Academic literature on the topic 'Qiao liang gong cheng'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Qiao liang gong cheng.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Qiao liang gong cheng"

1

CHEN, Xin, and Kazuyoshi FUMOTO. "DESIGN TECHNIQUE OF BRACKET COMPLEX CALLED “QIAO ANG DOU KE” IN CHINESE CLASSICAL ARCHITECTURAL BOOK “GONG CHENG ZUO FA ZE LIE”." Journal of Architecture and Planning (Transactions of AIJ) 73, no. 630 (2008): 1797–804. http://dx.doi.org/10.3130/aija.73.1797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Butt, Muhammad Ali, and Nikolai Lvovich Kazansky. "Narrowband perfect metasurface absorber based on impedance matching." Photonics Letters of Poland 12, no. 3 (September 30, 2020): 88. http://dx.doi.org/10.4302/plp.v12i3.1041.

Full text
Abstract:
We presented a numerical investigation of a metamaterial narrowband perfect absorber conducted via a finite element method based on commercially available COMSOL software. The periodic array of silicon meta-atoms (MAs) are placed on 80 nm thick gold layer. The broadband light at normal incidence is blocked by the gold layer and silicon MAs are used to excite the surface plasmon by scattering light through it. Maximum absorption of 95.7 % is obtained at the resonance wavelength of 1137.5 nm due to the perfect impedance matching of the electric and magnetic dipoles. The absorption is insensitive to the wide-angle of incidence ranging from 0 to 80 degrees. We believe that the proposed metamaterial device can be utilized in solar photovoltaic and biochemical sensing applications. Full Text: PDF ReferencesY. Cheng, X.S. Mao, C. Wu, L. Wu, R.Z. Gong, "Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing", Optical Materials, 53, 195-200 (2016). CrossRef S. S. Mirshafieyan, D.A. Gregory, "Electrically tunable perfect light absorbers as color filters and modulators", Scientific Reports,8, 2635 (2018). CrossRef D.M. Nguyen, D. Lee, J. Rho, "Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths", Scientific Reports, 7, 2611 (2017). CrossRef Y. Sun, Y. Ling, T. Liu, L. Huang, "Electro-optical switch based on continuous metasurface embedded in Si substrate", AIP Advances, 5, 117221 (2015). CrossRef H. Chu, Q. Li, B. Liu, J. Luo, S. Sun, Z. H. Hang, L. Zhou, Y. Lai, "A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials", Light: Science & Applications, 7, 50 (2018). CrossRef S. K. Patel, S. Charola, J. Parmar, M. Ladumor, "Broadband metasurface solar absorber in the visible and near-infrared region", Materials Research Express, 6, 086213 (2019). CrossRef Q. Qian, S. Ti, C. Wang, "All-dielectric ultra-thin metasurface angular filter", Optics Letters, 44, 3984 (2019). CrossRef P. Yu et al., "Broadband Metamaterial Absorbers", Advanced Optical Materials, 7, 1800995 (2019). CrossRef Y. J. Kim et al., "Flexible ultrathin metamaterial absorber for wide frequency band, based on conductive fibers", Science and Technology of advanced materials, 19, 711-717 (2018). CrossRef N.L. Kazanskiy, S.N. Khonina, M.A. Butt, "Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review", Physica E, 117, 113798 (2020). CrossRef H. E. Nejad, A. Mir, A. Farmani, "Supersensitive and Tunable Nano-Biosensor for Cancer Detection", IEEE Sensors Journal, 19, 4874-4881 (2019). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
3

Lewis, John W., and Xue Litai. "Jifeng Liu;, Yanqiong Liu;, Haiyan Xie. Liang dan yi xing gong cheng yu da ke xue [The Project of “Two Bombs, One Satellite”: A Model of the Big Science]. (Zhongguo jin xian dai ke xue ji shu shi yan jiu cong shu.). 254 pp., illus., tables, bibl., index. Jinan: Shandong jiao yu chu ban she [Shandong Education Press], 2004. ¥27 (paper)." Isis 99, no. 2 (June 2008): 430–31. http://dx.doi.org/10.1086/591370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Thanh Huyen, Le, Dao Sy Duc, Nguyen Xuan Hoan, Nguyen Huu Tho, and Nguyen Xuan Viet. "Synthesis of Fe3O4-Reduced Graphene Oxide Modified Tissue-Paper and Application in the Treatment of Methylene Blue." VNU Journal of Science: Natural Sciences and Technology 35, no. 3 (September 20, 2019). http://dx.doi.org/10.25073/2588-1140/vnunst.4883.

Full text
Abstract:
Graphene-based composites have received a great deal of attention in recent year because the presence of graphene can enhance the conductivity, strength of bulk materials and help create composites with superior qualities. Moreover, the incorporation of metal oxide nanoparticles such as Fe3O4 can improve the catalytic efficiency of composite material. In this work, we have synthesized a composite material with the combination of reduced graphene oxide (rGO), and Fe3O4 modified tissue-paper (mGO-PP) via a simple hydrothermal method, which improved the removal efficiency of the of methylene blue (MB) in water. MB blue is used as the model of contaminant to evaluate the catalytic efficiency of synthesized material by using a Fenton-like reaction. The obtained materials were characterized by SEM, XRD. The removal of materials with methylene blue is investigated by UV-VIS spectroscopy, and the result shows that mGO-PP composite is the potential composite for the color removed which has the removal efficiency reaching 65% in acetate buffer pH = 3 with the optimal time is 7 h. Keywords Graphene-based composite, methylene blue, Fenton-like reaction. References [1] Ma Joshi, Rue Bansal, Reng Purwar, Colour removal from textile effluents, Indian Journal of Fibre & Textile Research, 29 (2004) 239-259 http://nopr.niscair.res.in/handle/123456789/24631.[2] Kannan Nagar, Sundaram Mariappan, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study, Dyes and pigments, 51 (2001) 25-40 https://doi.org/10.1016/S0143-7208(01)00056-0.[3] K Rastogi, J. N Sahu, B. C Meikap, M. N Biswas, Removal of methylene blue from wastewater using fly ash as an adsorbent by hydrocyclone, Journal of hazardous materials, 158 (2008) 531-540.https://doi.org/10.1016/j.jhazmat.2008.01. 105.[4] Qin Qingdong, Ma Jun, Liu Ke, Adsorption of anionic dyes on ammonium-functionalized MCM-41, Journal of Hazardous Materials, 162 (2009) 133-139 https://doi.org/10.1016/j.jhazmat. 2008.05.016.[5] Mui Muruganandham, Rps Suri, Sh Jafari, Mao Sillanpää, Lee Gang-Juan, Jaj Wu, Muo Swaminathan, Recent developments in homogeneous advanced oxidation processes for water and wastewater treatment, International Journal of Photoenergy, 2014 (2014). http://dx. doi.org/10.1155/2014/821674.[6] Herney Ramirez, Vicente Miguel , Madeira Luis Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review, Applied Catalysis B: Environmental, 98 (2010) 10-26 https://doi.org/ 10.1016/j.apcatb.2010.05.004.[7] Guo Rong, Jiao Tifeng, Li Ruifei, Chen Yan, Guo Wanchun, Zhang Lexin, Zhou Jingxin, Zhang Qingrui, Peng Qiuming, Sandwiched Fe3O4/carboxylate graphene oxide nanostructures constructed by layer-by-layer assembly for highly efficient and magnetically recyclable dye removal, ACS Sustainable Chemistry & Engineering, 6 (2017) 1279-1288 https://doi.org/10.1021/acssuschemeng.7b03635.[8] Sun Chao, Yang Sheng-Tao, Gao Zhenjie, Yang Shengnan, Yilihamu Ailimire, Ma Qiang, Zhao Ru-Song, Xue Fumin, Fe3O4/TiO2/reduced graphene oxide composites as highly efficient Fenton-like catalyst for the decoloration of methylene blue, Materials Chemistry and Physics, 223 (2019) 751-757 https://doi.org/ 10.1016/j.matchemphys.2018.11.056.[9] Guo Hui, Ma Xinfeng, Wang Chubei, Zhou Jianwei, Huang Jianxin, Wang Zijin, Sulfhydryl-Functionalized Reduced Graphene Oxide and Adsorption of Methylene Blue, Environmental Engineering Science, 36 (2019) 81-89 https://doi. org/10.1089/ees.2018.0157.[10] Zhao Lianqin, Yang Sheng-Tao, Feng Shicheng, Ma Qiang, Peng Xiaoling, Wu Deyi, Preparation and application of carboxylated graphene oxide sponge in dye removal, International journal of environmental research and public health, 14 (2017) 1301 https://doi.org/10.3390/ijerph14111301.[11] Yu Dandan, Wang Hua, Yang Jie, Niu Zhiqiang, Lu Huiting, Yang Yun, Cheng Liwei, Guo Lin, Dye wastewater cleanup by graphene composite paper for tailorable supercapacitors, ACS applied materials & interfaces, 9 (2017) 21298-21306 https://doi.org/10.1021/acsami.7b05318.[12] Wang Hou, Yuan Xingzhong, Wu Yan, Huang Huajun, Peng Xin, Zeng Guangming, Zhong Hua, Liang Jie, Ren MiaoMiao, Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation, Advances in Colloid and Interface Science, 195 (2013) 19-40 https://doi. org/10.1016/j.cis.2013.03.009.[13] Marcano Daniela C, Kosynkin Dmitry V, Berlin Jacob M, Sinitskii Alexander, Sun Zhengzong, Slesarev Alexander, Alemany Lawrence B, Lu Wei, Tour James M, Improved synthesis of graphene oxide, ACS nano, 4 (2010) 4806-4814 https://doi.org/10.1021/nn1006368.[14] Zhang Jiali, Yang Haijun, Shen Guangxia, Cheng Ping, Zhang Jingyan, Guo Shouwu, Reduction of graphene oxide via L-ascorbic acid, Chemical Communications, 46 (2010) 1112-1114 http://doi. org/10.1039/B917705A [15] Gong Ming, Zhou Wu, Tsai Mon-Che, Zhou Jigang, Guan Mingyun, Lin Meng-Chang, Zhang Bo, Hu Yongfeng, Wang Di-Yan, Yang Jiang, Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis, Nature communications, 5 (2014) 4695 https:// doi.org/10.1038/ncomms5695.[16] Wu Zhong-Shuai, Yang Shubin, Sun Yi, Parvez Khaled, Feng Xinliang, Müllen Klaus, 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction, Journal of the American Chemical Society, 134 (2012) 9082-9085 https://doi.org/10.1021/ja3030565.[17] Nguyen Son Truong, Nguyen Hoa Tien, Rinaldi Ali, Nguyen Nam Van, Fan Zeng, Duong Hai Minh, Morphology control and thermal stability of binderless-graphene aerogels from graphite for energy storage applications, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 414 (2012) 352-358 https://doi.org/ 10.1016/j.colsurfa.2012.08.048.[18] Deng Yang, Englehardt James D, Treatment of landfill leachate by the Fenton process, Water research, 40 (2006) 3683-3694 https://doi.org/ 10.1016/j.watres.2006.08.009.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Qiao liang gong cheng"

1

He, Jiahua. "Li yong shi xiang gong ju jin xing xie zuo qian gou si xun lian dui zuo wen cheng ji de ying xiang : kong zhi zu qian hou ce zhun shi yan she ji = The influence of prewriting training by using visual tools on achievement in Chinese composition : control group pre-test and post-test quasi experimental design /." click here to view the abstract and table of contents click here to view the fulltext, 2005. http://net3.hkbu.edu.hk/~libres/cgi-bin/thesisab.pl?pdf=b18517511a.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Qiao liang gong cheng"

1

1969-, Sheng Kejian, ed. Qiao liang gong cheng. Beijing Shi: Zhongguo jian cai gong ye chu ban she, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Qiao liang gong cheng Ying Han ci dian. Taibei Shi: Quan hua ke ji tu shu gu fen you xian gong si, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

hua, Li shi, and Li zhi hua. Qiao liang gong cheng shi gong ji shu jiao di shou ce. Bei jing: Zhong guo jian zhu gong ye chu ban she, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wanheng, Li, and Ma Sen, eds. Gong lu qiao liang jia gu gong cheng shi gong jian li. Beijing: Ren min jiao tong chu ban she, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wanheng, Li, and Ma Sen, eds. Gong lu qiao liang jia gu gong cheng shi gong jian li. Bei jing: Ren min jiao tong chu ban she, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jiao tong yun shu bu ji ben jian she zhi liang jian du zong zhan and Jiao tong zhuan ye ren yuan zi ge ping jia zhong xin, eds. Gong lu gong cheng shi yan jian ce ren yuan kao shi yong shu: Qiao liang. Bei jing: Ren min jiao tong chu ban she, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tong ji da xue (China) and Xi nan jiao tong da xue (China), eds. Zhongguo tu mu jian zhu bai ke ci dian: Qiao liang gong cheng. Beijing Shi: Zhongguo jian zhu gong ye chu ban she, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ling qiao dan yao gong cheng: Smart munition engineering. Beijing Shi: Guo fang gong ye chu ban she, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Qiao liang gong cheng zhuang bei lun wen ji: Proceedings of bridge engineering equipment. Beijing Shi: Ren min jiao tong chu ban she, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shi zheng yu qiao liang gong cheng zhi liang jian kong yu tong bing fang zhi quan shu. Beijing: Zhongguo huan jing ke xue chu ban she, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography