Academic literature on the topic 'Q-binomial'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Q-binomial.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Q-binomial"

1

Si-cong, Jing, and Fan Hong-yi. "q-deformed binomial state." Physical Review A 49, no. 4 (April 1, 1994): 2277–79. http://dx.doi.org/10.1103/physreva.49.2277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chou, Wun-Seng. "Binomial permutations of finite fields." Bulletin of the Australian Mathematical Society 38, no. 3 (December 1988): 325–27. http://dx.doi.org/10.1017/s0004972700027659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Guo, Victor J. W., and C. Krattenthaler. "Some divisibility properties of binomial and q -binomial coefficients." Journal of Number Theory 135 (February 2014): 167–84. http://dx.doi.org/10.1016/j.jnt.2013.08.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pan, Hao. "Factors of some lacunary $$q$$ q -binomial sums." Monatshefte für Mathematik 172, no. 3-4 (October 20, 2013): 387–98. http://dx.doi.org/10.1007/s00605-013-0515-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Butler, Lynne M. "The q-log-concavity of q-binomial coefficients." Journal of Combinatorial Theory, Series A 54, no. 1 (May 1990): 54–63. http://dx.doi.org/10.1016/0097-3165(90)90005-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Obad, Alaa Mohammed, Asif Khan, Kottakkaran Sooppy Nisar, and Ahmed Morsy. "q-Binomial Convolution and Transformations of q-Appell Polynomials." Axioms 10, no. 2 (April 19, 2021): 70. http://dx.doi.org/10.3390/axioms10020070.

Full text
Abstract:
In this paper, binomial convolution in the frame of quantum calculus is studied for the set Aq of q-Appell sequences. It has been shown that the set Aq of q-Appell sequences forms an Abelian group under the operation of binomial convolution. Several properties for this Abelian group structure Aq have been studied. A new definition of the q-Appell polynomials associated with a random variable is proposed. Scale transformation as well as transformation based on expectation with respect to a random variable is used to present the determinantal form of q-Appell sequences.
APA, Harvard, Vancouver, ISO, and other styles
7

Charalambides, Charalambos A. "The q-Bernstein basis as a q-binomial distribution." Journal of Statistical Planning and Inference 140, no. 8 (August 2010): 2184–90. http://dx.doi.org/10.1016/j.jspi.2010.01.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yalcin, Femin, and Serkan Eryilmaz. "q-geometric and q-binomial distributions of order k." Journal of Computational and Applied Mathematics 271 (December 2014): 31–38. http://dx.doi.org/10.1016/j.cam.2014.03.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

JING, SI-CONG, and HONG-YI FAN. "ON THE STATISTICS OF SU(1, 1)q and SU(2)q COHERENT STATES." Modern Physics Letters A 10, no. 08 (March 14, 1995): 687–94. http://dx.doi.org/10.1142/s0217732395000739.

Full text
Abstract:
We find that the SU (2)q coherent state and SU (1, 1)q coherent state in the sense of statistics can be classified as q-binomial state and q-negative binomial state, respectively. Their relations with the q-Euler distribution and q-Heine distribution are discussed.
APA, Harvard, Vancouver, ISO, and other styles
10

Luca, Florian. "Perfect powers in q-binomial coefficients." Acta Arithmetica 151, no. 3 (2012): 279–92. http://dx.doi.org/10.4064/aa151-3-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Q-binomial"

1

Azose, Jonathan. "Applications of the q-Binomial Coefficients to Counting Problems." Scholarship @ Claremont, 2007. https://scholarship.claremont.edu/hmc_theses/191.

Full text
Abstract:
I have developed a tiling interpretation of the q-binomial coefficients. The aim of this thesis is to apply this combinatorial interpretation to a variety of q-identities to provide straightforward combinatorial proofs. The range of identities I present include q-multinomial identities, alternating sum identities and congruences.
APA, Harvard, Vancouver, ISO, and other styles
2

Drescher, Chelsea. "Invariants of Polynomials Modulo Frobenius Powers." Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1703327/.

Full text
Abstract:
Rational Catalan combinatorics connects various Catalan numbers to the representation theory of rational Cherednik algebras for Coxeter and complex reflection groups. Lewis, Reiner, and Stanton seek a theory of rational Catalan combinatorics for the general linear group over a finite field. The finite general linear group is a modular reflection group that behaves like a finite Coxeter group. They conjecture a Hilbert series for a space of invariants under the action of this group using (q,t)-binomial coefficients. They consider the finite general linear group acting on the quotient of a polynomial ring by iterated powers of the irrelevant ideal under the Frobenius map. Often conjectures about reflection groups are solved by considering the local case of a group fixing one hyperplane and then extending via the theory of hyperplane arrangements to the full group. The Lewis, Reiner and Stanton conjecture had not previously been formulated for groups fixing a hyperplane. We formulate and prove their conjecture in this local case.
APA, Harvard, Vancouver, ISO, and other styles
3

Reiland, Elizabeth. "Combinatorial Interpretations of Fibonomial Identities." Scholarship @ Claremont, 2011. http://scholarship.claremont.edu/hmc_theses/10.

Full text
Abstract:
The Fibonomial numbers are defined by \[ \begin{bmatrix}n \\ k \end{bmatrix} = \frac{\prod_{i=n-k+1} ^{n} F_i}{\prod_{j=1}^{k} F_j} \] where $F_i$ is the $i$th Fibonacci number, defined by the recurrence $F_n=F_{n-1}+F_{n-2}$ with initial conditions $F_0=0,F_1=1$. In the past year, Sagan and Savage have derived a combinatorial interpretation for these Fibonomial numbers, an interpretation that relies upon tilings of a partition and its complement in a given grid.In this thesis, I investigate previously proven theorems for the Fibonomial numbers and attempt to reinterpret and reprove them in light of this new combinatorial description. I also present combinatorial proofs for some identities I did not find elsewhere in my research and begin the process of creating a general mapping between the two different Fibonomial interpretations. Finally, I provide a discussion of potential directions for future work in this area.
APA, Harvard, Vancouver, ISO, and other styles
4

Lakbakbi, Elyaaqoubi Souad. "Décomposition de Wold Cramer de certains processus ARMA#T : application à la prévision." Nancy 1, 1990. http://www.theses.fr/1990NAN10131.

Full text
Abstract:
L'ouvrage présente une étude de processus autorégressifs moyenne mobiles à coefficients dépendant du temps, notes ARMA#T. Partant du calcul explicite de la fonction de Green unilatérale de certains opérateurs linéaires à coefficients polynomiaux, on donne la forme exacte de la décomposition de Wold Cramer de processus autorégressifs d'ordre 1 et d'ordre 2 dont les coefficients sont des polynomes de degré 1. Une seconde partie étudie les processus ARMA#T dont les coefficients tendent vers des constantes lorsque le temps tend vers moins l'infini. On établit une condition suffisante d'inversibilité et d'indéterminabilité pure, et on l'applique au problème de prévision. Il a été procédé à une étude par simulation de processus AR#T d'ordre 1 et 2 A coefficients homographiques par rapport au temps ; Elle a mis en évidence pour les AR#T(1) un domaine de stabilité pour l'existence d'estimateurs des coefficients
APA, Harvard, Vancouver, ISO, and other styles
5

吳子豪. "Quality control with Q charts under negative binomial model." Thesis, 2000. http://ndltd.ncl.edu.tw/handle/59649748088903641683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Filipe, Dora Pestana. "O operador thinning na modelação de séries temporais de contagem." Master's thesis, 2015. http://hdl.handle.net/10316/31687.

Full text
Abstract:
Dissertação de Mestrado em Matemática, área de Especialização em Estatística, Optimização e Matemática Financeira, apresentada à Faculdade de Ciências e Tecnologia da Universidade de Coimbra
As séries temporais de valores inteiros não-negativos podem ser encontradas em muitas situações e actividades, especialmente associadas a processos de contagem. Como os modelos ARMA não são adequados para modelar este tipo de séries, surgiu a necessidade de criar uma nova classe, os modelos INARMA, que utilizam o operador thinning binomial em vez da multiplicação usual. Neste trabalho, começamos por apresentar o operador thinning binomial e algumas das suas propriedades. De seguida, estudamos probabilisticamente o modelo INAR(1) em particular no que diz respeito à estacionaridade e ao seu comportamento distribucional. Apresentamos ainda o modelo INAR(1) inflacionado em zero, abreviadamente ZINAR(1), com inovação de Poisson. Por fim, efectuamos um breve estudo do modelo INMA(q), que inclui a análise da estacionaridade e obtensão das funções média e de autocovariância. Os diversos modelos são ilustrados recorrendo a estudos de simulação.
Non-negative integer-valued time series can be found in many situations and activities, specially associated with counting processes. ARMA models are not adequate to model these kind of time series. This gave rise to the necessity of developing the INARMA models, which use the binomial thinning operator instead of the usual multiplication. In this work, we start by presenting the binomial thinning operator and some of its properties. Then we study the INAR(1) model particularly in which concerns the stationary analysis and its distributional behaviour. We also explore the INAR(1) inflated zero, ZINAR(1), with Poisson innovations. Finally, we present a brief study about the INMA(q) model analysing, in particular, its stationarity, and deducing the corresponding mean and autocovariance functions. The presented models are illustrated using simulation studies.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Q-binomial"

1

Trends in number theory: Fifth Spanish meeting on number theory, July 8-12, 2013, Universidad de Sevilla, Sevilla, Spain. Providence, Rhode Island: American Mathematical Society, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Davis, Kenneth Schneider. Divisibility properties of q-binomial and multinomial coefficients by primes and prime powers. 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Q-binomial"

1

Kyriakoussis, Andreas, and Malvina Vamvakari. "Asymptotic Behaviour of Certain q-Poisson, q-Binomial and Negative q-Binomial Distributions." In Lattice Path Combinatorics and Applications, 283–306. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11102-1_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kac, Victor, and Pokman Cheung. "Properties of q-Binomial Coefficients." In Quantum Calculus, 17–20. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4613-0071-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zudilin, Wadim. "Congruences for q-Binomial Coefficients." In Trends in Mathematics, 769–81. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-57050-7_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stanley, Richard P. "Young Diagrams and q-Binomial Coefficients." In Undergraduate Texts in Mathematics, 57–73. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77173-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stanley, Richard P. "Young Diagrams and q-Binomial Coefficients." In Undergraduate Texts in Mathematics, 57–73. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6998-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Macdonald, I. G. "An Elementary Proof of a q-Binomial Identity." In q-Series and Partitions, 73–75. New York, NY: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-0637-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kaporis, Alexis C., Lefteris M. Kirousis, Yannis C. Stamatiou, Malvina Vamvakari, and Michele Zito. "Coupon Collectors, q-Binomial Coefficients and the Unsatisfiability Threshold." In Lecture Notes in Computer Science, 328–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45446-2_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kac, Victor, and Pokman Cheung. "q-Binomial Coefficients and Linear Algebra over Finite Fields." In Quantum Calculus, 21–26. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4613-0071-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kac, Victor, and Pokman Cheung. "q-Taylor’s Formula for Formal Power Series and Heine’s Binomial Formula." In Quantum Calculus, 27–28. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4613-0071-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Díaz-Francés, Eloísa, and David A. Sprott. "The estimation of $p\geq q$ from two independent binomial samples $b(n,p)$ and $b(m,q)$." In Institute of Mathematical Statistics Lecture Notes - Monograph Series, 153–59. Beachwood, OH: Institute of Mathematical Statistics, 2004. http://dx.doi.org/10.1214/lnms/1215006770.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Q-binomial"

1

Jie-Hong Xu and Bao-Zhu Zhao. "A congruence on q-binomial coefficients." In 2012 International Conference on Wavelet Active Media Technology and Information Processing (ICWAMTIP). IEEE, 2012. http://dx.doi.org/10.1109/icwamtip.2012.6413520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mota, Guilherme Oliveira. "Advances in anti-Ramsey theory for random graphs." In II Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2017. http://dx.doi.org/10.5753/etc.2017.3204.

Full text
Abstract:
Dados grafos G e H, denotamos a seguinte propriedade por G ÝrÑpb H: para toda coloração própria das arestas de G (com uma quantidade arbitrária de cores) existe uma cópia multicolorida de H em G, i.e., uma cópia de H sem duas arestas da mesma cor. Sabe-se que, para todo grafo H, a função limiar prHb prHbpnq para essa propriedade no grafo aleatório binomial Gpn; pq é assintoticamente no máximo n 1{mp2qpHq, onde mp2qpHq denota a assim chamada 2-densidade máxima de H. Neste trabalho discutimos esse e alguns resultados recentes no estudo de propriedades anti-Ramsey para grafos aleatórios, e mostramos que se H C4 ou H K4 então prHb n 1{mp2qpHq, que está em contraste com os fatos conhecidos de que prCbk n 1{mp2qpCkq para Let r be a positive integer and let G and H be graphs. We denote by G Ñ pHqr the property that any colouring of the edges of G with at most r colours contains a monochromatic copy of H in G. In 1995, Ro¨dl and Rucin´ski determined the threshold for the property Gpn; pq Ñ pHqr for all graphs H. The maximum 2-density mp2qpHq of a graph H is denoted by mp2qpHq max ! ||VEppJJqq|| 12 : J € H; |V pJ q| ¥ 3) ; where we suppose |V pHq| ¥ 3.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography