Contents
Academic literature on the topic 'Quantification semi-classique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantification semi-classique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Quantification semi-classique"
Detcherry, Renaud. "Analyse semi-classique des opérateurs courbes en TQFT." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066252/document.
Full textIn this thesis we study the asymptotics of some invariants of 3-manifolds, known as "quantum invariants" which were defined by Witten, Reshetikhin and Turaev. These invariants are part of a TQFT structure, that is a monoidal functor for a category of cobordism to the category of complex vector spaces. In this setting, curves on surfaces induce endomorphisms of TQFT vector spaces, called curve operators, which are one of the main object in our study. All these invariants depend of an integer parameter r, and we are interested in their behavior when r tends to infinity. We can then see that quantum invariants are related to more geometric objects, like the moduli space of conjugacy classes of SU2 representations of the fundamental group of a surface. The thesis is divided in 3 parts: in the first one we introduce the notion of TQFT and the Witten-Reshetikhin-Turaev invariants, then we give basic properties of the SU2-moduli spaces and explain the general approach of geometric quantification. In the second one we present a result on the asymptotics of matrix coefficients of curve operators. Using skein calculus and a theorem of Bullock, we express the first two terms of their expansion in terms of trace functions on the SU2-moduli space associated to multicurves. The final part gives an asymptotic expansion of matrix coefficents of quantum representations. A geometric model for TQFT vector spaces is defined, and we show that curve operators can be seen as Toeplitz operators in this model. Standard tools of semi-classical analysis allow us to deduce the result from this
Louati, Hanen. "Règles de quantification semi-classique pour une orbite périodique de type hyberbolique." Thesis, Toulon, 2017. http://www.theses.fr/2017TOUL0004/document.
Full textIn this Thesis we consider semi-excited resonances for a h-Pseudo-Differential Operator (h-PDO for short) H(x, hDx; h) on L2(M) induced by a periodic orbit of hyperbolic type at energy E = 0, as arises when M = Rn and H(x, hDx; h) is Schrödinger operator withAC Stark effect, or H(x, hDx; h) is the geodesic flow on an axially symmetric manifold M,extending Poincaré example of Lagrangian systems with 2 degree of freedom. We generalizethe framework of Gérard and Sjöstrand, in the sense that we allow for hyperbolic and ellipticeigenvalues of Poincaré map, and look for (excited) resonances with imaginary part of magnitude hs, with 0 < s < 1,It is known that these resonances are given by the zeroes of a determinant associatedwith Poincaré map. We make here this result more precise, in providing a first order asymptoticsof Bohr-Sommerfeld quantization rule in terms of the (real) longitudinal and (complex)transverse quantum numbers, including the action integral, the sub-principal 1-form and Gelfand-Lidskii index
Laleg, Taous-Meriem. "Analyse de signaux par quantification semi-classique. Application à l'analyse des signaux de pression artérielle." Phd thesis, Université de Versailles-Saint Quentin en Yvelines, 2008. http://tel.archives-ouvertes.fr/tel-00357309.
Full textLaleg, Kirati Taous-Meriem. "Analyse de signaux par quantification semi-classique : application à l'analyse des signaux de pression artérielle." Versailles-St Quentin en Yvelines, 2008. http://www.theses.fr/2008VERS0041.
Full textCette thèse introduit une nouvelle méthode d'analyse de signaux, appelée SCSA, basée sur une quantification semi-classique. L'idée principale de la SCSA consiste à interpréter un signal en forme d’impulsions comme un puits de potentiel pour une particule semi-classique et à le représenter par les niveaux d’énergie discrets associés donnés par le spectre discret d’un opérateur de Schrödinger. La SCSA est une première étape vers une approximation par solitons (potentiels sans réflexion), qui définit une représentation parcimonieuse du signal, intéressante pour des applications en traitement du signal, par exemple la compression de données. Ce travail propose aussi un algorithme numérique pour l’estimation de signaux par la SCSA et présente les résultats de l’analyse des signaux de pression artérielle par cette méthode. En plus de la reconstruction satisfaisante de ces signaux, la SCSA introduit de nouveaux indices qui semblent véhiculer des informations physiologiques importantes
CHARLES, Laurent. "Aspects semi-classiques de la quantification géométrique." Phd thesis, Université Paris Dauphine - Paris IX, 2000. http://tel.archives-ouvertes.fr/tel-00001289.
Full textVieira, Pedro. "Intégralité en AdS/CFT : ansatz de Bethe et quantification de corde au delà du volume infini." Paris 6, 2008. http://www.theses.fr/2008PA066378.
Full textIn this thesis Integrability in AdS/CFT is reviewed. Bethe ansatz techniques are presented and the all loop Bethe equations are discussed. From the string side of the correspondence, the classical finite-gap method is revisited and special emphasis is given to the super-string semi-classical quantization. The algebraic curve methods are quite general and provide very important constraints on the full quantum equations. The formalism is extremely versatile and can be applied to the AdS5/CFT4 duality the most studied case in this work -- as well as to other integrable systems like e. G. The AdS4/CFT3 correspondence. Furthermore, these techniques yield valuable information about the spectrum of finite charge states when the asymptotic Bethe ansatz is no longer valid
Rouby, Ophélie. "Conditions de quantification de Bohr-Sommerfeld pour des opérateurs semi-classiques non auto-adjoints." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S051/document.
Full textWe interest ourselves in the spectral theory of non self-adjoint semi-classical operators in dimension one and in asymptotic expansions of eigenvalues. These expansions are written in terms of geometrical objects in a complex phase space coming from classical mechanics and correspond to a generalization of Bohr-Sommerfeld quantization conditions in the non self-adjoint case. First, we study non self-adjoint perturbations of self-adjoint pseudo-differential operators in dimension one by using techniques of analytic microlocal analysis. As a corollary, we establish for PT-symmetric perturbations of self-adjoint operators, that the spectrum is real. Then we show Bohr-Sommerfeld quantization conditions for non self-adjoint perturbations of self-adjoint Berezin-Toeplitz operators of the complex plane. In the second part, we look into quantizations of the torus, namely the Berezin-Toeplitz, the classical Weyl and the complex Weyl quantizations of the torus. We establish links between these different quantizations using Bargmann transform. We propose a conjecture, supported by numerical simulations, on Bohr-Sommerfeld quantization conditions for non self-adjoint perturbations of self-adjoint Berezin-Toeplitz operators of the torus
Puchol, Martin. "Inégalités de Morse holomorphes G-invariantes et formes de torsion asymptotiques." Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC191.
Full textIn this thesis, we study some aspects of the semi-classical lirait in complex geometry. Let M be a complex manifold, endowed with a holomorphic line bundle L and a complex bundle E. We give here the asymptotic properties of several objects associated with the high tensor powers of L, twisted by E. In the first chapter, M is compact, L positive and E non necessarily holomorphic. We prove the cancellation of the first 2j terms in the diagonal asymptotic expansion of the restriction to the (0, 2j)-forms of the Bergman kernel. Then, we give a local formula for the leading coefficients. In the second chapter, M is compact, E holomorphic and a connected compact Lie group acts on M, L and E in a compatible way. We establish asymptotic holomorphic Morse inequalities à la Demailly for the invariant part of the Dolbeault cohomology. To do so, we define the reduction of M under natural hypothesis and give our inequalities in terms of the curvature of the bundle induced by L on this reduction. In the third chapter, E is holomorphic and Mis the total space of a holomorphic fibration with compact fibers. We can then define the holomorphic analytic torsion forms associated with this fibration and the tensor powers of L, twisted by E. We first give an asymptotic formula for these forms. Secondly, we generalize this formula in the case where the powers of L are replaced by the direct image of powers of a line bundle on a bigger manifold. In both cases we have to make positivity assumptions on the line bundle. These results are the family versions of the results of Bismut-Vasserot
Boisseau, Christophe. "Interactions d'atomes ultra froids - extension de la notion de seuil quantique et correction de la condition de quantification semi-classique pour les niveaux vibrationnels proches de la limite de dissociation - deplacement lumineux pour une paire d'atomes." Toulouse 3, 1999. http://www.theses.fr/1999TOU30018.
Full textLe, Floch Yohann. "Théorie spectrale inverse pour les opérateurs de Toeplitz 1D." Phd thesis, Université Rennes 1, 2014. http://tel.archives-ouvertes.fr/tel-01065441.
Full text