Academic literature on the topic 'Quadcopter'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quadcopter.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quadcopter"
Nguyen, Minh Tam, My Ha Le, Anh Khoa Vo, Vi Do Tran, Van Phong Vu, Van Thuyen Ngo, and Van Dong Hai Nguyen. "Stabilzation Position of Quadcopter Using Vision-Based Corner Detector from Top-Down Footage of Camera." Journal of Technical Education Science, no. 71A (August 30, 2022): 18–27. http://dx.doi.org/10.54644/jte.71a.2022.1132.
Full textAngraeni, Pipit, Muhammad Nursyam Rizal, Hilda Khoirunnisa, and Theo Kristian. "Experimental of Quadcopter Trajectory Tracking Control Based ROS." MOTIVECTION : Journal of Mechanical, Electrical and Industrial Engineering 5, no. 2 (April 7, 2023): 295–302. http://dx.doi.org/10.46574/motivection.v5i2.232.
Full textKarahan, Mehmet. "Reinforcement Learning and PD Control Based Trajectory Tracking for a Quadcopter UAV." Journal of Computer Science and Technology Studies 6, no. 4 (October 16, 2024): 131–41. http://dx.doi.org/10.32996/jcsts.2024.6.4.15.
Full textBaharuddin, A'dilah, and Mohd Ariffanan Mohd Basri. "Trajectory Tracking of a Quadcopter UAV using PID Controller." ELEKTRIKA- Journal of Electrical Engineering 22, no. 2 (August 28, 2023): 14–21. http://dx.doi.org/10.11113/elektrika.v22n2.440.
Full textTran, V. T., A. M. Korikov, and D. K. Tran. "Synthesis of an algorithm for automatic control of the quadcopter position using the control force estimation method." Journal of Physics: Conference Series 2291, no. 1 (July 1, 2022): 012017. http://dx.doi.org/10.1088/1742-6596/2291/1/012017.
Full textMariani, Manuel, and Simone Fiori. "Design and Simulation of a Neuroevolutionary Controller for a Quadcopter Drone." Aerospace 10, no. 5 (April 29, 2023): 418. http://dx.doi.org/10.3390/aerospace10050418.
Full textIdris Seidu, Benjamin Olowu, and Samuel Olowu. "Advancements in Quadcopter Development through Additive Manufacturing: A Comprehensive Review." International Journal of Scientific Research in Science, Engineering and Technology 11, no. 4 (July 22, 2024): 92–124. http://dx.doi.org/10.32628/ijsrset24114109.
Full textSafarov, Tural. "Matlab sımulatıon of quadcopter dynamıcs and PID attıtude controller." Technium: Romanian Journal of Applied Sciences and Technology 18 (December 8, 2023): 82–91. http://dx.doi.org/10.47577/technium.v18i.10308.
Full textZhang, Xiaomin, Zhiyao Zhao, Zhaoyang Wang, and Xiaoyi Wang. "Fault Detection and Identification Method for Quadcopter Based on Airframe Vibration Signals." Sensors 21, no. 2 (January 15, 2021): 581. http://dx.doi.org/10.3390/s21020581.
Full textMohsin, Ali, and Jaber Abdulhady. "Comparing dynamic model and flight control of plus and cross quadcopter configurations." FME Transactions 50, no. 4 (2022): 683–92. http://dx.doi.org/10.5937/fme2204683m.
Full textDissertations / Theses on the topic "Quadcopter"
Persson, Mikael, and Tim Andersson. "Utveckling av en Quadcopter." Thesis, KTH, Data- och elektroteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-123710.
Full textThe goal of the thesis is to build a quadcopter that can fly and be controlled via a radio transmitter in all directions, stabilizing itself in the air, to land autonomously and detect collisions in the forward direction.In order to achieve the basic goal of being able to fly, a PID controller was implemented which is used to stabilize the Quadcopter in the air by controlling the motors with help from sensor orientation. This sensor orientation is obtained from a complementary filter that merges angle data from an accelerometer and a gyroscope. Both an accelerometer and a gyroscope are required to automatically stabilize the Quadcopter in the air.To achieve the goal of autonomous landing an ultrasonic sensor was used. An algorithm was developed to read the distance from the ground which was a basis for creating our own algorithm for autonomous landing.The Quadcopter has the ability to stabilize itself in the air, be controlled via a radio transmitter and land autonomously. A safety feature that enables autonomous landing if the Quadcopter travels outside the radio coverage is implemented and also a switch that turns off the engines. The only thing that wasn’t implemented was the crash avoidance in the forward direction because the ultrasonic sensor was not suited for this application.
Haugen, Kenneth Eide. "Surface Mapping using Quadcopter." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for teknisk kybernetikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-25916.
Full textJohansson, Axel, and David Wallén. "Quadcopter Sensor and filter evaluation." Thesis, KTH, Maskinkonstruktion (Inst.), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191216.
Full textI ett system samspelar hårdvara och mjukvara för att tillsammans utföra önskad uppgift, men det kan vara svårt att veta vilken nivå på komponenter samt kod som krävs. Kan man spara in på produktionskostnader genom att använda billiga sensorer eller bör man investera i dyrare varianter från välkända tillverkare? Blir regleringen enklare om man investerar i en bra sensor eller behövs det alltid avancerade algoritmer och filter? I denna rapport presenteras resultaten från undersökningar av en quadcopter som reglerats med hjälp av två olika sensorer samt använt sig av två olika filter för att filtrera indatat. De två filtren som jämfördes var ett enkelt komplementärfilter och ett mer komplicerat Kalmanfilter. Quadcoptern användes som ett praktiskt test för att se hur mycket störningar eller mindre exakt data från sensorer påverkar ett verkligt system. Resultatet visade att prestandan för sensorerna blev väldigt snarlika, både gällande mätvärden, beräknade standardavvikelser och vad som var visuellt observerbart. Med den konstruerade regulatorn svängde quadcoptern (runt en axel) vid användandet av båda sensorerna mellan ±4° fast den billigare sensorn hade en något lägre standardavvikelse av vinkeln (1.624° jämfört med 1.754° för den dyrare).
Barbosa, Fernando dos Santos. "4DOF Quadcopter: development, modeling and control." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/3/3139/tde-23102017-144556/.
Full textEste texto apresenta o desenvolvimento de um protótipo de quadricóptero com quatro graus de liberdade (4DOF), o qual possibilita a rotação do veículo em torno dos três eixos (yaw, pitch e roll) e o deslocamento ao longo do eixo z (altitude). O objetivo é obter um protótipo de bancada que use a maior quantidade de componentes de um quadricóptero comercial (sensores e atuadores) e usá-lo para a aplicação de controladores de atitude e altitude, utilizando técnicas PID, LQR e Sliding-Mode. Partindo da modelagem do sistema, mostra-se as especificações do mesmo, os componentes utilizados e finaliza-se com o desenvolvimento dos controladores, simulação e aplicação deles.
Bjarre, Lukas. "Robust Reinforcement Learning for Quadcopter Control." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-277631.
Full textÖverföring från simulator till verklighet är ett lovande tillvägagångsätt inomförstärkt inlärning för att lösa problem med dyr utforskning i verkliga system,men kommer med generaliseringsproblem då styrlagar överförs från simulatorertill verkliga system. Den här tesen studerar idéer presenterade med robustaMarkovbeslutsprocesser, där idéer från förstärkt inlärning och robust reglerteknikkombineras för att skapa agenter med inbygd osäkerhet om den simulerademiljön, där potentiella gap mellan simulator och verklighet hanteras genompessimistik optimisering. Dessa idéer anpassas för att kunna appliceraspå en modern algoritm inom djup försärkt inlärning.Anpassningarna testades på uppgiften om positionell styrning av en fyrbladigdrönare, där agenter tränades i en simpel simulator och testades på versionerav simulatorn med olika miljöparametrar. Agenter med högre nivå avrobusthet utpresterade standardagenterna i dessa miljöer vilket indikerar attden tillagda robustheten ökar generaliseringsförmågor och kan hjälpa till vidöverförning av styrlagar från simulatorer till verklighet.
Almeida, Diogo. "Event-Triggered Attitude Stabilization of a Quadcopter." Thesis, KTH, Reglerteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-147200.
Full textGopabhat, Madhusudhan Meghana. "Control of Crazyflie nano quadcopter using Simulink." Thesis, California State University, Long Beach, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10102593.
Full textThis thesis focuses on developing a mathematical model in Simulink to Crazyflie, an open source platform. Attitude, altitude and position controllers of a Crazyflie are designed in the mathematical model. The mathematical model is developed based on the quadcopter system dynamics using a non-linear approach. The parameters of translational and rotational dynamics of the quadcopter system are linearized and tuned individually. The tuned attitude and altitude controllers from the mathematical model are implemented on real time Crazyflie Simulink model to achieve autonomous and controlled flight.
Ye, Haoquan. "Control of Quadcopter UAV by Nonlinear Feedback." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1523544168630815.
Full textPalivela, Yaswanth. "Speech Assisted Interface for Quadcopter Flight Control." University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1526247041269609.
Full textCunta, Aharon. "Novel quadcopter flight controller and telemetry remote." Thesis, Cunta, Aharon (2015) Novel quadcopter flight controller and telemetry remote. Honours thesis, Murdoch University, 2015. https://researchrepository.murdoch.edu.au/id/eprint/29840/.
Full textBooks on the topic "Quadcopter"
Mehta, Axaykumar, and Akash Modi. Robust Sliding Mode Protocols for Formation of Quadcopter Swarm. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9726-8.
Full textStill, Duncan. How to Build a Quadcopter Drone: A Complete Guide to Building a Radio Controlled Quadcopter. Independently Published, 2015.
Find full textDimson, Daniel. Quadcopter Engineering and Photography: Quadcopter Repair Tips and Walkthroughs, with Cinematic Photography Advise and Guides. Independently Published, 2022.
Find full textBook chapters on the topic "Quadcopter"
Agarwal, Hans, Apar Singhal, and K. Hans Raj. "3D Printed Quadcopter." In Lecture Notes in Mechanical Engineering, 491–99. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8025-3_48.
Full textPashayev, Adalat, and Elkhan Sabziev. "Modeling Quadcopter Stabilization." In Communications in Computer and Information Science, 324–37. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-73417-5_25.
Full textMeena, Ramannolla, and U. Syed Abudhagir. "Hand Gesture-Based Quadcopter." In Lecture Notes in Electrical Engineering, 1–10. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1906-8_1.
Full textEswaran, P., Mahendar Guda, Mukunda Priya, and Zeeshan Khan. "Stabilization of UAV Quadcopter." In Proceedings of the International Conference on Soft Computing Systems, 827–37. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2671-0_78.
Full textMule, Ashwini G., and R. P. Chaudhari. "Insecticide Spraying Using Quadcopter." In Intelligent Data Communication Technologies and Internet of Things, 450–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34080-3_51.
Full textMendoza-Mendoza, Julio Alberto, Victor Gonzalez-Villela, Gabriel Sepulveda-Cervantes, Mauricio Mendez-Martinez, and Humberto Sossa-Azuela. "Quadcopter Control with Smooth Flight Mode." In Advanced Robotic Vehicles Programming, 237–321. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5531-5_6.
Full textKuantama, Endrowednes, Dan Craciun, Ioan Tarca, and Radu Tarca. "Quadcopter Propeller Design and Performance Analysis." In New Advances in Mechanisms, Mechanical Transmissions and Robotics, 269–77. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45450-4_27.
Full textObeidat, Yusra, and Rana Daoud. "A Quadcopter Development for Security Purposes." In Proceedings of the Second International Conference on Advances in Computing Research (ACR’24), 529–42. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-56950-0_43.
Full textYadava, Rajat, and Anas Aslam. "Farming System: Quadcopter Fabrication and Development." In Lecture Notes in Mechanical Engineering, 285–93. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3033-3_25.
Full textDhakad, Om Veer, and Vivek Kumar. "Fractional Order Sliding-Mode Controller for Quadcopter." In Lecture Notes in Mechanical Engineering, 381–92. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6577-5_36.
Full textConference papers on the topic "Quadcopter"
Smith, Brendan, and Farhan Gandhi. "Quadcopter Noise Variation Due to Relative Rotor Phasing." In Vertical Flight Society 80th Annual Forum & Technology Display, 1–11. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0080-2024-1335.
Full textWolf, C. Christian, Daniel Schanz, Clemens Schwarz, Alexander Heintz, Johannes Bosbach, Tobias Strobing, and Andreas Schroder. "Volumetric Wake Investigation of a Free-Flying Quadcopter using Shake-The-Box Lagrangian." In Vertical Flight Society 80th Annual Forum & Technology Display, 1–16. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0080-2024-1161.
Full textElangovan, Y. "Aerial Radiation Monitoring using Quadcopter." In 2024 IEEE Nuclear Science Symposium (NSS), Medical Imaging Conference (MIC) and Room Temperature Semiconductor Detector Conference (RTSD), 1. IEEE, 2024. http://dx.doi.org/10.1109/nss/mic/rtsd57108.2024.10654919.
Full textHemmati, Vahid, Mohammad Behnia, Ahmad Mohammadi, Abdul-Rauf Nuhu, and Abdollah Homaifar. "Mission-Based Quadcopter Flight Simulation." In 2024 AIAA DATC/IEEE 43rd Digital Avionics Systems Conference (DASC), 1–7. IEEE, 2024. http://dx.doi.org/10.1109/dasc62030.2024.10749535.
Full textHagaribommanahalli, Sachin, and Alan Wagner. "Initial Steps Towards Quadcopter-based Brick Placement for Construction." In Vertical Flight Society 74th Annual Forum & Technology Display, 1–6. The Vertical Flight Society, 2018. http://dx.doi.org/10.4050/f-0074-2018-12910.
Full textSridhar, Siddharth, Rumit Kumar, Mohammadreza Radmanesh, and Manish Kumar. "Non-Linear Sliding Mode Control of a Tilting-Rotor Quadcopter." In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5375.
Full textSridhar, Siddharth, Rumit Kumar, Kelly Cohen, and Manish Kumar. "Fault Tolerance of a Reconfigurable Tilt-Rotor Quadcopter Using Sliding Mode Control." In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-9199.
Full textKumar, Rumit, Alireza Nemati, Manish Kumar, Kelly Cohen, and Franck Cazaurang. "Position and Attitude Control by Rotor Tilt and Rotor Speed Synchronization for Single Axis Tilting-Rotor Quadcopter." In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5232.
Full textTornero, Erick D. "Reinforcement Learning Approach to Fly Quadcopters with a Faulted Rotor." In LatinX in AI at Neural Information Processing Systems Conference 2019. Journal of LatinX in AI Research, 2019. http://dx.doi.org/10.52591/lxai2019120838.
Full textOLIVEIRA, LARA TAVARES DE, KAIQUE SILVEIRA VIANA COSTA, KENEDY MATIASSO PORTELLA, LUCAS VIZZOTTO BELLINASO, FERNANDA DE MORAIS CARNIELUTTI, and DENIEL DESCONZI MORAES. "Quadcopter Modeling and Control Using Controller Hardware-in-the-Loop." In Seminar on Power Electronics and Control (SEPOC 2021). sepoc, 2021. http://dx.doi.org/10.53316/sepoc2021.080.
Full textReports on the topic "Quadcopter"
Rudolph, Kirk. Exploration of real-time quadcopter controls. Ames (Iowa): Iowa State University, January 2018. http://dx.doi.org/10.31274/cc-20240624-696.
Full textNeilson, Michael. Quadcopter Controller Hardware and Software Design. Ames (Iowa): Iowa State University, August 2022. http://dx.doi.org/10.31274/cc-20240624-1179.
Full textSonugür, Güray, Celal Onur Gçkçe, Yavuz Bahadır Koca, and Şevket Semih Inci. Particle Swarm Optimization Based Optimal PID Controller for Quadcopters. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, December 2021. http://dx.doi.org/10.7546/crabs.2021.12.11.
Full textKraczek, Brent, and Carl Lederman. An Adaptable Nonlinear Control for Quadcopters in Heavy Winds. Aberdeen Proving Ground, MD: DEVCOM Army Research Laboratory, August 2022. http://dx.doi.org/10.21236/ad1179167.
Full textGrand-Clément, Sarah, and Theò Bajon. Uncrewed Aerial Systems: A Primer. UNIDIR, October 2022. http://dx.doi.org/10.37559/caap/22/erc/12.
Full text