To see the other types of publications on this topic, follow the link: Quadratic.

Books on the topic 'Quadratic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 books for your research on the topic 'Quadratic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Barot, Michael, Jesús Arturo Jiménez González, and José-Antonio de la Peña. Quadratic Forms. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05627-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

1973-, Positselski Leonid, ed. Quadratic algebras. American Mathematical Society, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Garcellano, Edel E. Quadratic silences. Kalikasan Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lemmermeyer, Franz. Quadratic Number Fields. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78652-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Andreescu, Titu, and Dorin Andrica. Quadratic Diophantine Equations. Springer New York, 2015. http://dx.doi.org/10.1007/978-0-387-54109-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Buell, Duncan A. Binary Quadratic Forms. Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-4542-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nipp, Gordon L. Quaternary Quadratic Forms. Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3180-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dickmann, M. A. Faithfully quadratic rings. American Mathematical Society, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kitaoka, Yoshiyuki. Arithmetic of quadratic forms. Cambridge University Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ghandehari, Mostafa. A quadratic matrix equation. University of Texas at Arlington, Dept. of Mathematics, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Dickson, Leonard E. Quadratic and higher forms. Chelsea Publ., 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

Scharlau, Winfried. Quadratic and Hermitian Forms. Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69971-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Shimura, Goro. Arithmetic of Quadratic Forms. Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-1732-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Baumgart, Oswald. The Quadratic Reciprocity Law. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16283-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Çela, Eranda. The Quadratic Assignment Problem. Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-2787-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Education, Alberta Alberta, ed. Mathematics 30: Quadratic relations. 2nd ed. Distance Learning, Alberta Education, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
17

Gould, N. I. M. Preprocessing for quadratic programming. Rutherford Appleton Laboratory, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

Epstein, Larry G. Quadratic social welfare functions. Dept. of Economics and Institute for Policy Analysis, University of Toronto, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
19

Conway, John Horton. The sensual (quadratic) form. Mathematical Association of America, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

Czech, Ludmiła. Inwolucyjne przekształcenia kwadratowe w ujęciu geometrii konstrukcyjnej. Politechnika Krakowska, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
21

Czech, Ludmiła. Involutory quadratic transformations formulated in constructional geometry. Cracow University of Technology, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
22

C̦ela, Eranda. The quadratic assignment problem: Theory and algorithms. Kluwer Academic Publishers, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
23

Marshall, Murray A. Spaces of orderings and abstract real spectra. Springer, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kim, Myung-Hwan, John S. Hsia, Yoshiyuki Kitaoka, and Rainer Schulze-Pillot, eds. Integral Quadratic Forms and Lattices. American Mathematical Society, 1999. http://dx.doi.org/10.1090/conm/249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bayer-Fluckiger, Eva, David Lewis, and Andrew Ranicki, eds. Quadratic Forms and Their Applications. American Mathematical Society, 2000. http://dx.doi.org/10.1090/conm/272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Dorato, Peter. Linear-quadratic control: An introduction. Prentice Hall, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
27

Luo, Albert C. J. Two-Dimensional Quadratic Nonlinear Systems. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7869-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Andrianov, Anatolij N. Quadratic Forms and Hecke Operators. Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-70341-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Alladi, Krishnaswami, Manjul Bhargava, David Savitt, and Pham Huu Tiep, eds. Quadratic and Higher Degree Forms. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7488-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Trifković, Mak. Algebraic Theory of Quadratic Numbers. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7717-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Mukhamedov, Farrukh, and Nasir Ganikhodjaev. Quantum Quadratic Operators and Processes. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22837-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Wright, Steve. Quadratic Residues and Non-Residues. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45955-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

1963-, Kooij Robert E., and Llibre Jaume, eds. Structurally stable quadratic vector fields. American Mathematical Society, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
34

Dorato, P. Linear-quadratic control: An introduction. Prentice Hall, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sima, Vasile. Algorithms for linear-quadratic optimization. M. Dekker, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
36

Blackman, Sherry. Quadratic Equations & Curves (Quadratic Equations & Curves). Key Curriculum Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
37

M¨uhlherr, Bernhard, Holger P. Petersson, and Richard M. Weiss. Quadratic Forms. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691166902.003.0002.

Full text
Abstract:
This chapter presents a few standard definitions and results about quadratic forms and polar spaces. It begins by defining a quadratic module and a quadratic space and proceeds by discussing a hyperbolic quadratic module and a hyperbolic quadratic space. A quadratic module is hyperbolic if it can be written as the orthogonal sum of finitely many hyperbolic planes. Hyperbolic quadratic modules are strictly non-singular and free of even rank and they remain hyperbolic under arbitrary scalar extensions. A hyperbolic quadratic space is a quadratic space that is hyperbolic as a quadratic module. Th
APA, Harvard, Vancouver, ISO, and other styles
38

Strebel, K. Quadratic Differentials. Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
39

Strebel, K. Quadratic Differentials. Springer Berlin Heidelberg, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
40

Sabado, Don. Quadratic Form: Solving Algebraic Equations in Quadratic Form. Independently Published, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
41

Binary Quadratic Forms. Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-46368-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Buell, Duncan A. Binary quadratic forms. 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
43

Watson, Janell. Integral Quadratic Forms. Cambridge University Press, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
44

The Green Quadratic. Adam Smith Institute, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
45

Basic quadratic forms. American Mathematical Society, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
46

Integral Quadratic Forms. Creative Media Partners, LLC, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
47

Integral Quadratic Forms. Creative Media Partners, LLC, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
48

Conway, John Horton. Sensual (quadratic) Form. American Mathematical Society, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
49

Cassels, J. W. S. Rational Quadratic Forms. Dover Publications, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
50

Andreescu, Titu, and Dorin Andrica. Quadratic Diophantine Equations. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!