Academic literature on the topic 'QCD non perturbative'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'QCD non perturbative.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "QCD non perturbative"

1

DALLEY, SIMON. "NON-PERTURBATIVE DYNAMICS." International Journal of Modern Physics A 16, supp01a (2001): 53–64. http://dx.doi.org/10.1142/s0217751x01006309.

Full text
Abstract:
I review some of the progress over the past 12 months in understanding non-perturbative (QCD) dynamics, using Euclidean lattice QCD, the Quark Model, Dyson-Schwinger equations, and light-front quantisation. I discuss b-physics, the OZI rule, the quark and gluon propagators, glueballs, 1/Nc expansions, and other things.
APA, Harvard, Vancouver, ISO, and other styles
2

Aguilar, Arlene C., and Joannis Papavassiliou. "Non-perturbative QCD effective charges." Nuclear Physics B - Proceedings Supplements 199, no. 1 (2010): 172–77. http://dx.doi.org/10.1016/j.nuclphysbps.2010.02.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vairo, Antonio. "The non-perturbative QCD potential." Nuclear Physics B - Proceedings Supplements 96, no. 1-3 (2001): 477–84. http://dx.doi.org/10.1016/s0920-5632(01)01169-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

West, Geoffrey B. "Glueballs and non-perturbative QCD." Nuclear Physics B - Proceedings Supplements 54, no. 1-2 (1997): 353–61. http://dx.doi.org/10.1016/s0920-5632(97)00067-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Amati, Daniele. "Non-perturbative aspects of QCD." Nuclear Physics B 279, no. 1-2 (1987): 295–310. http://dx.doi.org/10.1016/0550-3213(87)90319-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Di Giacomo, Adriano. "Topics in non-perturbative QCD." Czechoslovak Journal of Physics 51, S2 (2001): B9—B33. http://dx.doi.org/10.1007/s10582-001-0047-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Simonov, Yu A. "Ideas in non-perturbative QCD." Il Nuovo Cimento A 107, no. 11 (1994): 2629–44. http://dx.doi.org/10.1007/bf02734040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Moore, Guy D., Sören Schlichting, Niels Schlusser, and Ismail Soudi. "Non-perturbative phenomena in jet modification." EPJ Web of Conferences 258 (2022): 05001. http://dx.doi.org/10.1051/epjconf/202225805001.

Full text
Abstract:
The interaction of a jet with the medium created in heavy-ion collisions is not yet fully understood from a QCD perspective. This is mainly due to the non-perturbative nature of this interaction which affects both transverse jet momentum broadening and jet quenching. We discuss how lattice simulations of Electrostatic QCD, can be matched to full, four dimensional QCD, to determine non-perturbative contributions to the momentum broadening kernel. We determine the momentum broadening kernel in impact parameter and momentum space and finally show how these results can be used in phenomenological calculations of in-medium splitting rates.
APA, Harvard, Vancouver, ISO, and other styles
9

Bali, G. S., P. Boyle, and C. T. H. Davies. "Where do perturbative and non-perturbative QCD meet?" Nuclear Physics B - Proceedings Supplements 106-107 (March 2002): 796–98. http://dx.doi.org/10.1016/s0920-5632(01)01847-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

ARMONI, ADI. "QCD AND SUPERSYMMETRY." International Journal of Modern Physics A 25, no. 02n03 (2010): 470–89. http://dx.doi.org/10.1142/s0217751x10048779.

Full text
Abstract:
We review the connection between QCD and supersymmetric theories. We focus on the non-perturbative large- N (planar) correspondence between one-flavor QCD and pure supersymmetric Yang-Mills theory ([Formula: see text]). We explain how non-perturbative quantities in QCD, such as the quark condensate, can be evaluated by using the corresponding non-perturbative results in supersymmetric gauge theories. The review consists of three parts. The first part is devoted to a review of pure [Formula: see text]. In the second part we introduce "orientifold planar equivalence". The third part is devoted to the implications of planar equivalence for QCD.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "QCD non perturbative"

1

Ashley, Jonathan D. "Investigations in non-perturbative QCD." Title page, abstract and table of contents only, 2004. http://hdl.handle.net/2440/37959.

Full text
Abstract:
In this thesis we review two methods for studying the non-pertubative region of QCD: the effective field theory, chiral perturbation theory (χPT), and the cloudy bag model, a successful chiral quark model of hadron structure. We use information from both of these sources to construct a simple extrapolation formula in the pion mass, mπ, for the nucleon electromagnetic form factors, which combines the correct non-analytic chiral behaviour predicted by (χPT), with the correct large mπ behaviour. This formula is applied to recent quenched lattice QCD results to extrapolate to the physical regime. Given the simple nature of the extrapolation scheme, our results compare surprisingly well with experiment. We also employ a simple chiral quark model (the hedgehog) to examine the volume and pion mass dependence of the axial coupling constant, ga, along with the hedgehog baryon mass. Our results for ga reveal large volume dependence at low pion masses.<br>Thesis (M.Sc.)--School of Chemistry and Physics, 2004.
APA, Harvard, Vancouver, ISO, and other styles
2

Jowett, A. M. "Non-perturbative techniques in QCD." Thesis, University of Southampton, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lokhov, Alexey. "Etude non-perturbative de corrélateurs en QCD." Phd thesis, Ecole Polytechnique X, 2006. http://tel.archives-ouvertes.fr/tel-00114163.

Full text
Abstract:
Une étude non-perturbative des corélateurs en QCD est présentée. La méthode principale employée<br />est la simulation numérique sur réseau. Cet outil a été largement utilisé en phénoménologie,<br />mais il peut aussi servir pour étudier les paramètres fondamentaux de la théorie (tels que la<br />constante de couplage) et ses propriétés fondamentales. Ceci est le but principal de la présente<br />thèse. Nous avons étudié les fonctions de corrélation de la théorie Yang-Mills pure en jauge<br />de Landau, notamment les propagateurs du gluon et du fantôme. Nous nous sommes particulièrement<br />intéressés au paramètre LQCD qui est extrait à l'aide des prédictions de la théorie des<br />perturbations (jusqu'à l'ordre NNNLO). Les corrections dominantes en puissance sont aussi considérées,<br />nous montrons qu'elles sont importantes même à des énergies assez grandes (de l'ordre<br />de 10 GeV). Une méthode de soustraction de ces termes correctifs est proposée, ce qui permet<br />une meilleur estimation de LQCD. Notre résultat final est Lambda_nf_MSbar = 269(5)+12−9 MeV. Une autre<br />question que nous considéons est celle du comportement infrarouge des fonctions de Green (aux<br />énergies de l'ordre de ou inférieur à LQCD). A ces énergies le comportement des fonctions de<br />Green change de manière radicale, et cela est probablement lié au confinement. Nous cherchons<br />à clarifier la nature de ces changements afin de comprendre ses origines. Beaucoup de questions<br />se posent: l'ambigu¨té de Gribov, la portée de diverses relations non-perturbatives entre les<br />fonctions de Green, la cohéence de l'approche nuérique aux petites énergies. Les simulations<br />sur réseau permettent de vérifier les prédicitons analytiques, elles donnent accès aux corrélateurs<br />non-perturbatifs. Notre analyse suggère que le propagateur du gluon est fini et non nul dans<br />l'infrarouge, et que le comportement en puissance du propagateur du fanôme est le même que<br />dans le cas libre.
APA, Harvard, Vancouver, ISO, and other styles
4

Lavelle, Martin Joseph. "Sum rules and non-perturbative parameters in QCD." Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/38082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bhagwat, Mandar S. "Aspects of Non-Perturbative QCD for Hadron Physics." Kent State University / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=kent1113519118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nguyen, Trang Thi. "Aspects of Non-perturbative QCD FOR Meson Physics." Kent State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=kent1267371699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brown, Nicholas. "A non-perturbative study of the infra-red behaviour of QCD." Thesis, Durham University, 1989. http://etheses.dur.ac.uk/6575/.

Full text
Abstract:
The non-perturbative behaviour of the non-Abelian gauge theory of strong interactions, namely QCD, is investigated using the Schwinger-Dyson equations. Using an approximation based on solving the Slavnov-Taylor identities, we derive a closed integral equation for the full gluon propagator. We numerically solve this equation, finding a consistent solution which is as singular as 1/p(^4) the momentum p(^2) → 0, whilst at large momenta the gluon propagates like a free particle. This infra-red behaviour can be seen as a signal for the confinement of quarks and gluons, implying, for example, that the Wilson loop operator behaves an 'axea law'. We then derive an equation for the full massless quark propagator. Using our solution for the gluon, we find the quark propagator to be suppressed at low momentum, to such an extent that the physical particle pole is removed, and free quarks cannot propagate. This is just what we might expect of a confining theory. The inclusion of quarks means we must study their dynamical effects via closed fermion loops in the gluon propagator equation. This couples the two equations together. We solve the two equations simultaneously, finding that the previous infra-red behaviour still holds. As we introduce more flavours of fermions, however, the infra-red enhancement of the gluon propagator is diminished, and this in turn means that the quark propagator is less suppressed. This exhibits the dynamical importance of quarks. These physically realistic results demonstrate the importance and validity of the Schwinger-Dyson equations as a valuable tool for investigating the non-perturbative features of gauge theories.
APA, Harvard, Vancouver, ISO, and other styles
8

Petschlies, Marcus. "Non-perturbative investigation of current correlators in twisted mass lattice QCD." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://dx.doi.org/10.18452/16770.

Full text
Abstract:
Wir stellen die Resultate einer Untersuchung von Strom-Strom-Korrelatoren beruhend auf den Grundprinzipien der Quantenchromodynamik vor. Wir benutzen die nicht-perturbativen Methoden der sogenannten twisted mass Gitter-QCD mit dynamischem up- und down-Quark unter Ausnutzung der automatischen O(a)-Verbesserung. Als Anwendung diskutieren wir die Berechnung des hadronischen Beitrags zur Korrektur in führender Ordnung in der elektromagnetischen Kopplung zum anomalen magnetischen Moment des Myons. Dieses gilt als eine sehr geeignete Größe für die aktuelle Suche nach neuer Physik jenseits des Standardmodells, besonders im Hinblick auf die Diskrepanz zwischen der Vorhersage aus dem Standardmodell und dem experimentell gemessenen Wert. Innerhalb der theoretischen Bestimmung ist der hadronische Anteil führender Ordnung mit der größten Unsicherheit behaftet und genießt derzeit somit naturgemäß Priorität. Wir beschreiben unsere Studie aller systematischen Unsicherheiten der Gitterrechnung auf Grundlage von drei Gittervolumina, zwei Gitterabständen, Pionmassen im Bereich von 650 MeV bis 290 MeV und den Quark-unverbundenen Beiträgen. Für die Extrapolation zum physikalischen Punkt stellen wir eine neue Methode vor, welche die Abhängigkeit von der Pionmasse hinreichend abschwächt und eine lineare Extrapolation ermöglicht. Im Ergebnis bestimmen wir den Beitrag von up- und down-Quark zu a_mu^hlo(N_f=2) = 5.69 (15) 10^(-8). Die dargelegten Methoden werden auf das Elektron- und das Tau-Lepton erweitert mit dem Resultat a_el^hlo(N_f=2) = 1.512 (43) 10^(-12) bzw. a_tau^hlo(N_f=2) = 2.635 (54) 10^(-6). Wir schätzen den Beitrag des charm-Quarks zu a_mu^hlo in der Partially Quenched tmLQCD mit dem Resultat a_mu^hlo(charm) = 1.447 (24) (30) 10^(-9) in Übereinstimmung mit der Vorhersage über die Dispersionsrelation unter Hinzunahme experimenteller Daten für das hadronische R-Verhältnis.<br>We present an investigation of hadronic current-current correlators based on the first principles of Quantum Chromodynamics. Specifically we apply the non-perturbative methods of twisted mass lattice QCD with dynamical up and down quark taking advantage of its automatic O(a) improvement. As a special application we discuss the calculation of the hadronic leading order contribution to the muon anomalous magnetic moment. The latter is regarded as a promising quantity for the search for physics beyond the standard model. The origin of the strong interest in the muon anomaly lies in the persistent discrepancy between the standard model estimate and its experimental measurement. In the theoretical determination the hadronic leading order part is currently afflicted with the largest uncertainty and a dedicated lattice investigation of the former can be of strong impact on future estimates. We discuss our study of all systematic uncertainties in the lattice calculation, including three lattice volumes, two lattice spacings, pion masses from 650 MeV to 290 MeV and the quark-disconnected contribution. We present a new method for the extrapolation to the physical point that softens the pion mass dependence of a_mu^hlo and allows for a linear extrapolation with small statistical uncertainty at the physical point. We determine the contribution of up and down quark as a_mu^hlo(N_f=2) = 5.69 (15) 10^(-8). The methods used for the muon are extended to the electron and tau lepton and we find a_el^hlo(N_f=2) = 1.512 (43) 10^(-12) and a_tau^hlo(N_f=2) = 2.635 (54) 10^(-6). We estimate the charm contribution to a_mu^hlo in partially quenched tmLQCD with the result a_mu^hlo(charm) = 1.447 (24) (30) 10^(-9) in very good agreement with a dispersion-relation based result using experimental data for the hadronic R-ratio.
APA, Harvard, Vancouver, ISO, and other styles
9

Cyrol, Anton Konrad [Verfasser], and Jan Martin [Akademischer Betreuer] Pawlowski. "Non-perturbative QCD Correlation Functions / Anton Konrad Cyrol ; Betreuer: Jan Martin Pawlowski." Heidelberg : Universitätsbibliothek Heidelberg, 2017. http://d-nb.info/1177689073/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dawson, Christopher. "The #DELTA#I = half rule and non-perturbative renormalisation in lattice QCD." Thesis, University of Southampton, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264667.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "QCD non perturbative"

1

P, Vary J., Wolz F, International Institute of Theoretical and Applied Physics., and School on Light-Front Quantization and Non-Perturbative QCD (1st : 1996 : Ames, Iowa), eds. Light-front quantization and non-perturbative QCD. International Institute of Theoretical and Applied Physics, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Baal, Pierre, ed. Confinement, Duality, and Non-Perturbative Aspects of QCD. Kluwer Academic Publishers, 2002. http://dx.doi.org/10.1007/b114635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Greensite, Jeff, and Štefan Olejník, eds. Confinement, Topology, and Other Non-Perturbative Aspects of QCD. Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0502-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jeff, Greensite, Olejník Štefan, and North Atlantic Treaty Organization. Scientific Affairs Division, eds. Confinement, topology, and other non-perturbative aspects of QCD. Kluwer Academic Publishers, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Greensite, Jeff. Confinement, Topology, and Other Non-Perturbative Aspects of QCD. Springer Netherlands, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xiang-Qian, Luo, and Gregory Eric B, eds. Non-perturbative methods and lattice QCD: Proceedings of the international workshop. World Scientific, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

International, Light-Cone Meeting on Non-perturbative QCD and Hadron Phenomenology (10th 2000 Heidelberg Germany). Non-perturbative QCD and hadron phenomenology: From hadrons to strings : proceedings of the 10th International Light-Cone Meeting on Non-perturbative QCD and Hadron Phenomenology, Heidelberg, Germany, 13-17 June, 2000. North-Holland, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

International Light-Cone Meeting on Non-perturbative QCD and Hadron Phenomenology (10th 2000 Heidelberg, Germany). Non-perturbative QCD and hadron phenomenology: From hadrons to strings : proceedings of the 10th International Light-Cone Meeting on Non-perturbative QCD and Hadron Phenomenology, Heidelberg, Germany, 13-17 June, 2000. North-Holland, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jacob, Sonnenschein, ed. Non-perturbative field theory: From two dimensional conformal field theory to QCD in four dimensions. Cambridge University Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Workshop on Non-Perturbative QCD (6th 2001 Paris, France). Proceedings of the Sixth Workshop on Non-Perturbative QCD: Paris, France, 5-9 June 2001. Edited by Fried H. M, Gabellini Y, and Müller Berndt 1950-. World Scientific, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "QCD non perturbative"

1

Lavelle, Martin. "Non-Perturbative Propagators in QCD." In Contemporary Topics in Medium Energy Physics. Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9835-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zichichi, A. "Universality Properties in Non-Perturbative QCD." In Old and New Forces of Nature. Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-1309-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pendleton, B. J. "Non-perturbative QCD on the Lattice." In Springer Proceedings in Physics. Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73473-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

HOšek, Jiří. "Anisotropic QCD Superfluids." In Confinement, Topology, and Other Non-Perturbative Aspects of QCD. Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0502-9_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stock, Reinhard. "Relativistic Nucleus-Nucleus Collisions and the QCD Matter Phase Diagram." In Particle Physics Reference Library. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38207-0_7.

Full text
Abstract:
AbstractThis review will be concerned with our knowledge of extended matter under the governance of strong interaction, in short: QCD matter. Strictly speaking, the hadrons are representing the first layer of extended QCD architecture. In fact we encounter the characteristic phenomena of confinement as distances grow to the scale of 1 fm (i.e. hadron size): loss of the chiral symmetry property of the elementary QCD Lagrangian via non-perturbative generation of “massive” quark and gluon condensates, that replace the bare QCD vacuum. However, given such first experiences of transition from short range perturbative QCD phenomena (jet physics etc.), toward extended, non perturbative QCD hadron structure, we shall proceed here to systems with dimensions far exceeding the force range: matter in the interior of heavy nuclei, or in neutron stars, and primordial matter in the cosmological era from electro-weak decoupling (10−12 s) to hadron formation (0.5 ⋅ 10−5 s). This primordial matter, prior to hadronization, should be deconfined in its QCD sector, forming a plasma (i.e. color conducting) state of quarks and gluons: the Quark Gluon Plasma (QGP).
APA, Harvard, Vancouver, ISO, and other styles
6

Dalley, S. "Collinear QCD Models." In New Non-Perturbative Methods and Quantization on the Light Cone. Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-08973-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Greiner, Walter, and Andreas Schäfer. "Phenomenological Models for Non-Perturbative QCD Problems." In Quantum Chromodynamics. Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57978-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lenz, F., and M. Thies. "QCD at Finite Extension." In New Non-Perturbative Methods and Quantization on the Light Cone. Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-08973-6_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Polonyi, Janos. "Non-Perturbative Aspects of QCD at High Temperature." In NATO ASI Series. Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2516-5_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Martinelli, Guido. "QCD and Supercomputers." In Springer Proceedings in Physics. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23042-4_10.

Full text
Abstract:
AbstractThe title of this talk should rather have been Lattice QCD and Supercomputers. I will introduce Lattice QCD as the fundamental tool to predict (postdict) the hadron spectrum and most of the matrix elements relevant for hadronic physics in the non-perturbative regime. Lattice calculations are used to study the dynamics of QCD at large temperature or chemical potential, the anomalous magnetic moment of the muon, $$g-$$ g - 2, the nucleon structure functions, the meson scattering amplitudes at low and intermediate energies and, last but not least, the weak matrix elements relevant in flavour physics and CP violation. In this presentation only some example particularly illustrative of the present sophistication and accuracy of lattice QCD calculations will be discussed in some detail.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "QCD non perturbative"

1

Boglione, Maria Elena. "SIDIS cross sections: perturbative and non-perturbative aspects." In QCD Evolution 2016. Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.284.0026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hebecker, Arthur. "Non-perturbative high-energy QCD." In International Europhysics Conference on High Energy Physics. Sissa Medialab, 2001. http://dx.doi.org/10.22323/1.007.0291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

FANTONI, A., and S. LIUTI. "THE TRANSITION BETWEEN PERTURBATIVE AND NON-PERTURBATIVE QCD." In Proceedings of the First Workshop. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774132_0024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Parganlija, Denis, Kovacs Peter, Francesco Giacosa, György Wolf, and Dirk Rischke. "Mesons in perturbative and non-perturbative regions of QCD." In Xth Quark Confinement and the Hadron Spectrum. Sissa Medialab, 2013. http://dx.doi.org/10.22323/1.171.0117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sharpe, Stephen R. "Non-perturbative QCD in weak decays." In Internatinal symposium on heavy quark physics. AIP, 1989. http://dx.doi.org/10.1063/1.38910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Boglione, Maria Elena, J. O. Gonzalez Hernandez, Stefano MELIS, and Alexei Prokudin. "Perturbative QCD, resummation and non-perturbative aspects in SIDIS processes." In XXIV International Workshop on Deep-Inelastic Scattering and Related Subjects. Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.265.0208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Collins, John. "Do fragmentation functions in factorization theorems correctly treat non-perturbative effects?" In QCD Evolution 2016. Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.284.0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

THOMAS, A. W., D. B. LEINWEBER, and D. H. LU. "NON-PERTURBATIVE CHIRAL CORRECTIONS FOR LATTICE QCD." In The Proceedings of the International Symposium on Nuclear Electro-Weak Spectroscopy for Symmetries in Electro-Weak Nuclear-Processes. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776754_0018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aoki, Yasumichi, Tatsumi Aoyama, Masafumi Kurachi, et al. "Non-Perturbative Study of 16-Flavor QCD." In Proceedings of KMI-GCOE Workshop. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814566254_0058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gamiz, Elvira. "Non-perturbative (Lattice) QCD in B Physics." In 14th International Conference on B-Physics at Hadron Machines. Sissa Medialab, 2013. http://dx.doi.org/10.22323/1.190.0039.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "QCD non perturbative"

1

Greensite, Jeff, and Maarten F. l. Golterman. Non-Perturbative Aspects of Thermal QCD. Office of Scientific and Technical Information (OSTI), 2015. http://dx.doi.org/10.2172/1227947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Unsal, Mithat. New Methods in Non-Perturbative QCD. Office of Scientific and Technical Information (OSTI), 2017. http://dx.doi.org/10.2172/1360218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brodsky, Stanley J. Light-Front Methods and Non-Perturbative QCD. Office of Scientific and Technical Information (OSTI), 2002. http://dx.doi.org/10.2172/799038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Danos, Michael, Daniel Gogny, and Daniel Iracane. Model for the non-perturbative QCD vacuum. National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.4555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rathsman, J. Soft color interactions in non-perturbative QCD. Office of Scientific and Technical Information (OSTI), 2000. http://dx.doi.org/10.2172/753269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liuti, Simonetta. Studies of QCD at the Intersection of the Perturbative and Non-Perturbative Regimes. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1332278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lindenbaum, S. J., and S. Samuel. Experimental investigations of strong interactions in non-perturbative QCD region. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/7158047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Battistoni, G. The FLUKA Monte Carlo, Non-Perturbative QCD and Cosmic Ray Cascades. Office of Scientific and Technical Information (OSTI), 2005. http://dx.doi.org/10.2172/839659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lindenbaum, S. J., and S. Samuel. Experimental investigations of strong interactions in non-perturbative QCD region. Annual progress report, January 16, 1992--January 15, 1993. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/10182604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lindenbaum, S. J., and S. Samuel. Experimental investigations of strong interaction in the non-perturbative QCD region. Annual progress report, January 16, 1993--January 15, 1994. Office of Scientific and Technical Information (OSTI), 1993. http://dx.doi.org/10.2172/10186655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!