINOKA, Vidyadhar SHROTRI, Masayuki HAJIMA, and Akira TOMIT. "Flash Hydropyrolysis of Coal using Curie-point Pyrolyzer." Journal of the Japan Institute of Energy 71, no. 3 (1992): 189–94. http://dx.doi.org/10.3775/jie.71.189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

WADA, Makio, Shouei FUJISHIGE, Shigeki UCHINO, and Naoki OGURI. "Pyrolysis of Disaccharides Using a Curie-Point Pyrolyzer." KOBUNSHI RONBUNSHU 53, no. 3 (1996): 201–8. http://dx.doi.org/10.1295/koron.53.201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kwon, Gu-Joong, Dae-Young Kim, Satoshi Kimura, and Shigenori Kuga. "Rapid-cooling, continuous-feed pyrolyzer for biomass processing." Journal of Analytical and Applied Pyrolysis 80, no. 1 (August 2007): 1–5. http://dx.doi.org/10.1016/j.jaap.2006.12.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Poddar, S., S. De, and R. Chowdhury. "Catalytic pyrolysis of lignocellulosic bio-packaging (jute) waste – kinetics using lumped and DAE (distributed activation energy) models and pyro-oil characterization." RSC Advances 5, no. 120 (2015): 98934–45. http://dx.doi.org/10.1039/c5ra18435e.

Full text
Abstract:
The present study concentrates on the catalytic pyrolysis of a waste bio-packaging material, namely, jute, under iso-thermal and non-isothermal conditions using a 50 mm diameter and 164 mm long semi-batch pyrolyzer and a TGA set-up, respectively.
APA, Harvard, Vancouver, ISO, and other styles
8

HIGUCHI, Tetsuo. "Development and Applications of Tandem Pyrolyzer-GC-MS System." Journal of the Mass Spectrometry Society of Japan 51, no. 1 (2003): 317–18. http://dx.doi.org/10.5702/massspec.51.317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Van Buren, Daniel J., Thomas J. Mueller, Christopher J. Rosenker, John A. Barcase, and Kelly A. Van Houten. "Custom pyrolyzer for the pyrolysis of chemical warfare agents." Journal of Analytical and Applied Pyrolysis 154 (March 2021): 105007. http://dx.doi.org/10.1016/j.jaap.2020.105007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gao, Xi, Liqiang Lu, Mehrdad Shahnam, William A. Rogers, Kristin Smith, Katherine Gaston, David Robichaud, et al. "Assessment of a detailed biomass pyrolysis kinetic scheme in multiscale simulations of a single-particle pyrolyzer and a pilot-scale entrained flow pyrolyzer." Chemical Engineering Journal 418 (August 2021): 129347. http://dx.doi.org/10.1016/j.cej.2021.129347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Garland, R. V., and P. W. Pillsbury. "Status of Topping Combustor Development for Second-Generation Fluidized Bed Combined Cycles." Journal of Engineering for Gas Turbines and Power 114, no. 1 (January 1, 1992): 126–31. http://dx.doi.org/10.1115/1.2906294.

Full text
Abstract:
Addition of a fluidized bed combustor to a high-efficiency combined cycle plant enables direct firing of inexpensive run-of-the-mine coal in an environmentally acceptable manner. To attain high thermal efficiencies, coal pyrolysis is included. The low heating value fuel gas from the pyrolyzer is burned in a topping combustion system that boosts gas turbine inlet temperature to state of the art while the pyrolyzer-produced char is burned in the bed. The candidate topping combustor, the multi-annular swirl burner, based on a design by J. M. Bee´r, is presented and discussed. Design requirements differ from conventional gas turbine combustors. The use of hot, vitiated air for cooling and combustion, and the use of low heating value fuel containing ammonia, are two factors that make the design requirements unique. The multi-annular swirl burner contains rich-burn, quick-quench, and lean-burn zones formed aerodynamically rather than the physically separate volumes found in other rich-lean combustors. Although fuel is injected through a centrally located nozzle, the combustion air enters axially through a series of swirlers. Wall temperatures are controlled by relatively thick layers of air entering through the various swirler sections, which allows the combustor to be of all-metal construction rather than the ceramic often used in rich-lean concepts. This 12-in.-dia design utilizes some of the features of the previous 5-in. and 10-in. versions of the multi-annular swirl burner; test results from the previous projects were utilized in the formulation of the test for the present program. In the upcoming tests, vitiated air will be provided to simulate a pressurized fluidized bed effluent. Hot syngas seeded with ammonia will be used to simulate the low-Btu gas produced in the pyrolyzer.
APA, Harvard, Vancouver, ISO, and other styles
12

ONISHI, Akira. "Study on Development and Application of Pyrolyzer for Polymer Characterization." Bunseki kagaku 44, no. 9 (1995): 731–32. http://dx.doi.org/10.2116/bunsekikagaku.44.731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bandyopadhyay, Swati, Ranjana Chowdhury, and Gopal Krishna Biswas. "Transient Behavior of a Coconut Shell Pyrolyzer: A Mathematical Analysis." Industrial & Engineering Chemistry Research 35, no. 10 (January 1996): 3347–55. http://dx.doi.org/10.1021/ie950695q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Wada, Makiko, Shouei Fujishige, Shigeki Uchino, and Naoki Ohguri. "Gas chromatography of styrene oligomers using a curie-point pyrolyzer." Journal of Analytical and Applied Pyrolysis 33 (April 1995): 149–56. http://dx.doi.org/10.1016/0165-2370(94)00878-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Lin, Fwu-Shing, Tsong-Sheng Chang, and Min-Hon Rei. "Rapid pyrolysis of rice hull in a curie-point pyrolyzer." Agricultural Wastes 18, no. 2 (January 1986): 103–21. http://dx.doi.org/10.1016/0141-4607(86)90003-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

WADA, Makiko, Shouei FUJISHIGE, Shigeki UCHINO, and Naoki OGURI. "Pyrolysis of Linear and Cyclic Oligosaccharides Using a Curie-Point Pyrolyzer." KOBUNSHI RONBUNSHU 53, no. 1 (1996): 20–32. http://dx.doi.org/10.1295/koron.53.20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Izzatie, N. I., M. H. Basha, Y. Uemura, M. A. Mazlan, M. S. M. Hashim, N. A. M. Amin, and M. F. Hamid. "Co-pyrolysis of rice straw and polypropylene using fixed-bed pyrolyzer." IOP Conference Series: Materials Science and Engineering 160 (November 2016): 012033. http://dx.doi.org/10.1088/1757-899x/160/1/012033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Harada, K., O. Nishimura, and S. Mihara. "Rapid analysis of coffee flavour by gas chromatography using a pyrolyzer." Journal of Chromatography A 391 (January 1987): 457–60. http://dx.doi.org/10.1016/s0021-9673(01)94350-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Wada, Makiko, Shouei Fujishige, Shigeki Uchino, and Naoki Oguri. "Pyrolysis of Flame Retardant Cellulose Fibers Using a Curie-Point Pyrolyzer." Sen'i Gakkaishi 52, no. 10 (1996): 558–61. http://dx.doi.org/10.2115/fiber.52.10_558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Funazukuri, T., R. R. Hudgins, and P. L. Silveston. "Product distribution for flash pyrolysis of cellulose in a coil pyrolyzer." Journal of Analytical and Applied Pyrolysis 10, no. 3 (January 1987): 225–49. http://dx.doi.org/10.1016/0165-2370(87)80005-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Cecchetti, Walter, Riccardo Polloni, Gino Bergamasco, Roberta Seraglia, Silvia Catinella, Francesco Cecchinato, and Pietro Traldi. "A new pyrolyzer for laser pyrolysis—gas chromatography/mass spectrometry experiments." Journal of Analytical and Applied Pyrolysis 23, no. 2 (August 1992): 165–73. http://dx.doi.org/10.1016/0165-2370(92)85004-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Zvanskii, B. V., S. Yu Krasev, and A. O. Koren'. "Mechanism of thermal degradation of polyester fibre in a furnace pyrolyzer." Fibre Chemistry 29, no. 6 (November 1997): 363–66. http://dx.doi.org/10.1007/bf02418870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Huang, Yong, Koyo Norinaga, Shinji Kudo, Jun-ichiro Hayashi, Keiji Tomura, Satoshi Horiuchi, and Nobuo Takasu. "Process Development toward Efficient Charcoal Production from Biomass Using Moving Bed Pyrolyzer." Journal of the Society of Powder Technology, Japan 50, no. 3 (2013): 173–81. http://dx.doi.org/10.4164/sptj.50.173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

HOSAKA, Akihiko, Kunitaka SATO, Chuichi WATANABE, Hajime OHTANI, and Shin TSUGE. "Development of Selective Sampler on Evolved Gas Analysis Using Furnace Type Pyrolyzer." Journal of the Mass Spectrometry Society of Japan 46, no. 4 (1998): 332–35. http://dx.doi.org/10.5702/massspec.46.332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Jung, Won-K. "Characterization of Crop Residue-Derived Biochars Produced by Field Scale Biomass Pyrolyzer." Korean Journal of Soil Science and Fertilizer 44, no. 1 (February 28, 2011): 1–7. http://dx.doi.org/10.7745/kjssf.2011.44.1.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Seo, Myung Won, Young Tae Guahk, Nam Sun Rho, Sang Jun Yoon, Ho Won Ra, Geon Hoe Koo, Yong Ku Kim, Jae Ho Kim, Jae Goo Lee, and Sang Done Kim. "Gasification Characteristics of Rapid Thermal Pyrolyzer Residue in a Fluidized Bed Reactor." Energy & Fuels 28, no. 5 (April 25, 2014): 2984–92. http://dx.doi.org/10.1021/ef500258v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zhang, C., Y. Lin, M. Zhang, and J. Zhang. "Experimental Study of CaO Facilitated Cellulose Pyrolysis in a Drop Tube Pyrolyzer." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 37, no. 24 (December 11, 2015): 2662–70. http://dx.doi.org/10.1080/15567036.2012.721055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

MITSUO, Naoki, Nobuko NAKAYAMA, Hitoshi MATSUMOTO, and Toshio SATOH. "Simple gas chromatographic identification of monosaccharides using a Curie-point type pyrolyzer." CHEMICAL & PHARMACEUTICAL BULLETIN 37, no. 6 (1989): 1624–26. http://dx.doi.org/10.1248/cpb.37.1624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mazlan, Mohammad Amir Firdaus, Yoshimitsu Uemura, Noridah B. Osman, and Suzana Yusup. "Fast pyrolysis of hardwood residues using a fixed bed drop-type pyrolyzer." Energy Conversion and Management 98 (July 2015): 208–14. http://dx.doi.org/10.1016/j.enconman.2015.03.102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Park, Young-Kwon, Muhammad Siddiqui, Yejin Kang, Atsushi Watanabe, Hyung Lee, Sang Jeong, Seungdo Kim, and Young-Min Kim. "Increased Aromatics Formation by the Use of High-Density Polyethylene on the Catalytic Pyrolysis of Mandarin Peel over HY and HZSM-5." Catalysts 8, no. 12 (December 12, 2018): 656. http://dx.doi.org/10.3390/catal8120656.

Full text
Abstract:
High-density polyethylene (HDPE) was co-fed into the catalytic pyrolysis (CP) of mandarin peel (MP) over different microporous catalysts, HY and HZSM-5, with different pore and acid properties. Although the non-catalytic decomposition temperature of MP was not changed during catalytic thermogravimetric analysis over both catalysts, that of HDPE was reduced from 465 °C to 379 °C over HY and to 393 °C over HZSM-5 because of their catalytic effects. When HDPE was co-pyrolyzed with MP over the catalysts, the catalytic decomposition temperatures of HDPE were increased to 402 °C over HY and 408 °C over HZSM-5. The pyrolyzer-gas chromatography/mass spectrometry results showed that the main pyrolyzates of MP and HDPE, which comprised a large amount of oxygenates and aliphatic hydrocarbons with a wide carbon range, were converted efficiently to aromatics using HY and HZSM-5. Although HY can provide easier diffusion of the reactants to the catalyst pore and a larger amount of acid sites than HZSM-5, the CP of MP, HDPE, and their mixture over HZSM-5 revealed higher efficiency on aromatics formation than those over HY due to the strong acidity and more appropriate shape selectivity of HZSM-5. The production of aromatics from the catalytic co-pyrolysis of MP and HDPE was larger than the theoretical amounts, suggesting the synergistic effect of HDPE co-feeding for the increased formation of aromatics during the CP of MP.
APA, Harvard, Vancouver, ISO, and other styles
31

Benanti, Enzo, Cesare Freda, Vincenzo Lorefice, Giacobbe Braccio, and Vinod Sharma. "Simulation of olive pits pyrolysis in a rotary kiln plant." Thermal Science 15, no. 1 (2011): 145–58. http://dx.doi.org/10.2298/tsci090901073b.

Full text
Abstract:
This work deals with the simulation of an olive pits fed rotary kiln pyrolysis plant installed in Southern Italy. The pyrolysis process was simulated by commercial software CHEMCAD. The main component of the plant, the pyrolyzer, was modelled by a Plug Flow Reactor in accordance to the kinetic laws. Products distribution and the temperature profile was calculated along reactor's axis. Simulation results have been found to fit well the experimental data of pyrolysis. Moreover, sensitivity analyses were executed to investigate the effect of biomass moisture on the pyrolysis process.
APA, Harvard, Vancouver, ISO, and other styles
32

Sanjeewa, G. H. C. R., S. K. Gunatilake, S. S. Samaratunga, and B. F. A. Basnayake. "Production of High Quality Charcoal from Municipal Solid Waste by Developing a Pyrolyzer." Journal of Solid Waste Technology and Management 39, no. 1 (February 1, 2013): 13–24. http://dx.doi.org/10.5276/jswtm.2013.13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

ISHIHARA, Atsushi, Kentarou KIMURA, Tadanori HASHIMOTO, and Hiroyuki NASU. "Catalytic Cracking of VGO by Zeolite–kaolin Mixed Catalysts Using Curie Point Pyrolyzer." Journal of the Japan Petroleum Institute 58, no. 3 (May 1, 2015): 169–75. http://dx.doi.org/10.1627/jpi.58.169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

SUGAWARA, Katsuyasu, Shinya NAKATANI, and Takuo SUGAWRA. "Devolatilization Behavior in Rapid Hydropyrolysis of Coals in a Free-Fall Type Pyrolyzer." Journal of Society of Materials Engineering for Resources of Japan 1, no. 1 (1988): 59–65. http://dx.doi.org/10.5188/jsmerj.1.59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Brown, J. N., and R. C. Brown. "Process optimization of an auger pyrolyzer with heat carrier using response surface methodology." Bioresource Technology 103, no. 1 (January 2012): 405–14. http://dx.doi.org/10.1016/j.biortech.2011.09.117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wang, Frank Cheng-Yu. "Interface between pyrolyzer and gas chromatograph a different configuration of pyrolysis-gas chromatography." Journal of Chromatography A 786, no. 1 (October 1997): 107–15. http://dx.doi.org/10.1016/s0021-9673(97)00548-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wiezorek, Bernd, Anatoly Schiller, Gökhan Baykut, and Karl‐Peter Wanczek. "An infrared pyrolyzer for analysis of solid samples by gas chromatography/mass spectrometry." Review of Scientific Instruments 63, no. 12 (December 1992): 5607–12. http://dx.doi.org/10.1063/1.1143390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

LIANG, P., Z. WANG, and J. BI. "Simulation of coal pyrolysis by solid heat carrier in a moving-bed pyrolyzer." Fuel 87, no. 4-5 (April 2008): 435–42. http://dx.doi.org/10.1016/j.fuel.2007.06.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Shafaghat, Hoda, Pouya Sirous Rezaei, Donghoon Ro, Jungho Jae, Beom-Sik Kim, Sang-Chul Jung, Bong Hyun Sung, and Young-Kwon Park. "In-situ catalytic pyrolysis of lignin in a bench-scale fixed bed pyrolyzer." Journal of Industrial and Engineering Chemistry 54 (October 2017): 447–53. http://dx.doi.org/10.1016/j.jiec.2017.06.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Yoo, Ho Seong, and Hang Seok Choi. "A study on torrefaction characteristics of waste sawdust in an auger type pyrolyzer." Journal of Material Cycles and Waste Management 18, no. 3 (March 11, 2016): 460–68. http://dx.doi.org/10.1007/s10163-016-0482-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Havey, Crystal D., Franco Basile, Curtis Mowry, and Kent J. Voorhees. "Evaluation of a micro-fabricated pyrolyzer for the detection of Bacillus anthracis spores." Journal of Analytical and Applied Pyrolysis 72, no. 1 (August 2004): 55–61. http://dx.doi.org/10.1016/j.jaap.2004.02.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Phounglamcheik, Aekjuthon, Matthaus U. Babler, Pawel Donaj, Marko Amovic, Rolf Ljunggren, and Klas Engvall. "Pyrolysis of Wood in a Rotary Kiln Pyrolyzer: Modeling and Pilot Plant Trials." Energy Procedia 105 (May 2017): 908–13. http://dx.doi.org/10.1016/j.egypro.2017.03.413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Izzatie, N. I., M. H. Basha, Y. Uemura, M. S. M. Hashim, M. Afendi, and M. A. F. Mazlan. "Co-pyrolysis of rubberwood sawdust (RWS) and polypropylene (PP) in a fixed bed pyrolyzer." Journal of Mechanical Engineering and Sciences 13, no. 1 (March 29, 2019): 4636–47. http://dx.doi.org/10.15282/jmes.13.1.2019.20.0390.

Full text
Abstract:
Co-pyrolysis of rubberwood sawdust (RWS) waste and polypropylene (PP) was carried out at different temperatures (450,500,550, and 600°C) with biomass to plastics ratio 1:1 by using fixed bed drop-type pyrolyzer. The yield of pyrolysis oil has an increasing trend as the temperature increased from 450°C to 550°C. However, the pyrolysis oil yield dropped at a temperature of 600°C. Co-pyrolysis of RWS and PP generated maximum pyrolysis oil with 36.47 wt.% at 550°C. The result is compared with the pyrolysis of RWS only without plastics, with the same feedstock, and the maximum pyrolysis oil yield obtained was 33.3 wt.%. The water content in pyrolysis oil of co-pyrolysis RWS with PP is lower than RWS only with 54.2 wt.% and 62 wt.% respectively. Hydrocarbons, acyclic olefin, alkyl, and aromatic groups are the major compound in the pyrolysis oil from the co-pyrolysis process. Carbon monoxide (52.2 vol.%) and carbon dioxide (38.2 vol.%) are the major gas components.
APA, Harvard, Vancouver, ISO, and other styles
44

Zhang, Chun, Rongcheng Wu, and Guangwen Xu. "Coal Pyrolysis for High-Quality Tar in a Fixed-Bed Pyrolyzer Enhanced with Internals." Energy & Fuels 28, no. 1 (November 4, 2013): 236–44. http://dx.doi.org/10.1021/ef401546n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Nakamura, Sadao, Masahiko Takino, and Shigeki Daishima. "Analysis of waterborne paints by gas chromatography–mass spectrometry with a temperature-programmable pyrolyzer." Journal of Chromatography A 912, no. 2 (April 2001): 329–34. http://dx.doi.org/10.1016/s0021-9673(01)00596-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Pongsuwan, Wipawee, Takeshi Bamba, Tsutomu Yonetani, Akio Kobayashi, and Eiichiro Fukusaki. "Quality Prediction of Japanese Green Tea Using Pyrolyzer Coupled GC/MS Based Metabolic Fingerprinting." Journal of Agricultural and Food Chemistry 56, no. 3 (February 2008): 744–50. http://dx.doi.org/10.1021/jf072791v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Liu, Ermei, Ze Wang, Songgeng Li, Wenli Song, and Hua Zhang. "Staged Condensation of Coal Tar from the Pyrolysis of Coal in a Screw Pyrolyzer." Chemical Engineering & Technology 43, no. 7 (April 28, 2020): 1442–50. http://dx.doi.org/10.1002/ceat.201900692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Elmas Kimyonok, A. Begüm, and Mehmet Ulutürk. "Determination of the Thermal Decomposition Products of Terephthalic Acid by Using Curie-Point Pyrolyzer." Journal of Energetic Materials 34, no. 2 (December 23, 2015): 113–22. http://dx.doi.org/10.1080/07370652.2015.1005773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chowdhury, R., S. Poddar, and S. De. "Kinetic Modelling of Non – Catalytic Pyrolysis of Waste Jute in a Fixed Bed Pyrolyzer." APCBEE Procedia 9 (2014): 18–24. http://dx.doi.org/10.1016/j.apcbee.2014.01.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Eschenbacher, Andreas, Alireza Saraeian, Brent H. Shanks, Uffe Vie Mentzel, Peter Arendt Jensen, Ulrik Birk Henriksen, Jesper Ahrenfeldt, and Anker Degn Jensen. "Micro-pyrolyzer screening of hydrodeoxygenation catalysts for efficient conversion of straw-derived pyrolysis vapors." Journal of Analytical and Applied Pyrolysis 150 (September 2020): 104868. http://dx.doi.org/10.1016/j.jaap.2020.104868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography