Academic literature on the topic 'Q-learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Q-learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Q-learning"
Watkins, Christopher J. C. H., and Peter Dayan. "Q-learning." Machine Learning 8, no. 3-4 (May 1992): 279–92. http://dx.doi.org/10.1007/bf00992698.
Full textClausen, C., and H. Wechsler. "Quad-Q-learning." IEEE Transactions on Neural Networks 11, no. 2 (March 2000): 279–94. http://dx.doi.org/10.1109/72.839000.
Full textten Hagen, Stephan, and Ben Kr�se. "Neural Q-learning." Neural Computing & Applications 12, no. 2 (November 1, 2003): 81–88. http://dx.doi.org/10.1007/s00521-003-0369-9.
Full textWang, Yin-Hao, Tzuu-Hseng S. Li, and Chih-Jui Lin. "Backward Q-learning: The combination of Sarsa algorithm and Q-learning." Engineering Applications of Artificial Intelligence 26, no. 9 (October 2013): 2184–93. http://dx.doi.org/10.1016/j.engappai.2013.06.016.
Full textEvseenko, Alla, and Dmitrii Romannikov. "Application of Deep Q-learning and double Deep Q-learning algorithms to the task of control an inverted pendulum." Transaction of Scientific Papers of the Novosibirsk State Technical University, no. 1-2 (August 26, 2020): 7–25. http://dx.doi.org/10.17212/2307-6879-2020-1-2-7-25.
Full textAbedalguni, Bilal. "Bat Q-learning Algorithm." Jordanian Journal of Computers and Information Technology 3, no. 1 (2017): 51. http://dx.doi.org/10.5455/jjcit.71-1480540385.
Full textZhu, Rong, and Mattia Rigotti. "Self-correcting Q-learning." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 12 (May 18, 2021): 11185–92. http://dx.doi.org/10.1609/aaai.v35i12.17334.
Full textBorkar, Vivek S., and Siddharth Chandak. "Prospect-theoretic Q-learning." Systems & Control Letters 156 (October 2021): 105009. http://dx.doi.org/10.1016/j.sysconle.2021.105009.
Full textGanger, Michael, and Wei Hu. "Quantum Multiple Q-Learning." International Journal of Intelligence Science 09, no. 01 (2019): 1–22. http://dx.doi.org/10.4236/ijis.2019.91001.
Full textJohn, Indu, Chandramouli Kamanchi, and Shalabh Bhatnagar. "Generalized Speedy Q-Learning." IEEE Control Systems Letters 4, no. 3 (July 2020): 524–29. http://dx.doi.org/10.1109/lcsys.2020.2970555.
Full textDissertations / Theses on the topic "Q-learning"
Gaskett, Chris, and cgaskett@it jcu edu au. "Q-Learning for Robot Control." The Australian National University. Research School of Information Sciences and Engineering, 2002. http://thesis.anu.edu.au./public/adt-ANU20041108.192425.
Full textGaskett, Chris. "Q-Learning for robot control." View thesis entry in Australian Digital Theses Program, 2002. http://eprints.jcu.edu.au/623/1/gaskettthesis.pdf.
Full textLaivamaa, J. (Juuso). "Reinforcement Q-Learning using OpenAI Gym." Bachelor's thesis, University of Oulu, 2019. http://jultika.oulu.fi/Record/nbnfioulu-201903151329.
Full textDel, Ben Enrico <1997>. "Reinforcement Learning: a Q-Learning Algorithm for High Frequency Trading." Master's Degree Thesis, Università Ca' Foscari Venezia, 2021. http://hdl.handle.net/10579/20411.
Full textKarlsson, Daniel. "Hyperparameter optimisation using Q-learning based algorithms." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-78096.
Full textMaskininlärningsalgoritmer har många tillämpningsområden, både akademiska och inom industrin. Exempel på tillämpningar är, klassificering av diffraktionsmönster inom materialvetenskap och klassificering av egenskaper hos kemiska sammansättningar inom läkemedelsindustrin. För att dessa algoritmer ska prestera bra behöver de optimeras. En del av optimering sker vid träning av algoritmerna, men det finns komponenter som inte kan tränas. Dessa hyperparametrar måste justeras separat. Fokuset för det här arbetet var optimering av hyperparametrar till klassificeringsalgoritmer baserade på faltande neurala nätverk. Syftet med avhandlingen var att undersöka möjligheterna att använda förstärkningsinlärningsalgoritmer, främst ''Q-learning'', som den optimerande algoritmen. Tre olika algoritmer undersöktes, ''Q-learning'', dubbel ''Q-learning'' samt en algoritm inspirerad av ''Q-learning'', denna utvecklades under arbetets gång. Algoritmerna utvärderades på olika testproblem och jämfördes mot resultat uppnådda med en slumpmässig sökning av hyperparameterrymden, vilket är en av de vanligare metoderna för att optimera den här typen av algoritmer. Alla tre algoritmer påvisade någon form av inlärning, men endast den ''Q-learning'' inspirerade algoritmen presterade bättre än den slumpmässiga sökningen. En iterativ implemetation av den ''Q-learning'' inspirerade algoritmen utvecklades också. Den iterativa metoden tillät den tillgängliga hyperparameterrymden att förfinas mellan varje iteration. Detta medförde ytterligare förbättringar av resultaten som indikerade att beräkningstiden i vissa fall kunde minskas med upp till 40% jämfört med den slumpmässiga sökningen med bibehållet eller förbättrat resultat.
Finnman, Peter, and Max Winberg. "Deep reinforcement learning compared with Q-table learning applied to backgammon." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186545.
Full textPatel, Purvag. "Improving Computer Game Bots' behavior using Q-Learning." Available to subscribers only, 2009. http://proquest.umi.com/pqdweb?did=1966544161&sid=3&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Full textBurkov, Andriy. "Adaptive Dynamics Learning and Q-initialization in the Context of Multiagent Learning." Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24476/24476.pdf.
Full textMultiagent learning is a promising direction of the modern and future research in the context of intelligent systems. While the single-agent case has been well studied in the last two decades, the multiagent case has not been broadly studied due to its complex- ity. When several autonomous agents learn and act simultaneously, the environment becomes strictly unpredictable and all assumptions that are made in single-agent case, such as stationarity and the Markovian property, often do not hold in the multiagent context. In this Master’s work we study what has been done in this research field, and propose an original approach to multiagent learning in presence of adaptive agents. We explain why such an approach gives promising results by comparing it with other different existing approaches. It is important to note that one of the most challenging problems of all multiagent learning algorithms is their high computational complexity. This is due to the fact that the state space size of multiagent problem is exponential in the number of agents acting in the environment. In this work we propose a novel approach to the complexity reduction of the multiagent reinforcement learning. Such an approach permits to significantly reduce the part of the state space needed to be visited by the agents to learn an efficient solution. Then we evaluate our algorithms on a set of empirical tests and give a preliminary theoretical result, which is first step in forming the basis of validity of our approaches to multiagent learning.
Cunningham, Bryan. "Non-Reciprocating Sharing Methods in Cooperative Q-Learning Environments." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/34610.
Full textMaster of Science
Andersson, Gabriel, and Martti Yap. "Att spela 'Breakout' med hjälp av 'Deep Q-Learning'." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255799.
Full textWe cover in this report the implementation of a reinforcement learning (RL) algorithm capable of learning how to play the game 'Breakout' on the Atari Learning Environment (ALE). The non-human player (agent) is given no prior information of the game and must learn from the same sensory input that a human would typically receive when playing the game. The aim is to reproduce previous results by optimizing the agent driven control of 'Breakout' so as to surpass a typical human score. To this end, the problem is formalized by modeling it as a Markov Decision Process. We apply the celebrated Deep Q-Learning algorithm with action masking to achieve an optimal strategy. We find our agent's average score to be just below the human benchmarks: achieving an average score of 20, approximately 65% of the human counterpart. We discuss a number of implementations that boosted agent performance, as well as further techniques that could lead to improvements in the future.
Books on the topic "Q-learning"
Wiederhold, Chuck. The Q-matrix: Cooperative learning and critical thinking. San Juan Capistrano, CA: Kagan Cooperative Learning, 1995.
Find full textauthor, Pereira Penny, and Health Foundation (Great Britain), eds. Building Q: Learning from designing a large scale improvement community. London: The Health Foundation, 2016.
Find full textNational Advisory Council for Education and Training Targets. New national Learning targets for England for 2002: Q&A document on national, regional and local implementation. Sudbury: Department for Education and Employment, 2002.
Find full textKimple, James A. Eye Q and the efficient learner. Santa Ana, Calif: Optometric Extension Program Foundation, Inc., 1997.
Find full textʻAzzāwī, ʻAbd al-Raḥmān Ḥusayn. al- Manhajīyah al-tārīkhīyah fī al-ʻIrāq ilá q. 4 H. /10 M. Baghdād: Dār al-Shuʾūn al-Thaqāfīyah al-ʻĀmmah "Āfāq ʻArabīyah", 1988.
Find full textMorrison, Liz. Project Manager: Q Learning (Q Learning S.). Hodder & Stoughton, 2003.
Find full textPsaris, Nick. Fun Q: A Functional Introduction to Machine Learning in Q. Vector SIGMA, 2020.
Find full textHabib, Nazia. Hands-On Q-Learning with Python: Practical Q-Learning with OpenAI Gym, Keras, and TensorFlow. Packt Publishing, Limited, 2019.
Find full textBook chapters on the topic "Q-learning"
Stone, Peter, Xin Jin, Jiawei Han, Sanjay Jain, and Frank Stephan. "Q-Learning." In Encyclopedia of Machine Learning, 819. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_683.
Full textStone, Peter. "Q-Learning." In Encyclopedia of Machine Learning and Data Mining, 1. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-1-4899-7502-7_689-1.
Full textStone, Peter. "Q-Learning." In Encyclopedia of Machine Learning and Data Mining, 1033. Boston, MA: Springer US, 2017. http://dx.doi.org/10.1007/978-1-4899-7687-1_689.
Full textLi, Jinna, Frank L. Lewis, and Jialu Fan. "Interleaved Q-Learning." In Reinforcement Learning, 155–83. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28394-9_6.
Full textSengupta, Nandita, and Jaya Sil. "Q-Learning Classifier." In Intrusion Detection, 83–111. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2716-6_4.
Full textHu, Zhihui, Yubin Jiang, Xinghong Ling, and Quan Liu. "Accurate Q-Learning." In Neural Information Processing, 560–70. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04182-3_49.
Full textGoldberg, Yair, Rui Song, and Michael R. Kosorok. "Adaptive Q-learning." In Institute of Mathematical Statistics Collections, 150–62. Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2013. http://dx.doi.org/10.1214/12-imscoll911.
Full textStanko, Silvestr, and Karel Macek. "CVaR Q-Learning." In Studies in Computational Intelligence, 333–58. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70594-7_14.
Full textSanghi, Nimish. "Deep Q-Learning." In Deep Reinforcement Learning with Python, 155–206. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6809-4_6.
Full textLiu, Mark. "Deep Q-Learning." In Machine Learning, Animated, 322–38. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/b23383-17.
Full textConference papers on the topic "Q-learning"
Kantasewi, Nitchakun, Sanparith Marukatat, Somying Thainimit, and Okumura Manabu. "Multi Q-Table Q-Learning." In 2019 10th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES). IEEE, 2019. http://dx.doi.org/10.1109/ictemsys.2019.8695963.
Full textLu, Fan, Prashant G. Mehta, Sean P. Meyn, and Gergely Neu. "Convex Q-Learning." In 2021 American Control Conference (ACC). IEEE, 2021. http://dx.doi.org/10.23919/acc50511.2021.9483244.
Full textReid, Cameron, and Snehasis Mukhopadhyay. "Mutual Q-learning." In 2020 3rd International Conference on Control and Robots (ICCR). IEEE, 2020. http://dx.doi.org/10.1109/iccr51572.2020.9344374.
Full textZhang, Zongzhang, Zhiyuan Pan, and Mykel J. Kochenderfer. "Weighted Double Q-learning." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/483.
Full textSchilperoort, Jits, Ivar Mak, Madalina M. Drugan, and Marco A. Wiering. "Learning to Play Pac-Xon with Q-Learning and Two Double Q-Learning Variants." In 2018 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2018. http://dx.doi.org/10.1109/ssci.2018.8628782.
Full textNguyen, Thanh, and Snehasis Mukhopadhyay. "Selectively decentralized Q-learning." In 2017 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE, 2017. http://dx.doi.org/10.1109/smc.2017.8122624.
Full textPandey, Punit, and Deepshikha Pandey. "Reduct based Q-learning." In the 2011 International Conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1947940.1948001.
Full textKok, Jelle R., and Nikos Vlassis. "Sparse cooperative Q-learning." In Twenty-first international conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1015330.1015410.
Full textSzepesvári, Csaba, and William D. Smart. "Interpolation-based Q-learning." In Twenty-first international conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1015330.1015445.
Full textEdwards, Ashley, and William M. Pottenger. "Higher order Q-Learning." In 2011 Ieee Symposium On Adaptive Dynamic Programming And Reinforcement Learning. IEEE, 2011. http://dx.doi.org/10.1109/adprl.2011.5967385.
Full textReports on the topic "Q-learning"
Martinson, Eric, Alexander Stoytchev, and Ronald Arkin. Robot Behavioral Selection Using Q-learning. Fort Belvoir, VA: Defense Technical Information Center, January 2002. http://dx.doi.org/10.21236/ada640010.
Full textGoodrich, Michael A., and Morgan Quigley. Satisficing Q-Learning: Efficient Learning in Problems With Dichotomous Attributes. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada451568.
Full textCeren, Roi, Prashant Doshi, Matthew Meisel, Adam Goodie, and Dan Hall. Behaviorally Modeling Games of Strategy Using Descriptive Q-learning. Fort Belvoir, VA: Defense Technical Information Center, January 2013. http://dx.doi.org/10.21236/ada575140.
Full textOakley, Louise. K4D International Nature Learning Journey Summary. Institute of Development Studies, September 2022. http://dx.doi.org/10.19088/k4d.2022.129.
Full textAydin, Orhun. Deep Q-Learning Framework for Quantitative Climate Change Adaptation Policy for Florida Road Network due to Extreme Precipitation. Purdue University, October 2023. http://dx.doi.org/10.5703/1288284317673.
Full textGarcía Ferro, Luz Ángela, Elba N. Luna, Lorena Rodríguez, Micha Van Waesberghe, and Darinka Vásquez Jordán. Peer Assist. Inter-American Development Bank, June 2012. http://dx.doi.org/10.18235/0009034.
Full textRinuado, Christina, William Leonard, Christopher Morey, Theresa Coumbe, Jaylen Hopson, and Robert Hilborn. Artificial intelligence (AI)–enabled wargaming agent training. Engineer Research and Development Center (U.S.), April 2024. http://dx.doi.org/10.21079/11681/48419.
Full textSoliciting opinions and solutions on the "Q Zhang's Problem". BDICE, March 2023. http://dx.doi.org/10.58911/bdic.2023.03.001.
Full text