Academic literature on the topic 'QBlade'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'QBlade.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "QBlade"
Alaskari, Mustafa, Oday Abdullah, and Mahir H. Majeed. "Analysis of Wind Turbine Using QBlade Software." IOP Conference Series: Materials Science and Engineering 518 (June 5, 2019): 032020. http://dx.doi.org/10.1088/1757-899x/518/3/032020.
Full textKądrowski, Damian, Michał Kulak, Michał Lipian, Małgorzata Stępień, Piotr Baszczyński, Karol Zawadzki, and Maciej Karczewski. "Challenging low Reynolds - SWT blade aerodynamics." MATEC Web of Conferences 234 (2018): 01004. http://dx.doi.org/10.1051/matecconf/201823401004.
Full textMERAD, Asmae BOUANANI, and Mama BOUCHAOUR. "MODELING AND SIMULATION OF THE VERTICAL AXIS WIND TURBINE BY QBLADE SOFTWARE." Algerian Journal of Renewable Energy and Sustainable Development 2, no. 02 (December 15, 2020): 181–88. http://dx.doi.org/10.46657/ajresd.2020.2.2.11.
Full textSimatupang, Reza, and Deddy Supriatna. "Designing a Tapperless Blade with an S-4320 Airfoil on a Micro-Scale Horizontal Axis Wind Turbine (Case Studies at PT Lentera Bumi Nusantara)." MOTIVECTION : Journal of Mechanical, Electrical and Industrial Engineering 3, no. 1 (January 31, 2021): 27–34. http://dx.doi.org/10.46574/motivection.v3i1.81.
Full textZahariea, D., D. E. Husaru, and C. M. Husaru. "Aerodynamic and structural analysis of a small-scale horizontal axis wind turbine using QBlade." IOP Conference Series: Materials Science and Engineering 595 (September 20, 2019): 012042. http://dx.doi.org/10.1088/1757-899x/595/1/012042.
Full textDWI SAPTO, AGUNG, and HINGGIL PANDU RUMAKSO. "UJI COBA PERFORMA BENTUK AIRFOIL MENGGUNAKAN SOFTWARE QBLADE TERHADAP TURBIN ANGIN TIPE SUMBU HORIZONTAL." Jurnal Teknik Mesin 10, no. 1 (March 14, 2021): 1. http://dx.doi.org/10.22441/jtm.v10i1.10212.
Full textPanjwani, Balram, Cecile Quinsard, Dominik Gacia Przemysław, and Jostein Furseth. "Virtual Modelling and Testing of the Single and Contra-Rotating Co-Axial Propeller." Drones 4, no. 3 (August 12, 2020): 42. http://dx.doi.org/10.3390/drones4030042.
Full textHusaru, D. E., P. D. Bârsănescu, and D. Zahariea. "Effect of yaw angle on the global performances of Horizontal Axis Wind Turbine - QBlade simulation." IOP Conference Series: Materials Science and Engineering 595 (September 20, 2019): 012047. http://dx.doi.org/10.1088/1757-899x/595/1/012047.
Full textBianchini, Alessandro, David Marten, Andrea Tonini, Francesco Balduzzi, Christian Navid Nayeri, Giovanni Ferrara, and Christian Oliver Paschereit. "Implementation of the “Virtual Camber” Transformation into the Open Source Software QBlade: Validation and Assessment." Energy Procedia 148 (August 2018): 210–17. http://dx.doi.org/10.1016/j.egypro.2018.08.070.
Full textBangga, Galih, Giorgia Guma, Thorsten Lutz, and Ewald Krämer. "Numerical simulations of a large offshore wind turbine exposed to turbulent inflow conditions." Wind Engineering 42, no. 2 (March 20, 2018): 88–96. http://dx.doi.org/10.1177/0309524x18756958.
Full textDissertations / Theses on the topic "QBlade"
Marten, David [Verfasser], Christian Oliver [Akademischer Betreuer] Paschereit, Christian Oliver [Gutachter] Paschereit, Jens [Gutachter] Fortmann, and Athanasios [Gutachter] Barlas. "QBlade: a modern tool for the aeroelastic simulation of wind turbines / David Marten ; Gutachter: Christian Oliver Paschereit, Jens Fortmann, Athanasios Barlas ; Betreuer: Christian Oliver Paschereit." Berlin : Technische Universität Berlin, 2020. http://d-nb.info/1220774472/34.
Full textJunior, Joseph Youssif Saab. "Trailing-edge noise: development and application of a noise prediction tool for the assessment and design of wind turbine airfoils." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/3/3150/tde-14032017-140101/.
Full textEste trabalho descreve a pesquisa de elementos iniciais, o projeto, a implantação e a aplicação de uma ferramenta de predição de ruído de bordo de fuga, no desenvolvimento de aerofólios mais silenciosos para turbinas eólicas de grande porte. O objetivo imediato da ferramenta é permitir a comparação de desempenho acústico relativo entre aerofólios no início do ciclo de projeto de novas pás e rotores de turbinas eólicas. O objetivo mais amplo é possibilitar o projeto de turbinas eólicas mais silenciosas, mas de desempenho aerodinâmico preservado, pela indústria da Energia Eólica. A consecução desses objetivos demandou o desenvolvimento de uma ferramenta que reunisse, simultaneamente, resolução comparativa, eficiência computacional e interface amigável, devido à natureza iterativa do projeto preliminar de um novo rotor. A ferramenta foi integrada a um ambiente avançado de projeto e análise de turbinas eólicas, de código aberto, que pode ser livremente baixado na Web. Durante a pesquisa foi realizada uma ampla revisão dos modelos existentes para predição de ruído de bordo de fuga, com a seleção do modelo semi-empírico BPM, que foi modificado para lidar com geometrias genéricas. A precisão intrínseca do modelo original foi avaliada, assim como sua sensibilidade ao parâmetro de escala de turbulência transversal, com restrições sendo impostas a esse parâmetro em decorrência da análise. Esse critério permitiu a comparação de resultados de cálculo provenientes de método CFD-RANS e de método híbrido (XFLR5) de solução da camada limite turbulenta, com a escolha do último. Após a seleção de todos os elementos do método e especificação do código, uma parceria foi estabelecida entre a Poli-USP e a TU-Berlin, que permitiu a adição de um novo módulo de ruído de bordo de fuga, denominado \"PNoise\", ao ambiente de projeto e análise integrado de turbinas eólicas \"QBlade\". Após a adição, as rotinas de cálculo foram criteriosamente verificadas e, em seguida, aplicadas ao desenvolvimento de aerofólios mais silenciosos, com bons resultados acústicos e aerodinâmicos relativos a uma geometria de referência. Esse desenvolvimento ilustrou a capacidade da ferramenta de cumprir a missão para a qual foi inicialmente projetada, qual seja, permitir à Indústria desenvolver pás mais silenciosas que irão colaborar com o avanço da energia eólica através da limitação do seu impacto ambiental.
Jami, Valentina. "Development of Computer Program for Wind Resource Assessment, Rotor Design and Rotor Performance." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1513703072278665.
Full textLennie, Matthew. "Development of the QFEM Solver : The Development of Modal Analysis Code for Wind Turbine Blades in QBLADE." Thesis, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-132154.
Full textCorreia, Luís Miguel Camacho. "Estudo Preliminar da Adaptação da Aeronave Crossover para Voo de Longa Duração a Grande Altitude." Master's thesis, 2018. http://hdl.handle.net/10400.6/8326.
Full textThis dissertation for the master’s degree in Aeronautical Engineering describes a project in partnership with the company Eurosport Aircraft with the objective of developing a performance study for a modification of the motor glider Crossover into a HALE UAV. The main objective is to verify that if increasing the wingspan of 18 m to 25 m, inserting two Rotax® 915is turbo and having a MTOM of 1800 kg on the Crossover, if it is possible to have 168 h of endurance and reach an altitude of 12160 m (40000 ft). To reach the objectives it is used various analysis programs, such as XFLR5, used to obtain the drag polar of the aerofoils and wings used on the case studies; Qblade and Jblade are used to design and obtain the performance of the propellers tested in this work. This study is carried out over several phases, where in the first phase the dimensioning of the tailings and the performance analysis of the Rotax® 915is turbo engine are done. The next phase involves the design of the propellers, these being optimized using Qblade and, finally, the analyses of the performance of the propellers on Jblade performing it for various blade pitch angle to obtain a variable pitch propeller function. During the third phase, the aircraft's drag polar was studied and analysed with the various configurations of the new panel of the wing proposed by the company. To verify the best configuration to reach the objective, several conceptual performance studies are made where several propellers designs are tested. After a detailed analysis, the most efficient propeller for the flight conditions is chosen and the same study is then carried out to analyse/test the most appropriate wing configuration. Finally, a time-integrated performance study comparing two types of mission profiles is carried out, the first one performing a normal cruise flight at 12160 m and the second one shows a profile with an intermittent engine functioning, performing a glided flight to a certain minimum altitude followed by a climb to 12160 m, repeating this process until reaching the minimum fuel weight.
Book chapters on the topic "QBlade"
Reddy, Kanthala Uma, Bachu Deb, and Bidesh Roy. "Analysis of the Aerodynamic Characteristics of NREL S823 and DU 06-W-200 Airfoils at Various Reynolds Numbers Using QBlade." In Lecture Notes in Mechanical Engineering, 279–86. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8304-9_20.
Full textBrahimi, Tayeb, and Ion Paraschivoiu. "Aerodynamic Analysis and Performance Prediction of VAWT and HAWT Using CARDAAV and Qblade Computer Codes." In Entropy and Exergy in Renewable Energy [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96343.
Full textConference papers on the topic "QBlade"
Marten, David, Juliane Wendler, Georgios Pechlivanoglou, Christian Navid Nayeri, and Christian Oliver Paschereit. "Development and Application of a Simulation Tool for Vertical and Horizontal Axis Wind Turbines." In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-94979.
Full textLennie, Matthew, David Marten, George Pechlivanoglou, Christian Oliver Paschereit, and Sean Dominin. "Simulating Wind Turbine Ice Throw: QBlade and Statistical Analysis." In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-76485.
Full textLennie, Matthew, David Marten, Georgios Pechlivanoglou, Christian Navid Nayeri, and Christian Oliver Paschereit. "Development and Validation of a Modal Analysis Code for Wind Turbine Blades." In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-27151.
Full textLennie, Matthew, Sean Dominin, David Marten, George Pechlivanoglou, and Christian O. Paschereit. "Development of Ice Throw Model for Wind Turbine Simulation Software QBlade." In AIAA Scitech 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-1800.
Full textKoc, Emre, Onur Gunel, and Tahir Yavuz. "Comparison of Qblade and CFD results for small-scaled horizontal axis wind turbine analysis." In 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA). IEEE, 2016. http://dx.doi.org/10.1109/icrera.2016.7884538.
Full textMarten, David, Matthew Lennie, George Pechlivanoglou, Christian Oliver Paschereit, Alessandro Bianchini, Giovanni Ferrara, and Lorenzo Ferrari. "Benchmark of a Novel Aero-Elastic Simulation Code for Small Scale VAWT Analysis." In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-75922.
Full textMarten, David, Matthew Lennie, Georgios Pechlivanoglou, Christian Navid Nayeri, and Christian Oliver Paschereit. "Implementation, Optimization and Validation of a Nonlinear Lifting Line Free Vortex Wake Module Within the Wind Turbine Simulation Code QBlade." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-43265.
Full textWendler, Juliane, David Marten, George Pechlivanoglou, Christian Navid Nayeri, and Christian Oliver Paschereit. "An Unsteady Aerodynamics Model for Lifting Line Free Vortex Wake Simulations of HAWT and VAWT in QBlade." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-57184.
Full textIslam, Md Robiul, Labid Bin Bashar, and Nazmus Sowad Rafi. "Design and Simulation of A Small Wind Turbine Blade with Qblade and Validation with MATLAB." In 2019 4th International Conference on Electrical Information and Communication Technology (EICT). IEEE, 2019. http://dx.doi.org/10.1109/eict48899.2019.9068762.
Full textBartholomay, Sirko, David Marten, Mariano Sánchez Martínez, Jörg Alber, George Pechlivanoglou, Christian Navid Nayeri, Christian Oliver Paschereit, Annette Claudia Klein, Thorsten Lutz, and Ewald Krämer. "Cross-Talk Compensation for Blade Root Flap- and Edgewise Moments on an Experimental Research Wind Turbine and Comparison to Numerical Results." In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-76977.
Full text