Academic literature on the topic 'Qiannan Zhou zheng xie'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Qiannan Zhou zheng xie.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Qiannan Zhou zheng xie"

1

HUANG, JIANHUA, ZHEMIN ZHENG, YUAN HUANG, and SHANYI ZHOU. "New synonymies in Chinese Oxyinae (Orthoptera: Acrididae)." Zootaxa 1976, no. 1 (January 12, 2009): 39–55. http://dx.doi.org/10.11646/zootaxa.1976.1.3.

Full text
Abstract:
The genera Oxyoides Zheng & Fu, 1994, Yinia Liu & Li, 1995 and Caryandoides Zheng & Xie, 2007 are revised. As a result of the revision, the genus Oxyoides is synonymized with Oxya Audinet-Serville, 1831, and the genus Caryandoides is synonymized with Yinia. As for the three known members of Oxyoides, the type species Oxyoides wulingshanensis Zheng & Fu, 1994 is proposed as a new junior synonym of Oxya agavisa Tsai, 1931, the two other members, i.e. Oxyoides bamianshanensis Fu & Zheng, 1999 and Oxyoides longianchorus Huang, Fu & Zhou, 2007, are referred to the genus Yinia and both, together with Caryandoides maguas Zheng & Xie, 2007, are proposed as new junior synonyms of Yinia hunanica Liu & Li, 1995.
APA, Harvard, Vancouver, ISO, and other styles
2

Huang, Y. Q., Q. B. Zhang, J. X. Zheng, G. L. Jian, T. H. Liu, X. He, F. N. Xiao, Q. Xiong, and Y. F. Qing. "POS0136 ROLES OF AUTOPHAGY IN THE PATHOGENESIS OF PRIMARY GOUTY ARTHRITIS." Annals of the Rheumatic Diseases 80, Suppl 1 (May 19, 2021): 280.1–280. http://dx.doi.org/10.1136/annrheumdis-2021-eular.3592.

Full text
Abstract:
Background:Gout is a chronic autoinflammatory disease caused by monosodium urate (MSU) crystal deposition [1].Acute gout is characterized by an acute inflammatory reaction that resolves spontaneously within a few days[2], which is one of the distinguishing features of gout compared to other arthropathies or self-inflammatory diseases. Autophagy is a lysosomal degradation pathway that is essential for cellular growth, survival, differentiation, development and homeostasis [3]. Studies have demonstrated that autophagy might play a key role in the pathogenesis of primary gouty arthritis (GA) [4-7]. However, the roles of autophagy in the development of gout have not yet been elucidated.Objectives:The aim of our study was to investigate the changes in autophagy-related gene (ATG) mRNA and protein in patients and the clinical importance of these genes in primary gouty arthritis (GA) and to explore the roles of autophagy in the pathogenesis of GA.Methods:The mRNA and protein expression levels of ATGs (ATG3, ATG7, ATG10, ATG5, ATG12, ATG16L1, ATG4B and LC3-2) were measured in peripheral blood mononuclear cells (PBMCs) from 196 subjects, including 57 acute gout patients (AG group), 57 intercritical gout patients (IG group) and 82 healthy control subjects (HC group). The relationship between ATG expression levels and laboratory features was analyzed in GA patients.Results:The expression levels of ATG4B, ATG5, ATG12, ATG16L1, ATG10 and LC3-2 mRNA were much lower in the AG group than in the IG and HC groups (p<0.05), while the ATG7 mRNA level was much higher in the AG group than in the IG and HC groups (p<0.05). The protein expression levels of LC3-2, ATG3, ATG7 and ATG10 were much higher in the AG group than in the other groups, while those of ATG5, ATG12, ATG16L1 and ATG4B were far lower in the AG group than in the other groups (p<0.05). In GA patients, the levels of ATG mRNA and protein correlated with laboratory inflammatory and metabolic indexes.Conclusion:Altered ATG expression suggests that autophagy is involved in the pathogenesis of GA and participates in regulating inflammation and metabolism.References:[1]Dalbeth N, Choi HK, Joosten LAB, Khanna PP, Matsuo H, Perez-Ruiz F, et al. Gout. Nat Rev Dis Primers. 2019;5: 69.doi:10.1038/s41572-019-0115-y.[2]Schauer C, Janko C, Munoz LE, Zhao Y, Kienhöfer D, Frey B, et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med. 2014;20: 511-517.doi:10.1038/nm.3547.[3]Han Y, Zhang L, Xing Y, Zhang L, Chen X, Tang P, et al. Autophagy relieves the function inhibition and apoptosis-promoting effects on osteoblast induced by glucocorticoid. Int J Mol Med. 2018;41: 800-808. doi:10.3892/ijmm.2017.3270.[4]Yang QB, He YL, Zhong XW, Xie WG, Zhou JG. Resveratrol ameliorates gouty inflammation via upregulation of sirtuin 1 to promote autophagy in gout patients. Inflammopharmacology. 2019;27: 47-56.doi:10.1007/s10787-018-00555-4.[5]Mitroulis I, Kambas K, Chrysanthopoulou A, Skendros P, Apostolidou E, Kourtzelis I, et al. Neutrophil extracellular trap formation is associated with IL-1β and autophagy-related signaling in gout. PLoS One. 2011;6: e29318.doi: 10.1371/journal.pone.0029318.[6]Crişan TO, Cleophas MCP, Novakovic B, Erler K, van de Veerdonk FL, Stunnenberg HG, et al. Uric acid priming in human monocytes is driven by the AKT-PRAS40 autophagy pathway. Proc Natl Acad Sci U S A. 2017;114: 5485-5490.doi:10.1073/pnas.1620910114.[7]Lee SS, Lee SW, Oh DH, Kim HS, Chae SC, Kim SK. Genetic analysis for rs2241880(T > C) in ATG16L1 polymorphism for the susceptibility of Gout. J Clin Rheumatol. 2019;25: e113-e115.doi:10.1097/rhu.0000000000000685.Disclosure of Interests:Yu-Qin Huang: None declared, Quan-Bo Zhang Grant/research support from: National Natural Science Foundation of China(General Program) (no.81974250) and Science and Technology Plan Project of Sichuan Province (no.2018JY0257), Jian-Xiong Zheng: None declared, gui-lin jian: None declared, tao-hong liu: None declared, Xin He: None declared, fan-ni xiao: None declared, qin xiong: None declared, Yu-Feng Qing Grant/research support from: Science and Technology Project of Nanchong City (no.18SXHZ0522)
APA, Harvard, Vancouver, ISO, and other styles
3

Ding, Yuhua. "From merchant to elite artist and collector." Journal of the History of Collections, May 17, 2021. http://dx.doi.org/10.1093/jhc/fhab008.

Full text
Abstract:
Abstract This paper reports the first academic research on the collection of Yan Xinhou (1838–1906), a prominent gentry–merchant from the second half of the nineteenth century. It presents the Yan collection, now housed at the Herbert F. Johnson Museum of Art at Cornell University, and tells a fascinating story of the Yan family and how their collection came to the United States during the early twentieth century. More importantly, it provides a starting point for future explorations of the taste, collecting practices and social relations of the late Qing merchants. The collection contains thirty-two works of Ming and Qing dynasty painting and calligraphy, including calligraphy items by Zhang Ruitu (1570–1641), Jiang Chenying (1628–1699) and Qian Bojiong (1738–1812); paintings by Wang Shimin (1592–1680), Xiao Yuncong (1596–1673), Wang Wu (1632-1690), Ma Quan (active 1800s), Shangguan Zhou (1665–c.1749), Zheng Xie (1693–1765), Hua Yan (1682–1756), Xi Gang (1746–1803), Pan Simu (1756–after 1843), Zhao Wei (1746–1825), Qian Du (1764–1845), Gai Qi (1773–1828) and Wu Xizai (1799–1870).
APA, Harvard, Vancouver, ISO, and other styles
4

"Correction for the Research Article: “The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice” by P. Zheng, B. Zeng, M. Liu, J. Chen, J. Pan, Y. Han, Y. Liu, K. Cheng, C. Zhou, H. Wang, X. Zhou, S. Gui, S. W. Perry, M. Wong, J. Licinio, H. Wei, and P. Xie." Science Advances 5, no. 6 (June 2019): eaay2759. http://dx.doi.org/10.1126/sciadv.aay2759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Correction to: Suppression of Lipogenesis via Reactive Oxygen Species–AMPK Signaling for Treating Malignant and Proliferative Disease, by Fan XX, Leung ELH, Xie Y, Liu ZQ, Zheng YF, Yao ZJ, Lu LL, Wu JL, He JX, Yuan ZW, Fu J, Wei CL, Huang J, Xiao DK, Luo LX, Jiang ZB, Zhou YL, Kam RKT, and Liu L. Antioxid Redox Signal 28: 339–357, 2018. DOI: 10.1089/ars.2017.7090." Antioxidants & Redox Signaling 30, no. 4 (February 2019): 710. http://dx.doi.org/10.1089/ars.2017.7090.correx.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Teles, Samuel Gomes da Silva, Maria Cecília Simões Riscado de Castro, Sabrina Nogueira Dutra, and Lídia Márcia Silva Santos. "Uso da saliva como um espécime alternativo para diagnóstico de COVID-19: uma revisão sistemática." ARCHIVES OF HEALTH INVESTIGATION 9, no. 4 (October 6, 2020). http://dx.doi.org/10.21270/archi.v9i4.5114.

Full text
Abstract:
Introdução: O padrão ouro atual para detectar o RNA de SARS-CoV-2 é por reação em cadeia da polimerase em tempo real de transcrição reversa (RT-rtPCR) em swabs nasofaríngeos (NPS). Por esse motivo, a demanda pelos NPS aumentou e sua escassez se tornou uma realidade em muitos países. Com isso o uso da saliva se mostra uma alternativa promissora na triagem epidemiológica além de ser de fácil coleta e não invasiva. Objetivo: realizar uma revisão sistemática da literatura para avaliar o uso da saliva como um espécime alternativo para a detecção de SARS-CoV-2. Metodologia: A pesquisa sistemática foi realizada em sete bancos de dados (PubMed, Cochrane Library, Lilacs, Scielo, Web of Science, Scopus e Google Scholar) usando a variação dos termos de pesquisa (COVID-19 OR SARS-CoV-2 OR 2019-nCoV) AND "Saliva" no ano de 2020, recuperando 5480 publicações. Resultados: Após a leitura dos títulos e resumos, 411 textos foram conduzidos para leitura integral e 30 publicações foram consideradas para avaliação qualitativa do artigo. Conclusão: A saliva se apresenta um método alternativo eficaz para a detecção de SARS-CoV-2 e diagnóstico de COVID-19.Descritores: Infecções por Coronavírus; Betacoronavirus; Saliva; Diagnóstico.ReferênciasHuang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497-506.Wang L, Wang Y, Ye D, Liu Q. A review of the 2019 Novel Coronavirus (COVID-19) based on current evidence. J Antimicrob Agents 2020;105948.Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020;382:727-733.Coronaviridae Study Group of the International Committee on Taxonomy of V. 2020. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5:536-544.Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The incubation period of Coronavirus Disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med. 2020;172:577-82.To KK, Tsang OT, Chik-Yan Yip C, Chan KH, Wu TC, Chan JMC, et al. Consistent detection of 2019 novel coronavirus in saliva. Clin Infect Dis. 2020;149:5734265.Xu R, Cui B, Duan X, Zhang P, Zhou X, Yuan Q. Saliva: potential diagnostic value and transmission of 2019-nCoV. Int J Oral Sci. 2020;12:11.Khurshid Z, Asiri FYI, Al Wadaani H. Human Saliva: Non-Invasive Fluid for Detecting Novel Coronavirus (2019-nCoV). Int J Environ Res Public Health. 2020;17.Khurshid Z, Zohaib S, Najeeb S, Zafar MS, Slowey PD, Almas K. Human Saliva Collection Devices for Proteomics: An Update. Int J Mol Sci. 2016;17.Principais itens para relatar Revisões sistemáticas e Meta-análises: A recomendação PRISMA. Epidemiol. E Serviços Saúde 2015;24:335–42.Abdul MSM, Fatima U, Khanna SS, Bhanot R, Sharma A, Srivastava AP. Oral Manifestations of Covid-19-Are they the introductory symptoms?. J Adv Dent Sci Res. 2020;8:5.Azzi L, Carcano G, Dalla Gasperina D, Sessa F, Maurino V, Baj A. Two cases of COVID-19 with positive salivary and negative pharyngeal or respiratory swabs at hospital discharge: A rising concern. Oral Dis. 2020;00:1-3.Azzi L, Carcano G, Gianfagna F, Grossi P, Dalla Gasperina D, Genoni A, et al. Saliva is a reliable tool to detect SARS-CoV-2. J Infect. 2020;81:45-50.Becker D, Sandoval E, Amin A, De Hoff P, Leonetti N, Lim YW, et al. Saliva is less sensitive than nasopharyngeal swabs for COVID-19 detection in the community setting. medRxiv. 2020;20092338.Braz-Silva PH, Pallos D, Giannecchini S, To KKW. SARS-CoV-2: What can saliva tell us?. Oral Dis. 2020;13365.Chan JFW, Yip CCY, To KKW, Tang THC, Wong SCY, Leung KH, et al. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-PCR assay validated in vitro and with clinical specimens. J Clin Microbiol. 2020;58:5.Chen L, Zhao J, Peng J, Li X, Deng X, Geng Z, et al. Detection of 2019-nCoV in saliva and characterization of oral symptoms in COVID-19 patients. Lancet. 2020;3556665.Cheng VC, Wong SC, Chen JH, Yip CC, Chuang VW, Tsang OT, et al. Escalating infection control response to the rapidly evolving epidemiology of the Coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 in Hong Kong. Infect Control Hosp Epidemiol. 2020;41:493-498.Han P, Ivanovski S. Saliva—Friend and Foe in the COVID-19 Outbreak. Diagn. 2020;10:290.Iwasaki S, Fujisawa S, Nakakubo S, Kamada K, Yamashita Y, Fukumoto T, et al. Comparison of SARS-CoV-2 detection in nasopharyngeal swab and saliva. J Infect. 2020;20:30349.Krajewska J, Krajewski W, Zub K, Zatoński T. COVID-19 in otolaryngologist practice: a review of current knowledge. Eur Arch Otorhinolaryngol. 2020;1-13.Lalli MA, Chen X, Langmade SJ, Fronick CC, Sawyer CS, Burcea LC, et al. Rapid and extraction-free detection of SARS-CoV-2 from saliva with colorimetric LAMP. medRxiv. 2020;7273276.Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10:101-108.Li H, Liu SM, Yu XH, Tang SL, Tang CK. Coronavirus disease 2019 (COVID-19): current status and future perspective. Int J Antimicrob Agents. 2020;105951.McCormick-Baw C, Morgan K, Gaffney D, Cazares Y, Jaworski K, Byrd A, et al. Saliva as an Alternate Specimen Source for Detection of SARS-CoV-2 in Symptomatic Patients Using Cepheid Xpert Xpress SARS-CoV-2. J Clin Microbiol. 2020;01109-20.Pasomsub E, Watcharananan SP, Boonyawat K, Janchompoo P, Wongtabtim G, Suksuwan W, et al. Saliva sample as a non-invasive specimen for the diagnosis of coronavirus disease-2019 (COVID-19): a cross-sectional study. Clin Microbiol Infect. 2020;20302780.Sabino-Silva R, Jardim ACG, Siqueira WL. Coronavirus COVID-19 impacts to dentistry and potential salivary diagnosis. Clinical oral investigations. 2020;1-3.Sapkota D, Thapa SB, Hasséus B, Jensen JL. Saliva testing for COVID-19?. BDJ. 2020;228:658-659.Sharma S, Kumar V, Chawla A, Logani A. Rapid detection of SARS-CoV-2 in saliva: Can an endodontist take the lead in point-of-care COVID-19 testing?. Int Endod J. 2020;13317.Tang YW, Schmitz JE, Persing DH, Stratton CW. Laboratory Diagnosis of COVID-19: Current Issues and Challenges. J Clin Microbiol. 2020;58(6).Tatikonda SS, Reshu P, Hanish A, Konkati S, Madham S. A Review of Salivary Diagnostics and Its Potential Implication in Detection of Covid-19. Cureus. 2020;12(4).To KKW, Tsang OTY, Leung WS, Tam AR, Wu TC, Lung DC, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. 2020;20:565-574.Vinayachandran D, Saravanakarthikeyan B. Salivary diagnostics in COVID-19: Future research implications. J Dent Sci. 2020;7177105.Williams E, Bond K, Zhang B, Putland M, Williamson DA. Saliva as a non-invasive specimen for detection of SARS-CoV-2. J Clin Microbiol. 2020;00776-20.Wyllie AL, Fournier J, Casanovas-Massana A, Campbell M, Tokuyama M, Vijayakumar P, et al. Saliva is more sensitive for SARS-CoV-2 detection in COVID-19 patients than nasopharyngeal swabs. Medrxiv. 2020;20067835.Yoon JG, Yoon J, Song JY, Yoon SY, Lim CS, Seong H, et al. Clinical Significance of a High SARS-CoV-2 Viral Load in the Saliva. J Korean Med Sci. 2020;35(20).Zheng S, Yu F, Fan J, Zou Q, Xie G, Yang X, et al. Saliva as a Diagnostic Specimen for SARS-CoV-2 by a PCR-Based Assay: A Diagnostic Validity Study. Lancet. 2020;3543605.Zhong F, Liang Y, Xu J, Chu M, Tang G, Hu F, et al. Continuously High Detection Sensitivity of Saliva, Viral Shedding in Salivary Glands and High Viral Load in Patients with COVID-19. Lancet. 2020;3576869.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Qiannan Zhou zheng xie"

1

Jiafu, Sun, ed. Qing Zheng Xie xing shu shi zhou. Shanghai: Shanghai shu hua chu ban she, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wo yu ren min zheng xie: Ji nian ren min zheng xie cheng li 60 zhou nian zhuan ji. Ningbo Shi: Ningbo chu ban she, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zheng zhi ren lei xue: Ya Zhou tian ye yu shu xie. Hangzhou: Zhejiang da xue chu ban she, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhongguo ren min zheng zhi xie shang hui yi. Shanghai Shi wei yuan hui. Wen shi zi liao wei yuan hui and Shanghai zheng xie zhi you she, eds. Feng yu tong zhou ban shi ji. Shanghai: Shanghai Shi zheng xie wen shi zi liao bian ji bu, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Feng yu tong zhou, chang xiang shou xiang: Ji nian zheng xie Bama Yaozu Zizhixian wei yuan hui cheng li 30 zhou nian = Fengyutongzhou changxiang shouxiang. Nanning Shi: Guangxi ren min chu ban she, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhongguo ren min zheng zhi xie shang hui yi. Guangxi Zhuangzu Zizhiqu wei yuan hui, ed. Tong xin pu: Ji nian Zhongguo ren min zheng zhi xie shang hui yi cheng li 50 zhou nian. Nanning Shi: Guangxi ren min chu ban she, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Huahui, Shu, ed. Yi hai tong zhou: Guangdong Sheng zheng xie shu hua yi shu jiao liu cu jin hui shi zai hui mou, 1994-2004. Guangzhou Shi: Ling nan mei shu chu ban she, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Qi. Feng yu tong zhou: Jie song min zhu qun ying mi mi li Gang bei shang can jia zheng xie shi mo ji. Xianggang: Xianggang ge jie wen hua cu jin hui, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

China) Gai ge kai fang yu ren min zheng xie : ji nian gai ge kai fang 30 zhou nian yan tao hui (2008 Beijing. Gai ge kai fang yu ren min zheng xie: Ji nian gai ge kai fang 30 zhou nian yan tao hui lun wen ji. [Beijing]: Beijing Shi ren min zheng xie li lun yu shi jian yan jiu hui, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

author, Mosquera Silvina, and Yan Li translator, eds. Yun chan zhuan jia xie gei zhun ma mi de yun qi 40 zhou jiao ke shu: Bei yun, yang tai, an chan, yue zi, chan hou su shen wan zheng zhi nan. Xinbei Shi: Xin wen chuang wen hua shi ye you xian gong si, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography