Academic literature on the topic 'Quadrature demodulation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quadrature demodulation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quadrature demodulation"
Peng, Kang-Chun, and Chan-Hung Lee. "A Novel Quadrature-Tracking Demodulator for LTE-A Applications." Wireless Communications and Mobile Computing 2018 (2018): 1–8. http://dx.doi.org/10.1155/2018/8712414.
Full textMohamed Moubark, Asraf, and Sawal Hamid Md Ali. "A Novel Sample Based Quadrature Phase Shift Keying Demodulator." Scientific World Journal 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/107831.
Full textHo, K. C., Y. T. Chan, and R. Inkol. "A digital quadrature demodulation system." IEEE Transactions on Aerospace and Electronic Systems 32, no. 4 (1996): 1218–27. http://dx.doi.org/10.1109/7.543843.
Full textKulikov, G. V., and A. A. Lelyukh. "Influence of amplitude and phase imbalance of quadratures on the noise immunity of coherent reception of signals with quadrature amplitude modulation." Russian Technological Journal 9, no. 1 (March 3, 2021): 29–37. http://dx.doi.org/10.32362/2500-316x-2021-9-1-29-37.
Full textJeong, YeonKeun, Woojin Seo, and Kwang Ryul Baek. "Implementation of Ultrasonic Flow Meter System with Quadrature Demodulation." Journal of Institute of Control, Robotics and Systems 24, no. 8 (August 31, 2018): 777–83. http://dx.doi.org/10.5302/j.icros.2018.0080.
Full textChernoyarov, Oleg, Alexey Glushkov, Vladimir Litvinenko, Yuliya Litvinenko, and Boris Matveev. "Digital Demodulator of the Quadrature Amplitude Modulation Signals." Measurement Science Review 18, no. 6 (October 1, 2018): 236–42. http://dx.doi.org/10.1515/msr-2018-0032.
Full textGao, Xiao Peng, Si Yuan Wang, and Han Wan. "Accelerate Demodulation of Quadrature Amplitude Modulation Using GPU." Applied Mechanics and Materials 325-326 (June 2013): 907–11. http://dx.doi.org/10.4028/www.scientific.net/amm.325-326.907.
Full textSud, Seema. "High Order Chirp Rate Shift Keying Modulation Using the Fractional Fourier Transform." European Journal of Engineering Research and Science 2, no. 4 (April 14, 2017): 1. http://dx.doi.org/10.24018/ejers.2017.2.4.314.
Full textChen, Hua, and Yanqing Zhong. "Design of Readout Circuit with Quadrature Error and Auxiliary PLL for MEMS Vibratory Gyroscope." Sensors 20, no. 16 (August 14, 2020): 4564. http://dx.doi.org/10.3390/s20164564.
Full textCorbella, Ignasi, Manuel Martín Neira, Roger Vilaseca, Albert Catalan, Francesc Torres, and Martin Suess. "A Novel Digital IQ Demodulation for Interferometric Radiometers." Remote Sensing 13, no. 6 (March 18, 2021): 1156. http://dx.doi.org/10.3390/rs13061156.
Full textDissertations / Theses on the topic "Quadrature demodulation"
Campbell, Heather A. (Heather Alyce). "Simulation of quadrature amplitude demodulation in a digital telemetry system." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/38783.
Full textIncludes bibliographical references (leaves 122-123).
by Heather A. Campbell.
M.Eng.
Ramchander, Rajesh. "Quadrature-point stabilization of Mach-Zehnder interferometers." Thesis, Virginia Tech, 1990. http://hdl.handle.net/10919/41594.
Full textMaster of Science
Ndovi, Lusungu. "Benefits to processor load for quadrature baseband versus radio frequency demodulation algorithms." Thesis, Link to the online version, 2008. http://hdl.handle.net/10019/1946.
Full textSchaaff, Kevin P. "Monterey Bay acoustic tomography : signal processing using multi-channel data-synchronized quadrature phase demodulation." Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/27143.
Full textEfthymiou, Spyros. "Modelling of pyroelectric detectors detection by digital signal processing algorithms." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/modelling-of-pyroelectric-detectors-detection-by-digital-signal-processing-algorithms(61eca3ad-2bb7-4ef1-869c-8ec0c4965f3b).html.
Full textLee, Dennis, Marvin Simon, and Tsun-Yee Yan. "ENHANCED PERFORMANCE OF FQPSK-B RECEIVER BASED ON TRELLIS-CODED VITERBI DEMODULATION." International Foundation for Telemetering, 2000. http://hdl.handle.net/10150/607724.
Full textCommercial FQPSK-B receivers traditionally use symbol-by-symbol detection and have a 2 dB Eb=No loss relative to ideal QPSK at a bit error rate (BER) of 10^(-5). An enhanced FQPSK-B receiver using a Viterbi algorithm (VA) to perform trellis decoding is simulated and shown to have a 1.2 dB Eb=No improvement over symbol-by-symbol detection for 10^(-5)5 BER at the cost of increased complexity. A simplified Viterbi receiver with a reduced trellis and significantly less complexity is introduced with only a slight BER degradation compared to the full Viterbi receiver. In addition, a theoretical bit error probability expression for the symbol-by-symbol FQPSK-B receiver is derived and compared with simulation results.
Booysen, Samuel. "The design of a high speed topology for a QPSK demodulator with emphasis on the synchronization algorithms needed for demodulation." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/4107.
Full textENGLISH ABSTRACT: This thesis describes the design and implementation of a software based QPSK demodulator with a demodulation speed of 100 Mbps. The objective of the thesis was to identify a topology for the QPSK demodulator that would allow for high data rates and the design of the synchronization algorithms for carrier and symbol recovery. The QPSK demodulator was implemented on an Altera Stratix II field programmable gate array (FPGA), which does complex I and Q sampling on a down converted 720 MHz QPSK signal. The I and Q down converted baseband signals are sent through matched filters which are implemented with discrete components to maximize the signal to noise ratio of the received rectangular baseband pulses. A 1 GSPS direct digital synthesizer (DDS) is used to generate the synchronous clock for the analog to digital converters which samples the matched filter outputs. The demodulator uses two samples per symbol to demodulate the QPSK signal. A dual locking system is implemented to have a wide pre-locking filter for symbol synchronization and a narrow band post-lock filter to minimize the loop noise. A symbol lock detection algorithm decides when the symbol recovery loop is locked and switches between the loop filters. A second 1 GSPS DDS output is mixed with a local oscillator to generate the 1.44 GHz LO signal for the quadrature down conversion. The carrier recovery loop uses a numerically controlled oscillator inside the FPGA for initial carrier acquisition which allows for very wide locking bandwidth. After lock is achieved, the external carrier recovery loop takes over and removes any frequency offset in the complex baseband signal by changing the frequency of the DDS. A QPSK modulator was also developed to provide a QPSK signal with known data. The modulator can generate any constellation diagram up to 256 points.
AFRIKAANSE OPSOMMING: Hierdie tesis bespreek die ontwerp en implementasie van ’n sagteware gebaseerde QPSK demodulator met ’n demodulasie spoed van 100 Mbps. Die doelstelling is om ’n topologie te identifiseer vir ’n QPSK demodulator wat ’n hoë datatempo sal toelaat en ook om sinkronisasie algoritmes te ontwikkel vir draer en simbool herkenning. Die QPSK demodulator is geïmplimenteer op ’n Stratix II FPGA van Altera wat kompleks basisband monstering doen op infase en kwadratuur basisband seine. Die basisband seine word gegenereer van ’n 720 MHz QPSK sein met ’n kwadratuur menger wiese uittrees deur puls passende filters gestuur word om die sein tot ruis verhouding te maksimeer. ’n Een gigamonster per sekonde direk digitale sintetiseerder (DDS) is gebruik om die klok vir die analoog na digitaal omsetters te genereer vir sinkrone monstering van die pulse passende filter uittrees. Die demodulator gebruik twee monsters per simbool om ’n QPSK sein te demoduleer. ’n Tweevoudige sluit algoritme word gebruik vir die simbool sinkronisasie waar ’n wyeband filter die inisiële sluit funksie verrig en dan word daar oorgeslaan na ’n nouband filter vir fase volging wat die ruis in die terugvoerlus verminder. Daar is ’n simbool sluit detektor wat identifiseer wanneer die simbool beheerlus gesluit is en selekteer dan die gepaste filter. ’n Tweede DDS en ’n sintetiseerder se uittrees word gemeng om ’n 1.44 GHz draer te genereer vir kohurente frekwensie translasie in die kwadratuur menger. Die draer sinkronisasie gebruik ’n numeries beheerbare ossilator vir die inisiële frekwensie en fase sluit wat baie vinnig geimplenteer kan word omdat dit alles in sagteware binne in die FPGA gebeur. Na die interne draer beheerlus gesluit is, neem die eksterne beheerlus oor om enige fase of frekwensie afsette in die kompleks basisband seine van die kwadratuur menger te verwyder deur die frekwensie van die draer DDS te beheer. ’n QPSK modulator is ook ontwikkel om verwysings data te genereer. Enige konstelasie vorm tot 256 punte kan geimplementeer word.
Ghuman, Parminder, Salman Sheikh, Steve Koubek, Scott Hoy, and Andrew Gray. "High Rate Digital Demodulator ASIC." International Foundation for Telemetering, 1998. http://hdl.handle.net/10150/609676.
Full textThe architecture of the High Rate (600 Mega-bits per second) Digital Demodulator (HRDD) ASIC capable of demodulating BPSK and QPSK modulated data is presented in this paper. The advantages of all-digital processing include increased flexibility and reliability with reduced reproduction costs. Conventional serial digital processing would require high processing rates necessitating a hardware implementation other than CMOS technology such as Gallium Arsenide (GaAs) which has high cost and power requirements. It is more desirable to use CMOS technology with its lower power requirements and higher gate density. However, digital demodulation of high data rates in CMOS requires parallel algorithms to process the sampled data at a rate lower than the data rate. The parallel processing algorithms described here were developed jointly by NASA’s Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL). The resulting all-digital receiver has the capability to demodulate BPSK, QPSK, OQPSK, and DQPSK at data rates in excess of 300 Mega-bits per second (Mbps) per channel. This paper will provide an overview of the parallel architecture and features of the HRDR ASIC. In addition, this paper will provide an overview of the implementation of the hardware architectures used to create flexibility over conventional high rate analog or hybrid receivers. This flexibility includes a wide range of data rates, modulation schemes, and operating environments. In conclusion it will be shown how this high rate digital demodulator can be used with an off-the-shelf A/D and a flexible analog front end, both of which are numerically computer controlled, to produce a very flexible, low cost high rate digital receiver.
Ong, Chin Siang. "Digital phased array architectures for radar and communications based on off-the-shelf wireless technologies." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Dec%5FOng.pdf.
Full textThesis advisor(s): David C. Jenn, Siew Yam Yeo. Includes bibliographical references (p. 63-64). Also available online.
Rejnuš, Milan. "Měřicí zesilovač využívající vektorové synchronní detekce." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-221146.
Full textBooks on the topic "Quadrature demodulation"
Schaaff, Kevin P. Monterey Bay acoustic tomography : signal processing using multi-channel data-synchronized quadrature phase demodulation. Monterey, Calif: Naval Postgraduate School, 1989.
Find full textBook chapters on the topic "Quadrature demodulation"
Behar, Vera, and Christo Kabakchiev. "Digital Quadrature Demodulation of LFM Signals Obtained by Lowpass Filtering." In Numerical Methods and Applications, 267–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-36487-0_29.
Full textSong, Ningfang, Yujie Yang, Ying Chen, and Jingming Song. "Fiber-Optic Extrinsic Fabry–Perot Interferometer Pressure Sensor Demodulation System with Three Quadrature Signals." In Proceedings of the Second International Conference on Mechatronics and Automatic Control, 1099–106. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13707-0_121.
Full textSenchenko, Alexander R., and Andrey N. Serov. "Application of Simulink for Research of a Frequency Measurement Method Based on Quadrature Demodulation Technique." In Springer Proceedings in Physics, 507–16. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58868-7_55.
Full textWojtiuk, J. J., and M. Rice. "Quadrature Phase Error and Amplitude Imbalance Effects on Digital Demodulator Performance." In Information Technology: Transmission, Processing and Storage, 195–206. London: Springer London, 1996. http://dx.doi.org/10.1007/978-1-4471-1013-2_15.
Full textDaldal, Nihat, and Kemal Polat. "Piecewise Demodulation Based on Combined Artificial Neural Network for Quadrate Frequency Shift Keying Communication Signals." In Artificial Intelligence and Applied Mathematics in Engineering Problems, 17–24. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36178-5_2.
Full textSenchenko, Alexander R., and Andrey N. Serov. "Investigation of the Effect of ADC Imperfections on the Amplitude Spectrum Measurement Error for a Quadrature Demodulator Technique." In Springer Proceedings in Physics, 477–86. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58868-7_52.
Full textKÖNING, RAINER, GEJZA WIMMER, and VIKTOR WITKOVSKÝ. "EllipseFit4HC: A MATLAB ALGORITHM FOR DEMODULATION AND UNCERTAINTY EVALUATION OF THE QUADRATURE INTERFEROMETER SIGNALS." In Series on Advances in Mathematics for Applied Sciences, 211–18. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814678629_0025.
Full textConference papers on the topic "Quadrature demodulation"
Sunny, Sona, Jaison Varghese John, and T. J. Apen. "Quadrature Detection Methods for FM Demodulation." In 2013 Third International Conference on Advances in Computing and Communications (ICACC). IEEE, 2013. http://dx.doi.org/10.1109/icacc.2013.92.
Full textAlexandru, Ilie Mihai, Liviu Viman, and Dan Pitica. "Network analyzer concept based on quadrature demodulation." In 2017 IEEE 23rd International Symposium for Design and Technology in Electronic Packaging (SIITME). IEEE, 2017. http://dx.doi.org/10.1109/siitme.2017.8259870.
Full textLee, Da-Young, Changhan Yoon, Yangmo Yoo, Tai-Kyong Song, and Jin Ho Chang. "Adaptive quadrature demodulation for ultrasound tissue harmonic imaging." In 2010 IEEE Ultrasonics Symposium (IUS). IEEE, 2010. http://dx.doi.org/10.1109/ultsym.2010.5935740.
Full textLiu, Enke, Junfeng Wang, and Tao Wang. "Phase imbalance compensation in SAR/ISAR quadrature demodulation." In 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar (APSAR). IEEE, 2009. http://dx.doi.org/10.1109/apsar.2009.5374283.
Full textFdil, Khaoula, Vincent Michaud-Belleau, Nicolas Bourbeau Hébert, and Jéròme Genest. "Dual electro-optic comb spectroscopy using quadrature demodulation." In Optics and Photonics for Sensing the Environment. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/es.2020.em2c.4.
Full textWu, Chuanbin, Yi Lin, Sen Ye, Guhong Zhang, Huilian Ma, and Zhonghe Jin. "Synchronous Digital Quadrature Demodulation Technique for Resonant Optic Gyroscopes." In 2018 Asia Communications and Photonics Conference (ACP). IEEE, 2018. http://dx.doi.org/10.1109/acp.2018.8596301.
Full textQian, Dong, Zhang Ping, Qi Haiming, and Yuan Xinzhe. "Bandpass Sampling and Quadrature Demodulation in Synthetic Aperture Radar." In 2006 CIE International Conference on Radar. IEEE, 2006. http://dx.doi.org/10.1109/icr.2006.343297.
Full textWang Guoqing, Wei Xizhang, and Lu Huanzhang. "Double-IF quadrature demodulation of super-heterodyne radar receiver." In 2008 9th International Conference on Signal Processing (ICSP 2008). IEEE, 2008. http://dx.doi.org/10.1109/icosp.2008.4697658.
Full textCzarske, Juergen W., Fromund Hock, and Harald Mueller. "Quadrature demodulation: a new LDV burst-signal frequency estimator." In Laser Anemometry: Advances and Applications--Fifth International Conference, edited by J. M. Bessem, R. Booij, H. W. H. E. Godefroy, P. J. de Groot, K. K. Prasad, F. F. M. de Mul, and E. J. Nijhof. SPIE, 1993. http://dx.doi.org/10.1117/12.150568.
Full textEstrada, J. C., and M. Servin. "Single fringe pattern demodulation using local adaptable quadrature filters." In Optical Metrology, edited by Harald Bosse, Bernd Bodermann, and Richard M. Silver. SPIE, 2007. http://dx.doi.org/10.1117/12.726227.
Full text