Academic literature on the topic 'Quantum communication Cryptography'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum communication Cryptography.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantum communication Cryptography"
Teja, Penumantra Satya Sai, Mounika Lakshmi P, and Vinay Kumar K. "A Secure Communication through Quantum Key Distribution Protocols." International Research Journal of Electronics and Computer Engineering 4, no. 3 (September 30, 2018): 14. http://dx.doi.org/10.24178/irjece.2018.4.3.14.
Full textMuruganantham, B., P. Shamili, S. Ganesh Kumar, and A. Murugan. "Quantum cryptography for secured communication networks." International Journal of Electrical and Computer Engineering (IJECE) 10, no. 1 (February 1, 2020): 407. http://dx.doi.org/10.11591/ijece.v10i1.pp407-414.
Full textVIDAL, G., M. S. BAPTISTA, and H. MANCINI. "FUNDAMENTALS OF A CLASSICAL CHAOS-BASED CRYPTOSYSTEM WITH SOME QUANTUM CRYPTOGRAPHY FEATURES." International Journal of Bifurcation and Chaos 22, no. 10 (October 2012): 1250243. http://dx.doi.org/10.1142/s0218127412502434.
Full textBykovsky, A. Yu, and I. N. Kompanets. "Quantum cryptography and combined schemes of quantum cryptography communication networks." Quantum Electronics 48, no. 9 (September 30, 2018): 777–801. http://dx.doi.org/10.1070/qel16732.
Full textIMOTO, Nobuyuki. "Photonic communication and quantum cryptography." Review of Laser Engineering 29, Supplement (2001): 193–94. http://dx.doi.org/10.2184/lsj.29.supplement_193.
Full textDayo Alowolodu, Olufunso, Gabriel K Adelaja, Boniface K Alese, and Olufunke Catherine Olayemi. "Medical Image Security Using Quantum Cryptography." Issues in Informing Science and Information Technology 15 (2018): 057–67. http://dx.doi.org/10.28945/4008.
Full textZhou, Zishuai, Qisheng Guang, Chaohui Gao, Dong Jiang, and Lijun Chen. "Measurement-Device-Independent Two-Party Cryptography with Error Estimation." Sensors 20, no. 21 (November 7, 2020): 6351. http://dx.doi.org/10.3390/s20216351.
Full textDolgochub, Evgeny A., and Alexey N. Polikanin. "ANALYSIS OF QUANTUM BB84 AND B92 ENCRYPTION ALGORITHMS." Interexpo GEO-Siberia 6, no. 1 (July 8, 2020): 125–30. http://dx.doi.org/10.33764/2618-981x-2020-6-1-125-130.
Full textEt. al., Rydhm Beri ,. "A Contemporary Study on Quantum-Computing Security Mechanisms in 5G Networks." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 2 (April 11, 2021): 450–55. http://dx.doi.org/10.17762/turcomat.v12i2.835.
Full textBebrov, Georgi Petrov, and Rozalina Stefanova Dimova. "Quantum secure communication models comparison." ANNUAL JOURNAL OF TECHNICAL UNIVERSITY OF VARNA, BULGARIA 1, no. 1 (December 28, 2017): 21–26. http://dx.doi.org/10.29114/ajtuv.vol1.iss1.27.
Full textDissertations / Theses on the topic "Quantum communication Cryptography"
Lunemann, Carolin. "Quantum cryptography : security analysis of multiuser quantum communication with embedded authentication." Master's thesis, Universität Potsdam, 2006. http://opus.kobv.de/ubp/volltexte/2007/1275/.
Full textIn der Diplomarbeit werden drei verschiedene quantenkryptographische Protokolle mit dem Schwerpunkt auf authentifizierten Quantennetzwerken analysiert. Die Sicherheit der Protokolle gegenüber verschiedenen Angriffen wird untersucht, wobei der Fokus auf kompletten Personifikationsattacken („impersonation attacks“) liegt. Auf Basis der Sicherheitsanalyse und den Netzwerkanforderungen werden entsprechende Verbesserungen vorgeschlagen. Um die Gefahr von Personifikationen realistisch abschätzen zu können, wird außerdem der Einfluss des Testablaufs analysiert. Um zusätzlichen Schutz gegen Personifikationsattacken zu gewährleisten, werden die Rahmenbedingungen für eine allgemeine Testspezifikation festgelegt.
Rafiei, Nima. "Quantum Communication Networks." Thesis, Stockholms universitet, Fysikum, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-186606.
Full textLan, Shau-Yu. "Matter-light entanglement with cold." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/28197.
Full textCommittee Chair: Kuzmich, Alex; Committee Member: Chapman, Michael; Committee Member: Citrin, David; Committee Member: Kennedy, T. A. Brian; Committee Member: Raman, Chandra
Matsukevich, Dzmitry. "Quantum networking with atomic ensembles." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-07072006-173336/.
Full textKennedy, Brian, Committee Member ; Chapman, Michael, Committee Member ; Kuzmich, Alex, Committee Chair ; Raman, Chandra, Committee Member ; Voss, Paul, Committee Member.
Boström, Kim. "Lossless quantum data compression and secure direct communication." Phd thesis, Universität Potsdam, 2004. http://opus.kobv.de/ubp/volltexte/2005/100/.
Full textDie zwei Themen der Dissertation umfassen 1) die Möglichkeit, eine Nachricht in einem Quantenkanal verlustfrei zu komprimieren und 2) die Möglichkeit eine Nachricht von einer Partei zu einer einer anderen direkt und auf sichere Weise zu übermitteln, d.h. ohne dass es einer dritte Partei möglich ist, die Nachricht abzuhören und dabei unerkannt zu bleiben.
Die wesentlichen Ergebnisse der Dissertation sind die folgenden.
Ein allgemeiner Formalismus für Quantencodes mit variabler Länge wird ausgearbeitet. Diese Codes sind notwendig um verlustfreie Kompression zu ermöglichen. Wegen der Quantennatur des Kanals sind die codierten Nachrichten allgemein in einer Superposition von verschiedenen Längen. Es zeigt sich, daß es unmöglich ist eine Quantennachricht verlustfrei zu komprimieren, wenn diese dem Sender nicht apriori bekannt ist. Im anderen Falle wird die Möglichkeit verlustfreier Quantenkompression gezeigt und eine untere Schranke für die Kompressionsrate abgeleitet. Des weiteren wird ein expliziter Kompressionsalgorithmus konstruiert, der für beliebig vorgegebene Ensembles aus Quantennachrichten funktioniert.
Ein quantenkryptografisches Prokoll - das “Ping-Pong Protokoll” - wird vorgestellt, welches die sichere direkte übertragung von klassischen Nachrichten durch einen Quantenkanal ermöglicht. Die Sicherheit des Protokolls gegen beliebige Abhörangriffe wird bewiesen für den Fall eines idealen Quantenkanals. Im Gegensatz zu anderen quantenkryptografischen Verfahren ist das Ping-Pong Protokoll deterministisch und kann somit sowohl für die Übermittlung eines zufälligen Schlüssels als auch einer komponierten Nachricht verwendet werden. Das Protokoll is perfekt sicher für die Übertragung eines Schlüssels und quasi-sicher für die direkte Übermittlung einer Nachricht. Letzteres bedeutet, dass die Wahrscheinlichkeit eines erfolgreichen Abhörangriffs exponenziell mit der Länge der Nachricht abnimmt.
This thesis deals with the encoding and transmission of information through a quantum channel. A quantum channel is a quantum mechanical system whose state is manipulated by a sender and read out by a receiver. The individual state of the channel represents the message.
The two topics of the thesis comprise 1) the possibility of compressing a message stored in a quantum channel without loss of information and 2) the possibility to communicate a message directly from one party to another in a secure manner, that is, a third party is not able to eavesdrop the message without being detected.
The main results of the thesis are the following.
A general framework for variable-length quantum codes is worked out. These codes are necessary to make lossless compression possible. Due to the quantum nature of the channel, the encoded messages are in general in a superposition of different lengths. It is found to be impossible to compress a quantum message without loss of information if the message is not apriori known to the sender. In the other case it is shown that lossless quantum data compression is possible and a lower bound on the compression rate is derived. Furthermore, an explicit compression scheme is constructed that works for arbitrarily given source message ensembles.
A quantum cryptographic protocol - the “ping-pong protocol” - is presented that realizes the secure direct communication of classical messages through a quantum channel. The security of the protocol against arbitrary eavesdropping attacks is proven for the case of an ideal quantum channel. In contrast to other quantum cryptographic protocols, the ping-pong protocol is deterministic and can thus be used to transmit a random key as well as a composed message.
The protocol is perfectly secure for the transmission of a key, and it is quasi-secure for the direct transmission of a message. The latter means that the probability of successful eavesdropping exponentially decreases with the length of the message.
Sit, Alicia. "Quantum Communication: Through the Elements: Earth, Air, Water." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39648.
Full textJogenfors, Jonathan. "Breaking the Unbreakable : Exploiting Loopholes in Bell’s Theorem to Hack Quantum Cryptography." Doctoral thesis, Linköpings universitet, Informationskodning, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-140912.
Full textEn viktig konsekvens av kvantmekaniken är att okända kvanttillstånd inte kan klonas. Denna insikt har gett upphov till kvantkryptering, en metod för två parter att med perfekt säkerhet kommunicera hemligheter. Ett komplett bevis för denna säkerhet har dock låtit vänta på sig eftersom en attackerare i hemlighet kan manipulera utrustningen så att den läcker information. Som ett svar på detta utvecklades apparatsoberoende kvantkryptering som i teorin är immun mot sådana attacker. Apparatsoberoende kvantkryptering har en mycket högre grad av säkerhet än vanlig kvantkryptering, men det finns fortfarande ett par luckor som en attackerare kan utnyttja. Dessa kryphål har tidigare inte tagits på allvar, men denna avhandling visar hur även små svagheter i säkerhetsmodellen läcker information till en attackerare. Vi demonstrerar en praktisk attack där attackeraren aldrig upptäcks trots att denne helt kontrollerar systemet. Vi visar också hur kryphålen kan förhindras med starkare säkerhetsbevis. En annan tillämpning av kvantmekanikens förbud mot kloning är pengar som använder detta naturens egna kopieringsskydd. Dessa kvantpengar har helt andra egenskaper än vanliga mynt, sedlar eller digitala banköverföringar. Vi visar hur man kan kombinera kvantpengar med en blockkedja, och man får då man en slags "kvant-Bitcoin". Detta nya betalningsmedel har fördelar över alla andra betalsystem, men nackdelen är att det krävs en kvantdator.
Zhang, Zheshen. "Quantum key distribution protocols with high rates and low costs." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28240.
Full textEriksson, Hampus. "Implementing and Evaluating the Quantum Resistant Cryptographic Scheme Kyber on a Smart Card." Thesis, Linköpings universitet, Informationskodning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-169039.
Full textRödiger, Jasper. "Time-Frequency Quantum Key Distribution: Numerical Assessment and Implementation over a Free-Space Link." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21046.
Full textQuantum key distribution (QKD), the first applicable quantum technology, promises information theoretically secure communication. In the presented work the time-frequency (TF)-QKD protocol was examined, which uses time and frequency, namely pulse position modulation (PPM) in the time domain and frequency shift keying (FSK) in the frequency domain as the two complementary bases. Its security relies on the quantum properties of light and the time-frequency uncertainty relation. TF-QKD can be implemented mostly with standard telecom-technology in the 1550 nm band. The PPM basis can be implemented with modulators and the FSK basis with help of wavelength-division multiplexing technology. The TF-QKD protocol is capable of providing an arbitrarily large alphabet enabling more than 1 bit/photon. Moreover, it is robust in the atmosphere making it suitable for transmission over the free-space channel. In the present work the TF-QKD protocol is assessed theoretically, implemented with off-the-shelf components for 1 bit/photon and free-space transmission with optical tracking over a 388 m testbed is demonstrated in daylight. Using components at hand, secret key rates of 364 kbit/s back-to-back and 9 kbit/s over the free-space channel could be demonstrated.
Books on the topic "Quantum communication Cryptography"
van Dam, Wim, Vivien M. Kendon, and Simone Severini, eds. Theory of Quantum Computation, Communication, and Cryptography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18073-6.
Full textBacon, Dave, Miguel Martin-Delgado, and Martin Roetteler, eds. Theory of Quantum Computation, Communication, and Cryptography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54429-3.
Full textIwama, Kazuo, Yasuhito Kawano, and Mio Murao, eds. Theory of Quantum Computation, Communication, and Cryptography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35656-8.
Full textKawano, Yasuhito, and Michele Mosca, eds. Theory of Quantum Computation, Communication, and Cryptography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89304-2.
Full textChilds, Andrew, and Michele Mosca, eds. Theory of Quantum Computation, Communication, and Cryptography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10698-9.
Full textservice), SpringerLink (Online, ed. Quantum private communication. Beijing: Higher Education Press, 2010.
Find full textNATO Advanced Research Workshop on Quantum Communication and Security (2006 Gdańsk, Poland). Quantum communication and security. Amstderdam, Netherlands: IOS Press, 2007.
Find full textNATO Advanced Research Workshop on Quantum Cryptography and Computing: Theory and Implementations (2009 Gdańsk, Poland). Quantum cryptography and computing--theory and implementation. Amstderdam, Netherlands: IOS Press, 2010.
Find full textTQC 2009 (2009 Waterloo, Ont.). Theory of quantum computation, communication and cryptography: 4th workshop, TQC 2009, Waterloo, Canada, May 11-13 : revised selected papers. Berlin: Springer, 2009.
Find full textYasuhito, Kawano, and Mosca Michele 1971-, eds. Theory of quantum computation, communication, and cryptography: Third workshop, TQC 2008, Tokyo, Japan, January 30 - February 1, 2008 : revised selected papers. Berlin: Springer, 2008.
Find full textBook chapters on the topic "Quantum communication Cryptography"
Monyk, Christian. "Quantum Cryptography." In Handbook of Information and Communication Security, 159–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-04117-4_8.
Full textSimon, David S., Gregg Jaeger, and Alexander V. Sergienko. "Quantum Communication and Cryptography." In Quantum Science and Technology, 201–20. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46551-7_9.
Full textLütkenhaus, Norbert, and Stephen M. Barnett. "Security Against Eavesdropping in Quantum Cryptography." In Quantum Communication, Computing, and Measurement, 89–98. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5923-8_10.
Full textChiribella, Giulio. "On Quantum Estimation, Quantum Cloning and Finite Quantum de Finetti Theorems." In Theory of Quantum Computation, Communication, and Cryptography, 9–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18073-6_2.
Full textFaraj, Sufyan T., Fawzi Al-Naima, and Siddeeq Y. Ameen. "Optical Network Models for Quantum Cryptography." In IFIP Advances in Information and Communication Technology, 435–51. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-0-387-35586-3_35.
Full textZheng, Xiaoli, and Digang Jiang. "The Quantum Cryptography Communication and Military Application." In Lecture Notes in Electrical Engineering, 267–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48224-7_33.
Full textNagata, Koji, Tadao Nakamura, and Ahmed Farouk. "Quantum Cryptography, Quantum Communication, and Quantum Computing in a Noisy Environment." In Studies in Big Data, 185–205. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63639-9_8.
Full textHsieh, Min-Hsiu, and Mark M. Wilde. "Optimal Trading of Classical Communication, Quantum Communication, and Entanglement." In Theory of Quantum Computation, Communication, and Cryptography, 85–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10698-9_9.
Full textSergienko, A. V., M. Atature, B. M. Jost, J. Perina, B. E. A. Saleh, and M. C. Teich. "Quantum Cryptography with Femtosecond Parametric Down Conversion." In Quantum Communication, Computing, and Measurement 2, 405–11. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47097-7_55.
Full textMeyer, David A., and James Pommersheim. "Multi-query Quantum Sums." In Theory of Quantum Computation, Communication, and Cryptography, 153–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54429-3_10.
Full textConference papers on the topic "Quantum communication Cryptography"
"Medical Image Security Using Quantum Cryptography." In InSITE 2018: Informing Science + IT Education Conferences: La Verne California. Informing Science Institute, 2018. http://dx.doi.org/10.28945/3968.
Full textKrishnan, Aravind. "An overview of quantum wireless communication using quantum cryptography." In 2010 International Conference on Emerging Trends in Robotics and Communication Technologies (INTERACT 2010). IEEE, 2010. http://dx.doi.org/10.1109/interact.2010.5706209.
Full textPorzio, Alberto. "Quantum cryptography: Approaching communication security from a quantum perspective." In 2014 Fotonica AEIT Italian Conference on Photonics Technologies (Fotonica AEIT). IEEE, 2014. http://dx.doi.org/10.1109/fotonica.2014.6843831.
Full textZbinden, H., G. Ribordy, and D. Stucki. "Components for quantum cryptography." In OFCNFOEC 2006. 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference. IEEE, 2006. http://dx.doi.org/10.1109/ofc.2006.215484.
Full textAlléaume, Romain. "Fiber-Optics Quantum Cryptography with Single Photons." In QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING. AIP, 2004. http://dx.doi.org/10.1063/1.1834436.
Full textCastelletto, S. "Quantum Dense Key Distribution and Secure Communication Without Cryptography." In QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING. AIP, 2004. http://dx.doi.org/10.1063/1.1834437.
Full textKumar, Prem. "Practical Quantum Communication and Cryptography for WDM Optical Networks." In QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING. AIP, 2004. http://dx.doi.org/10.1063/1.1834371.
Full textKuang, Randy, Dafu Lou, Alex He, and Alexandre Conlon. "Quantum Safe Lightweight Cryptography with Quantum Permutation Pad." In 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS). IEEE, 2021. http://dx.doi.org/10.1109/icccs52626.2021.9449247.
Full textDiamanti, E. "Addressing practical challenges in quantum cryptography." In 45th European Conference on Optical Communication (ECOC 2019). Institution of Engineering and Technology, 2019. http://dx.doi.org/10.1049/cp.2019.0743.
Full textBall, Jonathan L. "Potential for Quantum Cryptography over Collective Noise Channels." In QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING. AIP, 2004. http://dx.doi.org/10.1063/1.1834438.
Full textReports on the topic "Quantum communication Cryptography"
Hughes, R. J., W. T. Buttler, P. G. Kwiat, S. K. Lamoreaux, G. L. Morgan, C. G. Peterson, E. Twyeffort, C. M. Simmons, and J. E. Nordholt. Quantum Cryptography for Secure Communications to Low-Earth Orbit Satellites. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/763912.
Full text