Academic literature on the topic 'Quadrature de Gauss'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quadrature de Gauss.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quadrature de Gauss"
Kwon, Young-Doo, Soon-Bum Kwon, Bo-Kyung Shim, and Hyun-Wook Kwon. "Comprehensive Interpretation of a Three-Point Gauss Quadrature with Variable Sampling Points and Its Application to Integration for Discrete Data." Journal of Applied Mathematics 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/471731.
Full textFee, Greg. "Gauss-Legendre quadrature." ACM SIGSAM Bulletin 33, no. 3 (September 1999): 26. http://dx.doi.org/10.1145/347127.347443.
Full textPranić, Miroslav S., and Lothar Reichel. "Rational Gauss Quadrature." SIAM Journal on Numerical Analysis 52, no. 2 (January 2014): 832–51. http://dx.doi.org/10.1137/120902161.
Full textFRANJIĆ, IVA, JOSIP PEČARIĆ, and IVAN PERIĆ. "GENERAL THREE-POINT QUADRATURE FORMULAS OF EULER TYPE." ANZIAM Journal 52, no. 3 (January 2011): 309–17. http://dx.doi.org/10.1017/s1446181111000721.
Full textReichel, Lothar, Miodrag Spalevic, and Jelena Tomanovic. "Rational averaged gauss quadrature rules." Filomat 34, no. 2 (2020): 379–89. http://dx.doi.org/10.2298/fil2002379r.
Full textCao, Ting, Huo-tao Gao, Chun-feng Sun, Yun Ling, and Guo-bao Ru. "Application of Improved Simplex Quadrature Cubature Kalman Filter in Nonlinear Dynamic System." Mathematical Problems in Engineering 2020 (May 14, 2020): 1–13. http://dx.doi.org/10.1155/2020/1072824.
Full textHagler, Brian A. "Laurent-Hermite-Gauss Quadrature." Journal of Computational and Applied Mathematics 104, no. 2 (May 1999): 163–71. http://dx.doi.org/10.1016/s0377-0427(99)00054-0.
Full textVillarino, Mark B. "Gauss on Gaussian Quadrature." American Mathematical Monthly 127, no. 2 (January 6, 2020): 125–38. http://dx.doi.org/10.1080/00029890.2020.1680201.
Full textPeherstorfer, Franz. "Gauss-Tchebycheff quadrature formulas." Numerische Mathematik 58, no. 1 (December 1990): 273–86. http://dx.doi.org/10.1007/bf01385625.
Full textMilovanović, G. V., M. M. Spalević, and L. J. Galjak. "Kronrod Extensions of Gaussian Quadratures with Multiple Nodes." Computational Methods in Applied Mathematics 6, no. 3 (2006): 291–305. http://dx.doi.org/10.2478/cmam-2006-0016.
Full textDissertations / Theses on the topic "Quadrature de Gauss"
Tang, Tunan. "Extensions of Gauss, block Gauss, and Szego quadrature rules, with applications." Kent State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=kent1460403903.
Full textAlqahtani, Hessah Faihan. "GAUSS-TYPE QUADRATURE RULES, WITH APPLICATIONSIN LINEAR ALGEBRA." Kent State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=kent1521760018029109.
Full textAssoufi, Abdelaziz. "Les formules de quadrature numérique dans un domaine de IR2 ou IR3." Pau, 1985. http://www.theses.fr/1985PAUUA001.
Full textBarajas, Freddy Hernandez. "Modelos multiníveis Weibull com efeitos aleatórios." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-07052013-203915/.
Full textMultilevel models are a class of models useful in the analysis of datasets with hierarchical structure. In the present work we propose multilevel Weibull models in which random intercepts are considered to model the two parameters of the Weibull distribution. The proposed models are flexible due to random intercepts distribution can be chosen from one of the four following distributions: normal, log-gamma, logistics and Cauchy. An extension of the models is presented in which we can include, in the systematic part of the two parameters of the distribution, random intercepts and slopes with a bivariate normal distribution. The parameter estimation is performed by maximum likelihood method using the Gauss Hermite quadrature to approximate the likelihood function. A package in R language was especially developed to obtain parameter estimation, random effects predictions and residuals for the proposed models. Additionally, through a simulation study we investigated the misspecification random effect distribution on estimated parameter for the proposed model
Pujet, Alphonse Christophe. "Des quadratures Suivi de Sur les mouvements simultanés d'un système de points matériels assujettis à rester constamment dans un plan passant par l'origine des coordonnées /." Paris : Bibliothèque universitaire Pierre et Marie Curie (BUPMC), 2009. http://jubil.upmc.fr/sdx/pl/toc.xsp?id=TH_000277_001&fmt=upmc&idtoc=TH_000277_001-pleadetoc&base=fa.
Full textEzzirani, Abdelkrim. "Construction de formules de quadrature pour des systèmes de Tchebyshev avec applications aux méthodes spectrales." Pau, 1996. http://www.theses.fr/1996PAUU3035.
Full textGuessab, Allal. "Sur les formules de quadrature numérique à nombre minimal de noeuds dans un domaine de IR(n)." Pau, 1987. http://www.theses.fr/1988PAUU3011.
Full textKzaz, Mustapha. "Accélération de la convergence de la formule de quadrature de Gauss-Jacobi dans le cas des fonctions analytiques." Lille 1, 1992. http://www.theses.fr/1992LIL10174.
Full textMOURA, Márcio José das Chagas. "Novel and faster ways for solving semi-markov processes: mathematical and numerical issues." Universidade Federal de Pernambuco, 2009. https://repositorio.ufpe.br/handle/123456789/4939.
Full textPetróleo Brasileiro S/A
Processos semi-Markovianos (SMP) contínuos no tempo são importantes ferramentas estocásticas para modelagem de métricas de confiabilidade ao longo do tempo para sistemas para os quais o comportamento futuro depende dos estados presente e seguinte assim como do tempo de residência. O método clássico para resolver as probabilidades intervalares de transição de SMP consiste em aplicar diretamente um método geral de quadratura às equações integrais. Entretanto, esta técnica possui um esforço computacional considerável, isto é, N2 equações integrais conjugadas devem ser resolvidas, onde N é o número de estados. Portanto, esta tese propõe tratamentos matemáticos e numéricos mais eficientes para SMP. O primeiro método, o qual é denominado 2N-, é baseado em densidades de frequência de transição e métodos gerais de quadratura. Basicamente, o método 2N consiste em resolver N equações integrais conjugadas e N integrais diretas. Outro método proposto, chamado Lap-, é baseado na aplicação de transformadas de Laplace as quais são invertidas por um método de quadratura Gaussiana, chamado Gauss Legendre, para obter as probabilidades de estado no domínio do tempo. Formulação matemática destes métodos assim como descrições de seus tratamentos numéricos, incluindo questões de exatidão e tempo para convergência, são desenvolvidas e fornecidas com detalhes. A efetividade dos novos desenvolvimentos 2N- e Lap- serão comparados contra os resultados fornecidos pelo método clássico por meio de exemplos no contexto de engenharia de confiabilidade. A partir destes exemplos, é mostrado que os métodos 2N- e Lap- são significantemente menos custosos e têm acurácia comparável ao método clássico
Roman, Jean. "Complexité d'algorithmes de séparation de graphes pour des implémentations séquentielles et réparties de l'élimination de Gauss." Bordeaux 1, 1987. http://www.theses.fr/1987BOR10582.
Full textBooks on the topic "Quadrature de Gauss"
Evans, Michael J. Sampling from Gauss rules. Toronto: University of Toronto, Dept. of Statistics., 1985.
Find full textHohmann, Andreas. Inexact Gauss Newton methods for parameter dependent nonlinear problems. Aachen: Shaker, 1994.
Find full textChhikara, Raj S. The inverse Gaussian distribution: Theory, methodology, and applications. New York: M. Dekker, 1989.
Find full textGóra, Poland) Ogólnopolska Szkoła Historii Matematyki (14th 2000 Zielona. Matematyka czasów Gaussa: XIV Ogólnopolska Szkoła Historii Matematyki. Zielona Góra: Wyższa Szkoła Pedagogiczna im.Tadeusza Kotarbińskiego, 2001.
Find full textSucci, Sauro. The Hermite–Gauss Route to LBE. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199592357.003.0015.
Full textGautschi, Walter. Orthogonal Polynomials. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780198506720.001.0001.
Full text1952-, Bernhard Robert, and United States. National Aeronautics and Space Administration., eds. A study of methods to predict and measure the transmission of sound through the walls of light aircraft: Integration of certain singular boundary element integrals for applications in linear acoustics. [Washington, DC: National Aeronautics and Space Administration, 1985.
Find full text1952-, Bernhard Robert, and United States. National Aeronautics and Space Administration, eds. A study of methods to predict and measure the transmission of sound through the walls of light aircraft: Integration of certain singular boundary element integrals for applications in linear acoustics. [Washington, DC: National Aeronautics and Space Administration, 1985.
Find full textBook chapters on the topic "Quadrature de Gauss"
von Matt, U. "Gauss Quadrature." In Solving Problems in Scientific Computing Using Maple and MATLAB®, 251–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-97953-8_18.
Full textvon Matt, U. "Gauss Quadrature." In Solving Problems in Scientific Computing Using Maple and MATLAB®, 237–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-97619-3_18.
Full textvon Matt, U. "Gauss Quadrature." In Solving Problems in Scientific Computing Using Maple and Matlab ®, 221–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-97533-2_18.
Full textvon Matt, U. "Gauss Quadrature." In Solving Problems in Scientific Computing Using Maple and MATLAB®, 251–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-642-18873-2_18.
Full textVan Assche, Walter. "Gauss–type quadrature." In Walter Gautschi, Volume 2, 35–49. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7049-6_5.
Full textZhang, Guigen. "Gauss Quadrature and Numerical Integration." In Introduction to Integrative Engineering, 269–96. New York : CRC Press, [2017]: CRC Press, 2017. http://dx.doi.org/10.1201/9781315388465-11.
Full textRivlin, T. J. "Gauss quadrature for analytic functions." In Orthogonal Polynomials and their Applications, 178–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0083358.
Full textGautschi, Walter. "Papers on Gauss-type Quadrature." In Walter Gautschi, Volume 2, 633–914. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7049-6_10.
Full textGautschi, Walter, and Sotirios E. Notaris. "Newton’s Method and Gauss-Kronrod Quadrature." In International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série internationale d’Analyse numérique, 60–71. Basel: Birkhäuser Basel, 1988. http://dx.doi.org/10.1007/978-3-0348-6398-8_6.
Full textMastroianni, G., and G. Monegato. "Error Estimates for Gauss-Laguerre and Gauss-Hermite Quadrature Formulas." In Approximation and Computation: A Festschrift in Honor of Walter Gautschi, 421–34. Boston, MA: Birkhäuser Boston, 1994. http://dx.doi.org/10.1007/978-1-4684-7415-2_28.
Full textConference papers on the topic "Quadrature de Gauss"
Jia, Bin, Ming Xin, and Yang Cheng. "Anisotropic Sparse Gauss-Hermite Quadrature Filter." In AIAA Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-6618.
Full textFousse, Laurent. "Accurate Multiple-Precision Gauss-Legendre Quadrature." In 18th IEEE Symposium on Computer Arithmetic (ARITH '07). IEEE, 2007. http://dx.doi.org/10.1109/arith.2007.8.
Full textChe, Yanting, Dongze Lv, Jia Luo, Guangming Huang, and Lei Ge. "Dimensionality Reduction Gauss-Hermite Quadrature Filter Algorithm." In 2019 5th International Conference on Control Science and Systems Engineering (ICCSSE). IEEE, 2019. http://dx.doi.org/10.1109/iccsse.2019.00032.
Full textHusek, Petr, and Jan Stecha. "Nonlinear Kalman Filter by Hermite-Gauss Quadrature." In 2020 20th International Conference on Control, Automation and Systems (ICCAS). IEEE, 2020. http://dx.doi.org/10.23919/iccas50221.2020.9268306.
Full textXie, Kai, and Shulin Yang. "Gauss quadrature rule based on parameter estimation." In Seventh International Symposium on Instrumentation and Control Technology, edited by Jiancheng Fang and Zhongyu Wang. SPIE, 2008. http://dx.doi.org/10.1117/12.807496.
Full textSingh, Abhinoy Kumar, and Shovan Bhaumik. "Nonlinear estimation using transformed Gauss-Hermite quadrature points." In 2013 IEEE International Conference on Signal Processing, Computing and Control (ISPCC). IEEE, 2013. http://dx.doi.org/10.1109/ispcc.2013.6663394.
Full textJia, Bin, Ming Xin, and Yang Cheng. "Sparse Gauss-Hermite Quadrature Filter for Orbit Estimation." In AIAA Guidance, Navigation, and Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-7588.
Full textKejia Pan. "Correction of Gauss Legendre quadrature over a triangle." In 2011 International Conference on Multimedia Technology (ICMT). IEEE, 2011. http://dx.doi.org/10.1109/icmt.2011.6002583.
Full textOloro, O. J., and E. Okoh. "Computation Of Dimensionless Pressure In A Vertical Well Using Gauss-Chebyshev Quadrature, Gauss-Kronrod Quadrature And Runge-Kutta Fourth Order." In SPE Nigeria Annual International Conference and Exhibition. Society of Petroleum Engineers, 2015. http://dx.doi.org/10.2118/178274-ms.
Full textMarques da Silva, R. Pitanga, and A. Faro Orlando. "Metrological Considerations on Ultrasonic Flowmeters." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-38942.
Full textReports on the topic "Quadrature de Gauss"
Hybrid gauss-trapezoidal quadrature rules. Gaithersburg, MD: National Institute of Standards and Technology, 1996. http://dx.doi.org/10.6028/nist.ir.5048.
Full text