Academic literature on the topic 'QSAR'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'QSAR.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "QSAR"
Toropov, Andrey A., and Alla P. Toropova. "QSPR/QSAR: State-of-Art, Weirdness, the Future." Molecules 25, no. 6 (March 12, 2020): 1292. http://dx.doi.org/10.3390/molecules25061292.
Full textLi, Yan Kun, and Xiao Ying Ma. "QSAR/QSPR Model Research of Complicated Samples." Advanced Materials Research 740 (August 2013): 306–9. http://dx.doi.org/10.4028/www.scientific.net/amr.740.306.
Full textCosta, Paulo C. S., Joel S. Evangelista, Igor Leal, and Paulo C. M. L. Miranda. "Chemical Graph Theory for Property Modeling in QSAR and QSPR—Charming QSAR & QSPR." Mathematics 9, no. 1 (December 29, 2020): 60. http://dx.doi.org/10.3390/math9010060.
Full textChinen, Kazue, and Timothy Malloy. "Multi-Strategy Assessment of Different Uses of QSAR under REACH Analysis of Alternatives to Advance Information Transparency." International Journal of Environmental Research and Public Health 19, no. 7 (April 4, 2022): 4338. http://dx.doi.org/10.3390/ijerph19074338.
Full textWorth, Andrew P. "ECVAM's Activities on Computer Modelling and Integrated Testing." Alternatives to Laboratory Animals 30, no. 2_suppl (December 2002): 133–37. http://dx.doi.org/10.1177/026119290203002s22.
Full textZhang, Xiujun, H. G. Govardhana Reddy, Arcot Usha, M. C. Shanmukha, Mohammad Reza Farahani, and Mehdi Alaeiyan. "A study on anti-malaria drugs using degree-based topological indices through QSPR analysis." Mathematical Biosciences and Engineering 20, no. 2 (2022): 3594–609. http://dx.doi.org/10.3934/mbe.2023167.
Full textSizochenko, Natalia, and Jerzy Leszczynski. "Review of Current and Emerging Approaches for Quantitative Nanostructure-Activity Relationship Modeling." Journal of Nanotoxicology and Nanomedicine 1, no. 1 (January 2016): 1–16. http://dx.doi.org/10.4018/jnn.2016010101.
Full textRasulev, Bakhtiyor, and Gerardo Casanola-Martin. "QSAR/QSPR in Polymers." International Journal of Quantitative Structure-Property Relationships 5, no. 1 (January 2020): 80–88. http://dx.doi.org/10.4018/ijqspr.2020010105.
Full textKarelson, Mati, Uko Maran, Yilin Wang, and Alan R. Katritzky. "QSPR and QSAR Models Derived Using Large Molecular Descriptor Spaces. A Review of CODESSA Applications." Collection of Czechoslovak Chemical Communications 64, no. 10 (1999): 1551–71. http://dx.doi.org/10.1135/cccc19991551.
Full textLi, Yi-Xia, Abdul Rauf, Muhammad Naeem, Muhammad Ahsan Binyamin, and Adnan Aslam. "Valency-Based Topological Properties of Linear Hexagonal Chain and Hammer-Like Benzenoid." Complexity 2021 (April 22, 2021): 1–16. http://dx.doi.org/10.1155/2021/9939469.
Full textDissertations / Theses on the topic "QSAR"
Espinosa, Porragas Gabriela. "Modelos QSPR/QSAR/QSTR basados en sistemas neuronales cognitivos." Doctoral thesis, Universitat Rovira i Virgili, 2002. http://hdl.handle.net/10803/8505.
Full textLas redes neuronales (ANN) constituyen una alternativa para el desarrollo de algoritmos predictivos aplicados en diversos campos como: análisis masivo de bases de datos, para subsanar los obstáculos derivados de la selección o la multicolinealidad de variables, así como la sensibilidad de los modelos a la presencia de ruido en los datos de entrada al sistema neuronal. En la mayoría de los casos, las redes neuronales han dado mejores resultados que los métodos de regresión multilineal (MLR), el análisis de componentes principales (PCA), o los métodos de mínimos cuadrados parciales (PLS) debido a la no linealidad inherente en los modelos de redes.
En los últimos años el interés por los modelos QSPR/QSAR basados en redes neuronales se ha incrementado. La principal ventaja de los modelos de redes recae en el hecho que un modelo QSAR/QSPR puede desarrollarse sin especificar a priori la forma analítica del modelo. Las redes neuronales son especialmente útiles para establecer las complejas relaciones existentes entre la salida del modelo (propiedades físico químicas o biológicas) y la entrada del modelo (descriptores moleculares). Además, permiten clasificar los compuestos de acuerdo a sus descriptores moleculares y usar esta información para seleccionar el conjunto de índices capaz de caracterizar mejor al conjunto de moléculas. Los modelos QSPR basados en redes usan principalmente algoritmos del tipo backpropagation. Backpropagation es un sistema basado en un aprendizaje por minimización del error. Sin embargo, ya que los compuestos químicos pueden clasificarse en grupos de acuerdo a su similitud molecular, es factible usar un clasificador cognitivo como fuzzy ARTMAP para crear una representación simultánea de la estructura y de la propiedad objetivo. Este tipo de sistema cognitivo usa un aprendizaje competitivo, en el cual hay una activa búsqueda de la categoría o la hipótesis cuyos prototipos provean una mejor representación de los datos de entrada (estructura química).
En el presente trabajo se propone y se estudia una metodología que integra dos sistemas cognitivos SOM y fuzzy ARTMAP para obtener modelos QSAR/QSPR. Los modelos estiman diferentes propiedades como las temperaturas de transición de fase (temperatura de ebullición, temperatura de fusión) y propiedades críticas (temperatura y presión), así como la actividad biológica de compuestos orgánicos diversos (indicadores de toxicidad). Dentro de este contexto, se comparan la selección de variables realizados por métodos tradicionales (PCA, o métodos combinatorios) con la realizada usando mapas auto-organizados (SOM).
El conjunto de descriptores moleculares más factible se obtiene escogiendo un representante de cada categoría de índices, en particular aquel índice con la correlación más alta con respecto a la propiedad objetivo. El proceso continúa añadiendo índices en orden decreciente de correlación. Este proceso concluye cuando una medida de disimilitud entre mapas para los diferentes conjuntos de descriptores alcanza un valor mínimo, lo cual indica que el añadir descriptores adicionales no provee información complementaria a la clasificación de los compuestos estudiados. El conjunto de descriptores seleccionados se usa como vector de entrada a la red fuzzy ARTMAP modificada para poder predecir.
Los modelos propuestos QSPR/QSAR para predecir propiedades tanto físico químicas como actividades biológicas predice mejor que los modelos obtenidos con métodos como backpropagation o métodos de contribución de grupos en los casos en los que se apliquen dichos métodos.
One of the most attractive applications of computer-aided techniques in molecular modeling stands on the possibility of assessing certain molecular properties before the molecule is synthesized. The field of Quantitative Structure Activity/Property Relationships (QSAR/QSPR) has demonstrated that the biological activity and the physical properties of a set of compounds can be mathematically related to some "simple" molecular structure parameters.
Artificial neural network (ANN) approaches provide an alternative to established predictive algorithms for analyzing massive chemical databases, potentially overcoming obstacles arising from variable selection, multicollinearity, specification of important parameters, and sensitivy to erroneous values. In most instances, ANN's have proven to be better than MLR, PCA or PLS because of their ability to handle non-linear associations.
In the last years there has been a growing interest in the application of neural networks to the development of QSAR/QSPR. The mayor advantage of ANN lies in the fact QSAR/QSPR can be developed without having to a priori specify an analytical form for the correlation model. The NN approach is especially suited for mapping complex non-linear relationships that exists between model output (physicochemical or biological properties) and input model (molecular descriptors). The NN approach could also be used to classify chemicals according to their chemical descriptors and used this information to select the most suitable indices capable of characterize the set of molecules. Existing neural networks based QSAR/QSPR for estimating properties of chemicals have relied primarily on backpropagation architecture. Backpropagation are an error based learning system in which adaptive weights are dynamically revised so as to minimize estimation errors of target values. However, since chemical compounds can be classified into various structural categories, it is also feasible to use cognitive classifiers such as fuzzy ARTMAP cognitive system, for unsupervised learning of categories, which represent structure and properties simultaneously. This class of neural networks uses a match-based learning, in that it actively searches for recognition categories or hypotheses whose prototype provides an acceptable match to input data.
The current study have been proposed a new QSAR/QSPR fuzzy ARTMAP neural network based models for predicting diverse physical properties such as phase transition temperatures (boiling and melting points) and critical properties (temperature and pressure) and the biological activities (toxicity indicators) of diverse set of compounds. In addition, traditional pre-screening methods to determine de minimum set of inputs parameters have been compared with novel methodology based in self organized maps algorithms.
The most suitable set of molecular descriptor was obtained by choosing a representative from each cluster, in particular the index that presented the highest correlation with the target variable, and additional indices afterwards in order of decreasing correlation. The selection process ended when a dissimilarity measure between the maps for the different sets of descriptors reached a minimum valued, indicating that the inclusion of more descriptors did not add supplementary information. The optimal subset of descriptors was finally used as input to a fuzzy ARTMAP architecture modified to effect predictive capabilities.
The proposed QSPR/QSAR model predicted physicochemical or biological activities significantly better than backpropagation neural networks or traditional approaches such as group contribution methods when they applied.
Al-Fahemi, Jabir Hamad. "Momentum-space descriptors for QSPR and QSAR studies." Thesis, University of Liverpool, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.439465.
Full textArruda, Anna Celia. "Ampliação e aplicação do método semi-empírico topológico (IET) em modelos QSRR/QSPR/QSAR para compostos alifáticos halogenados e cicloalcanos." Florianópolis, SC, 2008. http://repositorio.ufsc.br/xmlui/handle/123456789/91111.
Full textMade available in DSpace on 2012-10-23T18:51:58Z (GMT). No. of bitstreams: 1 254504.pdf: 804102 bytes, checksum: 5fa245e2bb1518b8c83d1d0b6f87bf1a (MD5)
Este estudo foi desenvolvido para avaliar a capacidade de prognóstico do índice semi-empírico topológico (IET) em estimar a retenção cromatográfica (IR) de compostos alifáticos halogenados e cicloalcanos. Também foram desenvolvidos modelos de QSPR/QSAR para prever importantes propriedades físico-químicas, termodinâmicas e atividades biológicas. O modelo de QSRR do IRExpde 141 haloalcanos e o IET mostrou boa qualidade estatística (r2=0,9995; SD=8; r2cv=0,999). A partir do modelo de QSPR obtido entre o ponto de ebulição, Bp(ºC), com o IET (N=86; r2=0,9971; SD=4,2; r2cv=0,997), foram calculados os valores para um grupo externo de 24 compostos (r2=0,9931; SD=7,6). Uma boa correlação entre o ponto de fusão, Mp (°C), e o IET foi obtida (N=43; r2=0,9865; SD=6,1; r2cv=0,985). As correlações obtidas entre os valores calculados e experimentais de log P foram de r2=0,9871 e r2=0,9750, respectivamente para os Métodos Semi-Empírico Topológico e Contribuição dos Fragmentos. Esses resultados mostram a capacidade de prognóstico do IET para propriedades físico-químicas e termodinâmicas. A habilidade de prognóstico do IR pelo IET também foi verificada usando fases estacionárias com diferentes polaridades. Resultados satisfatórios foram encontrados aplicando o IET para estimar o IR de 48 cicloalcanos (r2=0,9905; SD=7; r2cv=0,997) e Bp(°C) (N=33; r2cv=0,988). Esse método permitiu retirar informações sobre as características estruturais, eletrônicas e geométricas das moléculas que estão influenciando no processo de retenção cromatográfico e a distinção entre isômeros cis/trans dos compostos estudados.
Davor, Lončar. "Definisanje lipofilnosti, farmakokinetičkih parametara i antikancerogenog potencijala novosintetisane serije stiril laktona." Phd thesis, Univerzitet u Novom Sadu, Tehnološki fakultet Novi Sad, 2018. https://www.cris.uns.ac.rs/record.jsf?recordId=107622&source=NDLTD&language=en.
Full textThe behavior and the chromatographic lipophilicity natural styryl lactone 7-(+)-goniofufurone, 7-epi-(+)-goniofufurone, crassalactones B and C and twenty of their newlysynthesized derivatives and analogs were examined using reverse-phase high performance liquid chromatography in the two solvent systems. In previous studies it has been shown that these compounds have great biological potential toward several human tumor cell lines. Chromatographic behavior of the compounds is generally in accordance with their structure. The relationships between the chromatographic retention constants and the majority of their in silico lipophilicity parameters are linear. The application of chemometric QSRR analysis determined very good multiple linear regression predictive models of quantitative correlation between experimentally obtained chromatographic retention constant, which determines the retention of the compound in pure water and in silico molecular descriptors, i.e. the structure of the compound. The lipophilicity of the compounds has a major influence on their pharmacokinetics, i.e. ADME (absorption, distribution, metabolism, elimination) properties. The best multi-linear regression models depending on the pharmacokinetic parameters of styryl lactone and other molecular descriptors have been defined and statistically validated. In vitro cytotoxic activity of the compounds was evaluated according to four novel human malignant cell lines: prostate cancer (PC3), colon cancer (HT-29), melanoma (Hs294T), lung adenocarcinom (A549). The most active compound was tricyclic 4-fluorocinnamic analog, which exhibits a nanomolar activity (IC50 2,1 nM) toward melanoma cells. This compound is over 2250 times more active than commercial antitumor agent doxorubicin (DOX). SAR analysis has revealed a correlation between the structure and the biological activity of the compounds. Using the molecular docking the relationship of the styryl lactone and the target protein important for prostate cancer was examined. The compounds with high inhibitory activity against prostate cancer cells have a high docking score and are capable to form a coordinative-covalent bond with a Fe2+ ion present in the active centre of the enzyme. 3DQSAR analysis, which was performed by methods of comparative CoMFA and CoMSIA fields, has formed a good predictive model between chemical structure and biological activity of the styryl lactone.
Bitencourt, Michelle 1985. "Modelagem MIA-QSAR de inibidores de acetilcolinesterase = MIA-QSAR modeling of inhibitors actylcholinesterase." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/311808.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas
Made available in DSpace on 2018-08-21T10:40:13Z (GMT). No. of bitstreams: 1 Bitencourt_Michelle_M.pdf: 771721 bytes, checksum: 1771939b9c0680c7375ae9953fca996f (MD5) Previous issue date: 2012
Resumo: O presente trabalho trata de um estudo sobre compostos que se comportam como inibidores da acetilcolinesterase, uma importante enzima do processo de cognição. A acetilcolinesterase atua na hidrólise da acetilcolina, responsável pela comunicação entre os neurônios. Uma das modalidades para o design racional de fármacos é a estimativa de propriedades biológicas de novas moléculas utilizando métodos computacionais. Análise quantitativa entre estrutura química e atividade biológica (QSAR) é uma dessas técnicas. No presente trabalho, análise multivariada de imagens aplicada em QSAR (MIA-QSAR) foi utilizada para se construírem modelos QSAR preditivos para uma série congênere de carbamatos com atividade anticolinesterásica. Os bons resultados estatísticos da modelagem credenciaram o modelo MIA-QSAR construído a predizer a atividade biológica de alguns novos derivados, potencialmente úteis para o tratamento do Mal de Alzheimer
Abstract: The present work describes the study of some compounds which act as acetylcholinesterase inhibitors a very important enzyme in the cognitive process. zAcetylcholinesterase is responsible by the hydrolysis of acetylcholine, which accounts for the communication among the neurons. One of the approaches for the rational pharmaceuticals design is the estimation of the biological properties of new molecules using computational methods. The quantitative analysis between chemical structure and biological activity (QSAR) is one of these techniques. In the present work, the multivariate analysis of images applied in QSAR (MIA-QSAR) was employed for building predictable QSAR models for a congenial series of carbamates which exhibit anticholinesterase activity. The significant statistical results from this treatment enabled the MIA-QSAR model thus obtained to reliably predict the biological activity of some new derivatives, as potentially useful for the Alzheimer Disease treatment
Mestrado
Ciencias Biomedicas
Mestra em Ciências Médicas
Martins, João Paulo Ataíde 1980. "Desenvolvimento de softwares, algoritmos e diferentes abordagens quimiométricas em estudos de QSAR." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/248544.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Química
Made available in DSpace on 2018-08-25T11:39:21Z (GMT). No. of bitstreams: 1 Martins_JoaoPauloAtaide_D.pdf: 3637503 bytes, checksum: 5fe52d182b4f300eb103baf168ad75ab (MD5) Previous issue date: 2013
Resumo: O planejamento de fármacos com o auxílio do computador é uma área de pesquisa de extrema importância em química e áreas correlatas. O conjunto de ferramentas disponíveis para tal fim consiste, dentre outras, em programas para geração de descritores e construção e validação de modelos matemáticos em QSAR (do inglês, Quantitative Structure-Activity Relationship). Com o objetivo de tornar esse estudo mais acessível para a comunidade científica, novas metodologias e programas para geração de descritores e construção e validação de modelos QSAR foram desenvolvidos nessa tese. Uma nova metodologia de QSAR 4D, conhecida com LQTA-QSAR, foi desenvolvida com o objetivo de gerar descritores espaciais levando em conta os perfis de amostragem conformacional das moléculas em estudo obtidos a partir de simulações de dinâmica molecular. A geração desses perfis é feita com o software livre GROMACS e os descritores são gerados a partir de um novo software desenvolvido nesse trabalho, chamado de LQTAgrid. Os resultados obtidos com essa metodologia foram validados comparando-os com resultados obtidos para conjuntos de dados disponíveis na literatura. Um outro software de fácil uso, e que engloba as principais ferramentas de construção e validação de modelos em QSAR, foi desenvolvido e chamado de QSAR modeling. Esse software implementa o método de seleção de variáveis OPS, desenvolvido em nosso laboratório, e utiliza PLS (do inglês Partial Least Squares) como método de regressão. A escolha do algoritmo PLS implementado no programa foi feita com base em um estudo sobre o desempenho e a precisão no erro de validação dos principais algoritmos PLS disponíveis na literatura. Além disso, o programa QSAR modeling foi utilizado em um estudo de QSAR 2D para um conjunto de 20 flavonóides com atividade anti-mutagênica contra 3-nitrofluoranteno (3-NFA)
Abstract: Computer aided drug design is an important research field in chemistry and related areas. The available tools used in such studies involve software to generate molecular descriptors and to build and validate mathematical models in QSAR (Quantitative Structure-Activity Relationship). A new set of methodologies and software to generate molecular descriptors and to build and validate QSAR models were developed aiming to make these kind of studies more accessible to scientific community. A new 4DQSAR methodology, known as LQTA-QSAR, was developed with the purpose to generate spatial descriptors taking into account conformational ensemble profile obtained from molecular dynamics simulations. The generation of these profiles is performed by free software GROMACS and the descriptors are generated by a new software developed in this work, called LQTAgrid. The results obtained with this methodology were validated comparing them with results available in literature. Another user friendly software, which contains some of the most important tools used to build and validate QSAR models was developed and called QSAR modeling. This software implements the OPS variable selection algorithm, developed in our laboratory, and uses PLS (Partial Least Squares) as regression method. The choice of PLS algorithm implemented in the program was performed by a study about the performance and validation precision error involving the most important PLS algorithms available in literature. Further, QSAR modeling was used in a 2D QSAR study with 20 flavonoid derivatives with antimutagenic activity against 3-nitrofluoranthene (3-NFA)
Doutorado
Físico-Química
Doutor em Ciências
Hellberg, Sven. "A multivariate approach to QSAR." Doctoral thesis, Umeå universitet, Kemiska institutionen, 1986. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-100713.
Full textDiss. (sammanfattning) Umeå : Umeå universitet, 1986, härtill 8 uppsatser
digitalisering@umu
Moda, Tiago Luiz. "Desenvolvimento de modelos in silico de propriedades de ADME para a triagem de novos candidatos a fármacos." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-22032007-112055/.
Full textMolecular modeling tools and quantitative structure-activity relantionships (QSAR) or structure-property (QSPR) are integrated into the drug design process in the search for new bioactive molecules with good pharmacokinetic and pharmacodynamic properties. The Medicinal Chemistry work carried out in this Masters dissertation concerned studies of the quantitative relationshisps between chemical structure and the pharmacokinetic properties oral bioavailability and plasma protein binding. In the present work, standard data sets for bioavailability and plasma protein binding were organized encompassing the structural information and corresponding pharmacokinetic data. The created data sets established the scientific basis for the development of predictive models using the hologram QSAR and VolSurf methods. The final HQSAR and VolSurf models posses high internal and external consistency with good correlative and predictive power. Due to the simplicity, robustness and effectivess, these models are useful guides in Medicinal Chemistry in the early stages of the drug discovery and development process.
Bartlett, Alison. "QSAR study of immunotoxicity in antibiotics." Thesis, Liverpool John Moores University, 1995. http://researchonline.ljmu.ac.uk/5135/.
Full textThomsen, Marianne. "QSARs in environmental risk assessment : interpretation and validation of SAR/QSAR based on multivariate data analysis /." Roskilde : Roskilde University, Department of Life Science and Chemistry, 2001. http://hdl.handle.net/1800/538.
Full textBooks on the topic "QSAR"
Roy, Kunal, Supratik Kar, and Rudra Narayan Das. A Primer on QSAR/QSPR Modeling. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17281-1.
Full textV, Diudea Mircea, ed. QSPR/QSAR studies by molecular descriptors. Huntington, N.Y: Nova Science Publishers, 2001.
Find full textCorwin, Hansch, Leo Albert, and Hoekman D. H, eds. Exploring QSAR. Washington, DC: American Chemical Society, 1995.
Find full textCorwin, Hansch, Leo Albert, and Hoekman David, eds. Exploring QSAR. Washington, DC: American Chemical Society, 1995.
Find full textCorwin, Hansch, and Leo Albert, eds. Exploring QSAR. Washington, DC: American Chemical Society, 1995.
Find full textDehmer, Matthias, Kurt Varmuza, and Danail Bonchev, eds. Statistical Modelling of Molecular Descriptors in QSAR/QSPR. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527645121.
Full textToropova, Alla P., and Andrey A. Toropov, eds. QSPR/QSAR Analysis Using SMILES and Quasi-SMILES. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28401-4.
Full text1956-, Devillers J., and Balaban Alexandru T, eds. Topological indices and related descriptors in QSAR and QSPR. Amsterdam: Gordon and Breach, 1999.
Find full textRoy, Kunal, ed. Advances in QSAR Modeling. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56850-8.
Full textBook chapters on the topic "QSAR"
Sippl, Wolfgang, and Dina Robaa. "QSAR/QSPR." In Applied Chemoinformatics, 9–52. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527806539.ch2.
Full textRoy, Kunal, Supratik Kar, and Rudra Narayan Das. "QSAR/QSPR Methods." In SpringerBriefs in Molecular Science, 61–103. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17281-1_3.
Full textGolbraikh, Alexander, and Alexander Tropsha. "QSAR/QSPR Revisited." In Chemoinformatics, 465–95. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527816880.ch12.
Full textRoy, Kunal, Supratik Kar, and Rudra Narayan Das. "QSAR/QSPR Modeling: Introduction." In SpringerBriefs in Molecular Science, 1–36. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17281-1_1.
Full textRoy, Kunal, Supratik Kar, and Rudra Narayan Das. "Statistical Methods in QSAR/QSPR." In SpringerBriefs in Molecular Science, 37–59. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17281-1_2.
Full textRoy, Kunal, Supratik Kar, and Rudra Narayan Das. "Newer Directions in QSAR/QSPR." In SpringerBriefs in Molecular Science, 105–21. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17281-1_4.
Full textTalevi, Alan. "In Silico ADME: QSPR/QSAR." In The ADME Encyclopedia, 525–31. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-84860-6_149.
Full textTalevi, Alan. "In Silico ADME: QSPR/QSAR." In The ADME Encyclopedia, 1–7. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-51519-5_149-1.
Full textAhmadi, Shahin, Sepideh Ketabi, and Marjan Jebeli Javan. "Molecular Descriptors in QSPR/QSAR Modeling." In Challenges and Advances in Computational Chemistry and Physics, 25–56. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28401-4_2.
Full textAhmadi, Shahin, and Neda Azimi. "Quasi-SMILES-Based QSPR/QSAR Modeling." In Challenges and Advances in Computational Chemistry and Physics, 191–210. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28401-4_8.
Full textConference papers on the topic "QSAR"
Duprat, A., J. L. Ploix, F. Dioury, and G. Dreyfus. "Toward big data in QSAR/QSPR." In 2014 IEEE 24th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2014. http://dx.doi.org/10.1109/mlsp.2014.6958884.
Full textSkvortsova, M. I., I. I. Baskin, V. A. Palyulin, O. L. Slovokhotova, and N. S. Zefirov. "Structural design inverse problems for topological indices in QSAR/QSPR studies." In The first European conference on computational chemistry (E.C.C.C.1). AIP, 1995. http://dx.doi.org/10.1063/1.47751.
Full textLaghridat, Charifa, Ilham Mounir, and Mohamed Essalih. "Understanding changes in the structure of complex networks using QSAR/QSPR." In 2022 11th International Symposium on Signal, Image, Video and Communications (ISIVC). IEEE, 2022. http://dx.doi.org/10.1109/isivc54825.2022.9800741.
Full textZeryouh, Meryam, Mohamed El Marraki, and Mohamed Essalih. "Some tools of QSAR/QSPR and drug development: Wiener and Terminal Wiener indices." In 2015 International Conference on Cloud Technologies and Applications (CloudTech). IEEE, 2015. http://dx.doi.org/10.1109/cloudtech.2015.7336963.
Full textBasak, Subhash. "QSAR for the characterization of drug resistance: Differential QSAR (DiffQSAR) using mathematical chemodescriptors." In MOL2NET, International Conference on Multidisciplinary Sciences. Basel, Switzerland: MDPI, 2015. http://dx.doi.org/10.3390/mol2net-1-b025.
Full textCocchi, M., M. C. Menziani, F. Fanelli, and P. G. de Benedetti. "Theoretical QSAR and QSSR analyses of 5-HT1A serotonin and α1-adrenergic receptors ligands." In The first European conference on computational chemistry (E.C.C.C.1). AIP, 1995. http://dx.doi.org/10.1063/1.47824.
Full textMa, Eddie Y. T., and Stefan C. Kremer. "Neural Grammar Networks in QSAR Chemistry." In 2009 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2009. http://dx.doi.org/10.1109/bibm.2009.60.
Full textSchroeter, Timon, Anton Schwaighofer, Sebastian Mika, Antonius Ter Laak, Detlev Suelzle, Ursula Ganzer, Nikolaus Heinrich, et al. "Predicting Error Bars for QSAR Models." In COMPLIFE 2007: The Third International Symposium on Computational Life Science. AIP, 2007. http://dx.doi.org/10.1063/1.2793398.
Full textDjokovic, Nemanja, Ana Postolovic, and Katarina Nikolic. "MOLECULAR MODELING OF 5‐[(AMIDOBENZYL)OXY]‐ NICOTINAMIDES AS SIRTUIN 2 INHIBITORS USING ALIGNMENT- (IN)DEPENDENT 3D-QSAR ANALYSIS AND MOLECULAR DOCKING." In 1st INTERNATIONAL Conference on Chemo and BioInformatics. Institute for Information Technologies, University of Kragujevac, 2021. http://dx.doi.org/10.46793/iccbi21.410dj.
Full textRagno, Rino, and Alessio Ragno. "db.3d-qsar.com. The first 3D QSAR models database." In 2nd International Conference on Chemo and Bioinformatics. Institute for Information Technologies, University of Kragujevac, 2023. http://dx.doi.org/10.46793/iccbi23.051r.
Full textReports on the topic "QSAR"
Ward, Keith B. Antiviral Drugs: Molecular Modeling and QSAR. Fort Belvoir, VA: Defense Technical Information Center, December 1990. http://dx.doi.org/10.21236/ada256419.
Full textLu, P.-Y., and K. Yuracko. LiverTox: Advanced QSAR and Toxicogeomic Software for Hepatotoxicity Prediction. Office of Scientific and Technical Information (OSTI), February 2011. http://dx.doi.org/10.2172/1006280.
Full textBrashear, W. T., and P. P. Lu. Evaluation of QSAR for Use in Predictive Toxicology Modeling. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada274144.
Full textMills, Jeffrey D. IL QC QSPR - Preliminary Results. Fort Belvoir, VA: Defense Technical Information Center, February 2004. http://dx.doi.org/10.21236/ada422511.
Full textKatritzky, Alan R. Detoxification of Military Wastes by Nearcritical and Supercritical Water and QSPR Investigations. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada357837.
Full textLeszczynski, Jerzy. Development of efficient solar cells using combination of QSPR and DFT approaches. Office of Scientific and Technical Information (OSTI), May 2021. http://dx.doi.org/10.2172/1785077.
Full text