Academic literature on the topic 'Quantum circuit learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum circuit learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantum circuit learning"
Lukac, Martin, and Marek Perkowski. "Inductive learning of quantum behaviors." Facta universitatis - series: Electronics and Energetics 20, no. 3 (2007): 561–86. http://dx.doi.org/10.2298/fuee0703561l.
Full textMenegasso Pires, Otto, Eduardo Inacio Duzzioni, Jerusa Marchi, and Rafael De Santiago. "Quantum Circuit Synthesis Using Projective Simulation." Inteligencia Artificial 24, no. 67 (2021): 90–101. http://dx.doi.org/10.4114/intartif.vol24iss67pp90-101.
Full textFerrari, Davide, and Michele Amoretti. "Efficient and effective quantum compiling for entanglement-based machine learning on IBM Q devices." International Journal of Quantum Information 16, no. 08 (2018): 1840006. http://dx.doi.org/10.1142/s0219749918400063.
Full textChen, Chih-Chieh, Masaya Watabe, Kodai Shiba, Masaru Sogabe, Katsuyoshi Sakamoto, and Tomah Sogabe. "On the Expressibility and Overfitting of Quantum Circuit Learning." ACM Transactions on Quantum Computing 2, no. 2 (2021): 1–24. http://dx.doi.org/10.1145/3466797.
Full textZhu, D., N. M. Linke, M. Benedetti, et al. "Training of quantum circuits on a hybrid quantum computer." Science Advances 5, no. 10 (2019): eaaw9918. http://dx.doi.org/10.1126/sciadv.aaw9918.
Full textHu, Ling, Shu-Hao Wu, Weizhou Cai, et al. "Quantum generative adversarial learning in a superconducting quantum circuit." Science Advances 5, no. 1 (2019): eaav2761. http://dx.doi.org/10.1126/sciadv.aav2761.
Full textGriol-Barres, Israel, Sergio Milla, Antonio Cebrián, Yashar Mansoori, and José Millet. "Variational Quantum Circuits for Machine Learning. An Application for the Detection of Weak Signals." Applied Sciences 11, no. 14 (2021): 6427. http://dx.doi.org/10.3390/app11146427.
Full textStokes, James, and John Terilla. "Probabilistic Modeling with Matrix Product States." Entropy 21, no. 12 (2019): 1236. http://dx.doi.org/10.3390/e21121236.
Full textRen, Wanghao, Zhiming Li, Yiming Huang, et al. "Quantum generative adversarial networks for learning and loading quantum image in noisy environment." Modern Physics Letters B 35, no. 21 (2021): 2150360. http://dx.doi.org/10.1142/s0217984921503607.
Full textBenedetti, Marcello, Edward Grant, Leonard Wossnig, and Simone Severini. "Adversarial quantum circuit learning for pure state approximation." New Journal of Physics 21, no. 4 (2019): 043023. http://dx.doi.org/10.1088/1367-2630/ab14b5.
Full textDissertations / Theses on the topic "Quantum circuit learning"
Lamarre, Aldo. "Apprentissage de circuits quantiques par descente de gradient classique." Thesis, 2020. http://hdl.handle.net/1866/24322.
Full textBook chapters on the topic "Quantum circuit learning"
Maeda, Michiharu, Masaya Suenaga, and Hiromi Miyajima. "A Learning Model in Qubit Neuron According to Quantum Circuit." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11539087_34.
Full textConference papers on the topic "Quantum circuit learning"
Guy, Khalil. "Optimizing Quantum Circuit Layout Using Reinforcement Learning." In SIST/GEM End of Term Activities 2020, Batavia, IL (United States), 3-5 Aug 2020. US DOE, 2020. http://dx.doi.org/10.2172/1668390.
Full textSaravanan, Vedika, and Samah Mohamed Saeed. "Test Data-Driven Machine Learning Models for Reliable Quantum Circuit Output." In 2021 IEEE European Test Symposium (ETS). IEEE, 2021. http://dx.doi.org/10.1109/ets50041.2021.9465405.
Full textLevine, Edlyn V., Matthew J. Turner, Nicholas Langellier, Thomas M. Babinec, Marko Lončar, and Ronald L. Walsworth. "Backside Integrated Circuit Magnetic Field Imaging with a Quantum Diamond Microscope." In ISTFA 2020. ASM International, 2020. http://dx.doi.org/10.31399/asm.cp.istfa2020p0084.
Full textBao, Maggie, Cole Powers, and Marek Perkowski. "Quantum Algorithm for Machine Learning and Circuit Design Based on Optimization of Ternary - Input, Binary-Output Kronecker-Reed-Muller Forms." In 2021 IEEE 51st International Symposium on Multiple-Valued Logic (ISMVL). IEEE, 2021. http://dx.doi.org/10.1109/ismvl51352.2021.00029.
Full textLaBorde, Margarite L., Allee C. Rogers, and Jonathan P. Dowling. "Finding Broken Gates in Quantum Circuits–Exploiting Hybrid Machine Learning." In Frontiers in Optics. OSA, 2020. http://dx.doi.org/10.1364/fio.2020.ftu8d.4.
Full textGuy, Khalil, and Gabriel Purdue. "Using Reinforcement Learning to Optimize Quantum Circuits in the Presence of Noise." In Using Reinforcement Learning to Optimize Quantum Circuits in the Presence of Noise. US DOE, 2020. http://dx.doi.org/10.2172/1648527.
Full textRadu, I. P., R. Li, A. Potocnik, et al. "Solid state qubits: how learning from CMOS fabrication can speed-up progress in Quantum Computing." In 2021 Symposium on VLSI Circuits. IEEE, 2021. http://dx.doi.org/10.23919/vlsicircuits52068.2021.9492397.
Full textOno, Tatsuki, Song Bian, and Takashi Sato. "Automatic Parallelism Tuning for Module Learning with Errors Based Post-Quantum Key Exchanges on GPUs." In 2021 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2021. http://dx.doi.org/10.1109/iscas51556.2021.9401575.
Full textReports on the topic "Quantum circuit learning"
Farhi, Edward, and Hartmut Neven. Classification with Quantum Neural Networks on Near Term Processors. Web of Open Science, 2020. http://dx.doi.org/10.37686/qrl.v1i2.80.
Full textGuy, Khalil, and Gabriel Perdue. Using Reinforcement Learning to Optimize Quantum Circuits in thePresence of Noise. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1661681.
Full text