Academic literature on the topic 'Quantum chromodynamics QCD'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum chromodynamics QCD.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Quantum chromodynamics QCD"

1

Cahill, RT. "On the Importance of Self-interaction in QCD." Australian Journal of Physics 44, no. 3 (1991): 105. http://dx.doi.org/10.1071/ph910105.

Full text
Abstract:
The electromagnetic self-energy of charged particles has remained a problem in classical as well as in quantum electrodynamics. In contrast here, in a review of the analysis of the chromodynamic self-energy of quarks in quantum chromodynamics (QCD), we see that the quark self-energy is a finite and a dominant effect in determining the structure of hadrons.
APA, Harvard, Vancouver, ISO, and other styles
2

CORNWALL, JOHN M. "ENTROPY IN QUANTUM CHROMODYNAMICS." Modern Physics Letters A 27, no. 09 (March 21, 2012): 1230011. http://dx.doi.org/10.1142/s021773231230011x.

Full text
Abstract:
We review the role of zero-temperature entropy in several closely-related contexts in QCD. The first is entropy associated with disordered condensates, including [Formula: see text]. The second is effective vacuum entropy arising from QCD solitons such as center vortices, yielding confinement and chiral symmetry breaking. The third is entanglement entropy, which is entropy associated with a pure state, such as the QCD vacuum, when the state is partially unobserved and unknown. Typically, entanglement entropy of an unobserved three-volume scales not with the volume but with the area of its bounding surface. The fourth manifestation of entropy in QCD is the configurational entropy of light-particle world-lines and flux tubes; we argue that this entropy is critical for understanding how confinement produces chiral symmetry breakdown, as manifested by a dynamically-massive quark, a massless pion, and a [Formula: see text] condensate.
APA, Harvard, Vancouver, ISO, and other styles
3

BROWER, RICHARD C., YUE SHEN, and CHUNG-I. TAN. "CHIRALLY EXTENDED QUANTUM CHROMODYNAMICS." International Journal of Modern Physics C 06, no. 05 (October 1995): 725–42. http://dx.doi.org/10.1142/s0129183195000599.

Full text
Abstract:
We propose an extended Quantum Chromodynamics (XQCD) Lagrangian in which the fermions are coupled to elementary scalar fields through a Yukawa coupling which preserves chiral invariance. Our principle motivation is to find a new lattice formulation for QCD which avoids the source of critical slowing down usually encountered as the bare quark mass is tuned to the chiral limit. The phase diagram and the weak coupling limit for XQCD are studied. They suggest a conjecture that the continuum limit of XQCD is the same as the continuum limit of conventional lattice formulation of QCD. As examples of such universality, we present the large N solutions of two prototype models for XQCD, in which the mass of the spurious pion and sigma resonance go to infinity with the cut-off. Even if the universality conjecture turns out to be false, we believe that XQCD will still be useful as a low energy effective action for QCD phenomenology on the lattice. Numerical simulations are recommended to further investigate the possible benefits of XQCD in extracting QCD predictions.
APA, Harvard, Vancouver, ISO, and other styles
4

BUTTERWORTH, JON M. "QUANTUM CHROMODYNAMICS AT COLLIDERS." International Journal of Modern Physics A 21, no. 08n09 (April 10, 2006): 1792–804. http://dx.doi.org/10.1142/s0217751x06032769.

Full text
Abstract:
QCD is the accepted (that is, the effective) theory of the strong interaction; studies at colliders are no longer designed to establish this. Such studies can now be divided into two categories. The first involves the identification of observables which can be both measured and predicted at the level of a few percent. Such studies parallel those of the electroweak sector over the past fifteen years, and deviations from expectations would be a sign of new physics. These observables provide a firm "place to stand" from which to extend our understanding. This links to the second category of study, where one deliberately moves to regions in which the usual theoretical tools fail; here new approximations in QCD are developed to increase our portfolio of understood processes, and hence our sensitivity to new physics. Recent progress in both these aspects of QCD at colliders is discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

SHIFMAN, M. "PERSISTENT CHALLENGES OF QUANTUM CHROMODYNAMICS." International Journal of Modern Physics A 21, no. 28n29 (November 20, 2006): 5695–719. http://dx.doi.org/10.1142/s0217751x06034914.

Full text
Abstract:
Unlike some models whose relevance to Nature is still a big question mark, Quantum Chromodynamics (QCD) will stay with us forever. QCD, born in 1973, is a very rich theory supposed to describe the widest range of strong interaction phenomena: from nuclear physics to Regge behavior at large E, from color confinement to quark–gluon matter at high densities/temperatures (neutron stars); the vast horizons of the hadronic world: chiral dynamics, glueballs, exotics, light and heavy quarkonia and mixtures thereof, exclusive and inclusive phenomena, interplay between strong forces and weak interactions, etc. Efforts aimed at solving the underlying theory, QCD, continue. In a remarkable entanglement, theoretical constructions of the 1970's and 1990's combine with today's ideas based on holographic description and strong–weak coupling duality, to provide new insights and a deeper understanding.
APA, Harvard, Vancouver, ISO, and other styles
6

Boyle, P. A., R. D. Kenway, and C. M. Maynard. "UKQCD software for lattice quantum chromodynamics." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367, no. 1897 (June 28, 2009): 2585–94. http://dx.doi.org/10.1098/rsta.2009.0057.

Full text
Abstract:
Quantum chromodynamics (QCD) is the quantum field theory of the strong nuclear interaction and it explains how quarks and gluons are bound together to make more familiar objects such as the proton and neutron, which form the nuclei of atoms. UKQCD is a collaboration of eight UK universities that have come together to obtain and pool sufficient resources, both computational and manpower, to perform lattice QCD calculations. This paper explains how UKQCD uses and develops this software, how performance critical kernels for diverse architectures such as quantum chromodynamics-on-a-chip, BlueGene and XT4 are developed and employed and how UKQCD collaborates both internally and externally, with, for instance, the US SciDAC lattice QCD community.
APA, Harvard, Vancouver, ISO, and other styles
7

OEHME, REINHARD. "SINGULARITIES OF HADRONIC AMPLITUDES IN QUANTUM CHROMODYNAMICS." Modern Physics Letters A 08, no. 16 (May 30, 1993): 1533–41. http://dx.doi.org/10.1142/s0217732393001264.

Full text
Abstract:
Singularities of hadronic amplitudes are discussed within the framework of QCD as formulated on the basis of the BRST algebra. Only non-perturbative QCD is considered. Local, composite fields are introduced for hadrons. Given confinement, it is shown that hadronic amplitudes have no thresholds or structure singularities (anomalous thresholds) which are directly related to the underlying quark-gluon structure. In contrast, general amplitudes of QCD must have singularities in channels with nonzero color quantum number, which can be related to unphysical states.
APA, Harvard, Vancouver, ISO, and other styles
8

Cahill, RT. "Hadronisation of QCD." Australian Journal of Physics 42, no. 2 (1989): 171. http://dx.doi.org/10.1071/ph890171.

Full text
Abstract:
Functional integral calculus (FIC) methods are used to transform the meson-diquark bosonisation of quantum chromodynamics into a meson-baryon effective action description of the low energy states of QCD-the adronisation of QCD.
APA, Harvard, Vancouver, ISO, and other styles
9

IOFFE, B. "QCD (Quantum chromodynamics) at low energies." Progress in Particle and Nuclear Physics 56, no. 1 (January 2006): 232–77. http://dx.doi.org/10.1016/j.ppnp.2005.05.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kronfeld, Andreas S., and Chris Quigg. "Resource Letter QCD-1: Quantum chromodynamics." American Journal of Physics 78, no. 11 (November 2010): 1081–116. http://dx.doi.org/10.1119/1.3454865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Quantum chromodynamics QCD"

1

Dowrick, Nigel. "Non-peturbative QCD." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ashley, Jonathan D. "Investigations in non-perturbative QCD." Title page, abstract and table of contents only, 2004. http://hdl.handle.net/2440/37959.

Full text
Abstract:
In this thesis we review two methods for studying the non-pertubative region of QCD: the effective field theory, chiral perturbation theory (χPT), and the cloudy bag model, a successful chiral quark model of hadron structure. We use information from both of these sources to construct a simple extrapolation formula in the pion mass, mπ, for the nucleon electromagnetic form factors, which combines the correct non-analytic chiral behaviour predicted by (χPT), with the correct large mπ behaviour. This formula is applied to recent quenched lattice QCD results to extrapolate to the physical regime. Given the simple nature of the extrapolation scheme, our results compare surprisingly well with experiment. We also employ a simple chiral quark model (the hedgehog) to examine the volume and pion mass dependence of the axial coupling constant, ga, along with the hedgehog baryon mass. Our results for ga reveal large volume dependence at low pion masses.
Thesis (M.Sc.)--School of Chemistry and Physics, 2004.
APA, Harvard, Vancouver, ISO, and other styles
3

Mebarki, Noureddine. "Problems of higher order corrections in perturbative QCD and supersymmetric QCD." Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=74057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gray, Norman. "Dimensionally regulated on-shell renormalisation in QCD and QED." Thesis, n.p, 1991. http://oro.open.ac.uk/19423/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

McCallum, Paul. "Upsilon spectroscopy using lattice QCD." Thesis, University of Glasgow, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Portelli, Antonin. "Nonpertubative quantum chromodynamics and isospin symmetry breaking." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4110.

Full text
Abstract:
Depuis les années 1930, on sait que le noyau des atomes est composé de deux types de particules: les protons et les neutrons. Ces deux particules sont très similaires: d'une part le neutron est subtilement plus lourd (un pour mille) que le proton et d'autre part le proton porte une charge électrique positive tandis que le neutron est neutre. La petite différence de masse entre le neutron et le proton fourni l'énergie suffisante pour autoriser désintégration où un neutron se désintègre en un proton en émettant un électron et un anti-neutrino électronique. Aussi, le fait que le proton ne se désintègre pas assure la stabilité de l'atome d'hydrogène. De plus, on sait empiriquement que les paramètres de la désintégration déterminent la composition des noyaux d'atomes stables plus lourds que l'hydrogène. Il est donc raisonnable de penser que si la différence de masse entre le neutron et le proton était de signe opposé ou seulement légèrement différente, l'Univers visible serait surement très différent de celui que l'on connait. Il est donc essentiel de comprendre l'origine de cette différence de masse à partir des principes premiers de la physique. C'est à ce problème, et à des problèmes liés à celui-ci, qu'essaye de répondre ce travail. Dans la compréhension actuelle de la physique, les neutrons et les protons sont des particules composées de particules élémentaires appelées quark up (symbole u) et quark down (symbole d). Le proton est un état lié uud et le neutron est un état lié udd. Les quarks up et down sont deux particules similaires: elles sont toutes deux légères (de l'ordre de quelques MeV) et leurs charges électriques sont différentes
APA, Harvard, Vancouver, ISO, and other styles
7

Campbell, N. A. "Static potentials in lattice QCD." Thesis, University of Liverpool, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sharan, Ujjawal. "Topology and chiral symmetry breaking in QCD." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hill, Victor John. "Heavy flavour physics from lattice QCD." Thesis, University of Southampton, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252696.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Heatlie, Grant James. "Aspects of phenomenology from lattice QCD." Thesis, University of Southampton, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Quantum chromodynamics QCD"

1

NATOAdvanced, Research Workshop on QCD Hard Hadronic Processes (1987 St Croix US Virgin Islands). QCD hard hadronic processes. New York: Plenum in cooperation with NATO Scientific Affairs Division, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Field, R. D. Applications of perturbative QCD. Redwood City, Calif: Addison-Wesley, The Advanced Book Program, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zeuthen Workshop on Elementary Particle Theory: QCD and QED in Higher Orders (1996 Rheinsberg, Germany). QCD and QED in high orders: Proceedings of the 1996 Zeuthen Workshop on Elementary Particle Theory : QCD and QED in Higher Orders : Rheinsberg, Germany, 21-26 April 1996. [Amsterdam, Netherlands]: North-Holland, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Collins, John C. Foundations of perturbative QCD. Cambridge: Cambridge University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

NATO Advanced Research Workshop on QCD Hard Hadronic Processes (1987 Saint Croix, V.I.). QCD hard hadronic processes. New York: Plenum Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

NATO Advanced Study Institute on QCD Perspectives on Hot and Dense Matter (2001 Cargèse, France). QCD perspectives on hot and dense matter. Dordrecht: Kluwer Academic Publishers, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

M, Shifman, ed. Continuous Advances In Qcd 2006: Proceedings of the Conference. Singapore: World Scientific, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

L, Cifarelli, and Dokshitzer Yuri, eds. QCD at 200 TeV. New York: Plenum Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

P, Vary J., Wolz F, International Institute of Theoretical and Applied Physics., and School on Light-Front Quantization and Non-Perturbative QCD (1st : 1996 : Ames, Iowa), eds. Light-front quantization and non-perturbative QCD. Ames, Iowa: International Institute of Theoretical and Applied Physics, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

A, Shifman Mikhail, ed. Vacuum structure and QCD sum rules. Amsterdam: North-Holland, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Quantum chromodynamics QCD"

1

Greiner, Walter, and Andreas Schäfer. "Nonperturbative QCD." In Quantum Chromodynamics, 311–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57978-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Greiner, Walter, Stefan Schramm, and Eckart Stein. "Nonperturbative QCD." In Quantum Chromodynamics, 439–511. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04707-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Milton, Kimball A. "Quantum Chromodynamics (QCD)." In Compendium of Quantum Physics, 524–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Belyaev, Alexander, and Douglas Ross. "Quantum Chromodynamics (QCD)." In The Basics of Nuclear and Particle Physics, 309–29. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80116-8_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Greiner, Walter, and Andreas Schäfer. "Perturbative QCD I: Deep Inelastic Scattering." In Quantum Chromodynamics, 181–266. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57978-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Greiner, Walter, Stefan Schramm, and Eckart Stein. "Perturbative QCD I: Deep Inelastic Scattering." In Quantum Chromodynamics, 237–383. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04707-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Greiner, Walter, Stefan Schramm, and Eckart Stein. "Phenomenological Models for Nonperturbative QCD Problems." In Quantum Chromodynamics, 513–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04707-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Greiner, Walter, and Andreas Schäfer. "Phenomenological Models for Non-Perturbative QCD Problems." In Quantum Chromodynamics, 387–409. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57978-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Can, Kadir Utku. "Quantum Chromodynamics." In Electromagnetic Form Factors of Charmed Baryons in Lattice QCD, 15–26. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8995-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pène, Olivier, Karl Jansen, Norman H. Christ, Norman H. Christ, and Salvador Coll. "QCD (Quantum Chromodynamics) Computations." In Encyclopedia of Parallel Computing, 1657–61. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-09766-4_115.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Quantum chromodynamics QCD"

1

Lenz, F. "The center-symmetric phase of QCD." In New directions in quantum chromodynamics. AIP, 1999. http://dx.doi.org/10.1063/1.1301694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gubankova, Elena, and Chueng-Ryong Ji. "Solving the QCD Hamiltonian for bound states." In New directions in quantum chromodynamics. AIP, 1999. http://dx.doi.org/10.1063/1.1301676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kondo, Kei-Ichi. "Color confinement in QCD due to topological defects." In New directions in quantum chromodynamics. AIP, 1999. http://dx.doi.org/10.1063/1.1301678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brodsky, Stanley J. "QCD technology: Light-cone quantization and commensurate scale relations." In New directions in quantum chromodynamics. AIP, 1999. http://dx.doi.org/10.1063/1.1301659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

deForcrand, Ph, M. Garcı́a Peréz, T. Hashimoto, S. Hioki, Y. Liu, H. Matsufuru, O. Miyamura, et al. "Hadronic masses at high temperature by lattice QCD approach." In New directions in quantum chromodynamics. AIP, 1999. http://dx.doi.org/10.1063/1.1301695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hayashigaki, Arata. "J/ψ at finite density in QCD sum rule analysis." In New directions in quantum chromodynamics. AIP, 1999. http://dx.doi.org/10.1063/1.1301692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kniehl, Bernd A. "Decoupling of heavy quarks from QCD and applications in Higgs-boson phenomenology." In New directions in quantum chromodynamics. AIP, 1999. http://dx.doi.org/10.1063/1.1301685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Choi, Ho-Meoyng, and Chueng-Ryong Ji. "Exploring the timelike region of QCD exclusive processes in the relativistic quark model." In New directions in quantum chromodynamics. AIP, 1999. http://dx.doi.org/10.1063/1.1301682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vairo, Antonio, Pietro Colangelo, Donato Creanza, Fulvia De Fazio, Rosa Anna Fini, Eugenio Nappi, and Giuseppe Nardulli. "The QCD potential." In QCD&WORK 2007: International Workshop on Quantum Chromodynamics: Theory and Experiment. AIP, 2007. http://dx.doi.org/10.1063/1.2823834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Angelini, Leonardo, Giuseppe Eugenio Bruno, Gabriele Chiodini, Pietro Colangelo, Claudio Corianò, Donato Creanza, Fulvia De Fazio, and Eugenio Nappi. "Preface: International Workshop on Quantum Chromodynamics - Theory and Experiment." In QCD@WORK 2012: International Workshop on Quantum Chromodynamics: Theory and Experiment. AIP, 2012. http://dx.doi.org/10.1063/1.4763482.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Quantum chromodynamics QCD"

1

Kronfeld, Andreas S., and /Fermilab. QCD: results from lattice quantum chromodynamics. Office of Scientific and Technical Information (OSTI), October 2006. http://dx.doi.org/10.2172/897018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lipkin, H. J. Quarks, QCD (quantum chromodynamics) and the real world of experimental data. Office of Scientific and Technical Information (OSTI), July 1987. http://dx.doi.org/10.2172/6275793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kuo, Wang-Chuang. Neutral technicolor pseudo Goldstone bosons production and QCD (quantum chromodynamics) background at the SSC (Superconducting Super Collider). Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6512817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Na, H., and J. Osborn. Lattice Quantum Chromodynamics (SPI, mapping, site ordering, and QPX in Lattice QCD code on Mira): ALCF-2 Early Science Program Technical Report. Office of Scientific and Technical Information (OSTI), May 2013. http://dx.doi.org/10.2172/1079769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography