To see the other types of publications on this topic, follow the link: Quantum computers. Information theory. Quantum theory.

Dissertations / Theses on the topic 'Quantum computers. Information theory. Quantum theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Quantum computers. Information theory. Quantum theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Zhang, Qinghua. "Quantum information processing with a geometric scenario." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/HKUTO/record/B39557613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Qinghua, and 張清華. "Quantum information processing with a geometric scenario." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39557613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Devitt, Simon John. "Quantum information engineering : concepts to quantum technologies /." Connect to thesis, 2007. http://eprints.unimelb.edu.au/archive/00003925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Arafat, Sachi. "Foundations research in information retrieval inspired by quantum theory." Thesis, Connect to e-thesis, 2008. http://theses.gla.ac.uk/181/.

Full text
Abstract:
Thesis (Ph.D.) - University of Glasgow, 2007.
Ph.D. thesis submitted to the Department of Computer Science, Faculty of Information and Mathematical Sciences, University of Glasgow, 2007. Includes bibliographical references. Print version also available.
APA, Harvard, Vancouver, ISO, and other styles
5

Savov, Ivan. "Network information theory for classical-quantum channels." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110349.

Full text
Abstract:
Network information theory is the study of communication problems involving multiple senders, multiple receivers and intermediate relay stations. The purpose of this thesis is to extend the main ideas of classical network information theory to the study of classical-quantum channels. We prove coding theorems for the following communication problems: quantum multiple access channels, quantum interference channels, quantum broadcast channels and quantum relay channels. A quantum model for a communication channel describes more accurately the channel's ability to transmit information. By using physically faithful models for the channel outputs and the detection procedure, we obtain better communication rates than would be possible using a classical strategy. In this thesis, we are interested in the transmission of classical information, so we restrict our attention to the study of classical-quantum channels. These are channels with classical inputs and quantum outputs, and so the coding theorems we present will use classical encoding and quantum decoding.We study the asymptotic regime where many copies of the channel are used in parallel, and the uses are assumed to be independent. In this context, we can exploit information-theoretic techniques to calculate the maximum rates for error-free communication for any channel, given the statistics of the noise on that channel. These theoretical bounds can be used as a benchmark to evaluate the rates achieved by practical communication protocols. Most of the results in this thesis consider classical-quantum channels with finite dimensional output systems, which are analogous to classical discrete memoryless channels. In the last chapter, we will show some applications of our results to a practical optical communication scenario, in which the information is encoded in continuous quantum degrees of freedom, which are analogous to classical channels with Gaussian noise.
La théorie de l'information multipartite étudie les problèmes de communication avec plusieurs émetteurs, plusieurs récepteurs et des stations relais. L'objectif de cette thèse est d'étendre les idées centrales de la théorie de l'information classique à l'étude des canaux quantiques. Nous allons nous intéresser aux scénarios de communication suivants: les canaux quantiques à accès multiples, les canaux quantiques à interférence, les canaux quantiques de diffusion et les canaux quantiques à relais. Dans chacun des ces scénarios de communication, nous caractérisons les taux de communication réalisables pour l'envoi d'information classique sur ces canaux quantiques. La modélisation quantique des canaux de communication est importante car elle fournit une représentation plus précise de la capacité du canal à transmettre l'information. En utilisant des modèles physiquement réalistes pour les sorties du canal et la procédure de détection, nous obtenons de meilleurs taux de communication que ceux obtenus dans un modèle classique. En effet, l'utilisation de mesures quantiques collectives sur l'ensemble des systèmes physiques en sortie du canal permet une meilleure extraction d'information que des mesures indépendantes sur chaque sous-système. Nous avons choisi d'étudier les canaux à entrée classique et sortie quantique qui constituent une abstraction utile pour l'étude de canaux quantiques généraux où l'encodage est restreint au domaine classique.Nous étudions le régime asymptotique où de nombreuses copies de du canal sont utilisées en parallèle, et les utilisations sont indépendantes. Dans ce contexte, il est possible de caractériser les limites absolues sur la transmission d'information d'un canal, si on connait les statistiques du bruit sur ce canal. Ces résultats théoriques peuvent être utilisées comme un point de repère pour évaluer la performance des protocoles de communication pratiques. Nous considérons surtout les canaux où les sorties sont des systèmes quantiques de dimension finie, analogues aux canaux classiques discrets. Le dernier chapitre présente des applications pratiques de nos résultats à la communication optique, où systèmes physiques auront des degrés de liberté continus. Ce contexte est analogue aux canaux classiques avec bruit gaussien.
APA, Harvard, Vancouver, ISO, and other styles
6

Patel, Raj. "Indistinguishability of single photons from electrically controlled quantum dots." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Guha, Saikat 1980. "Multiple-user quantum information theory for optical communication channels." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/44413.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.
Includes bibliographical references (p. 231-239).
Research in the past decade has established capacity theorems for point-to-point bosonic channels with additive thermal noise, under the presumption of a conjecture on the minimum output von Neumann entropy. In the first part of this thesis, we evaluate the optimum capacity for free-space line-of-sight optical communication using Gaussian-attenuation apertures. Optimal power allocation across all the spatiotemporal modes is studied, in both the far-field and near-field propagation regimes. We establish the gap between ultimate capacity and data rates achievable using classical encoding states and structured receivers. The remainder of the thesis addresses the ultimate capacity of bosonic broadcast channels, i.e., when one transmitter is used to send information to more than one receiver. We show that when coherent-state encoding is employed in conjunction with coherent detection, the bosonic broadcast channel is equivalent to the classical degraded Gaussian broadcast channel whose capacity region is known. We draw upon recent work on the capacity region of the two-user degraded quantum broadcast channel to establish the ultimate capacity region for the bosonic broadcast channel, under the presumption of another conjecture on the minimum output entropy. We also generalize the degraded broadcast channel capacity theorem to more than two receivers, and prove that if the above conjecture is true, then the rate region achievable using a coherent-state encoding with optimal joint-detection measurement at the receivers would be the ultimate capacity region of the bosonic broadcast channel with loss and additive thermal noise. We show that the minimum output entropy conjectures restated for Wehrl entropy, are immediate consequences of the entropy power inequality (EPI).
(cont.) We then show that an EPI-like inequality for von Neumann entropy would imply all the minimum output entropy conjectures needed for our channel capacity results. We call this new conjectured result the Entropy Photon-Number Inequality (EPnI).
by Saikat Guha.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
8

Orús, Lacort Román. "Entanglement, quantum phase transitions and quantum algorithms." Doctoral thesis, Universitat de Barcelona, 2006. http://hdl.handle.net/10803/482202.

Full text
Abstract:
From the seminal ideas of Feynman and until now, quantum information and computation has been a rapidly evolving field. While at the beginning, physicists looked at quantum mechanics as a theoretical framework to describe the fundamental processes that take place in Nature, it was during the 80’s and 90’s that people began to think about the intrinsic quantum behavior of our world as a tool to eventually develop powerful information technologies. As Landauer pointed out, information is physical, so it should not look strange to try to bring together quantum mechanics and information theory. Indeed, it was soon realized that it is possible to use the laws of quantum physics to perform tasks which are unconceivable within the framework of classical physics. For instance, the discovery of quantum teleportation, superdense coding, quantum cryptography, Shor’s factorization algorithm or Grover’s searching algorithm, are some of the remarkable achievements that have attracted the attention of many people, both scientists and non-scientists. This settles down quantum information as a genuine interdisciplinary field, bringing together researchers from different branches of physics, mathematics and engineering. While until recently it was mostly quantum information science that benefited from other fields, today the tools developed within its framework can be used to study problems of different areas, like quantum many-body physics or quantum field theory. The basic reason behind that is the fact that quantum information develops a detailed study of quantum correlations, or quantum entanglement. Any physical system described by the laws of quantum mechanics can then be considered from the perspective of quantum information by means of entanglement theory. It is the purpose of this introduction to give some elementary background about basic concepts of quantum information and computation, together with its possible relation to other fields of physics, like quantum many-body physics. We begin by considering the definition of a qubit, and move then towards the definition of entanglement and the convertibility properties of pure states by introducing majorization and the von Neumann entropy. Then, we consider the notions of quantum circuit and quantum adiabatic algorithm, and move towards what is typically understood by a quantum phase transition, briefly sketching how this relates to renormalization and conformal field theory. We also comment briefly on some possible experimental implementations of quantum computers
Desde las pioneras ideas de Feynman hasta el día de hoy, la información y computación cuánticas han evolucionado de forma veloz. Siendo la mecánica cuántica en sus orígenes considerada esencialmente como un marco teórico en el que poder explicar ciertos procesos fundamentales que acontecían en la Naturaleza, fue durante los años 80 y 90 cuando se empezó a pensar sobre el comportamiento intrínsecamente cuántico del mundo en el que vivimos como una herramienta con la que poder desarrollar tecnologías de la información más potentes, basadas en los mismos principios de la física cuántica. Tal y como Landauer dijo, la información es física, por lo que no debe en absoluto extrañarnos el que se intentara comulgar la mecánica cuántica con la teoría de la información. Y nada más lejos de la realidad, pues pronto se vio que era posible utilizar las leyes de la física cuántica para realizar tareas inconcebibles desde un punto de vista clásico. Por ejemplo, el descubrimiento de la teleportación, la codificación superdensa, la criptografía cuántica, el algoritmo de factorización de Shor o el algoritmo de búsqueda de Grover, constituyen algunos de los logros remarcables que han atraído la atención de mucha gente, dentro y fuera de la ciencia. Queda la información cuántica, pues, constituida como un campo genuinamente pluridisciplinar, en el que se concentran investigadores provenientes de diferentes ramas de la física, las matemáticas y la ingeniería. Mientras en sus orígenes era la información cuántica quien se beneficiaba del conocimiento de otros campos, a día de hoy las herramientas desarrolladas en el marco de la teoría cuántica de la información pueden ser asimismo usadas en el estudio de problemas de diferentes áreas, como la física de muchos cuerpos o la teoría cuántica de campos. Ello es debido al estudio detallado que la información cuántica desarrolla de las correlaciones cuánticas, o entrelazamiento cuántico. Cualquier sistema físico descrito por las leyes de la mecánica cuántica se puede por lo tanto considerar bajo la perspectiva de la teoría cuántica de la información a través de la teoría del entrelazamiento.
APA, Harvard, Vancouver, ISO, and other styles
9

Shaikh, Fayaz A. "Monolithic microfabricated ion trap for quantum information processing." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47597.

Full text
Abstract:
The objective of this research is to design, fabricate, and demonstrate a microfabricated monolithic ion trap for applications in quantum computation and quantum simulation. Most current microfabricated ion trap designs are based on planar-segmented surface electrodes. Although promising scalability to trap arrays containing ten to one hundred ions, these planar designs suffer from the challenges of shallow trap depths, radial asymmetry of the confining potential, and electrode charging resulting from laser interactions with dielectric surfaces. In this research, the design, fabrication, and testing of a monolithic and symmetric two-level ion trap is presented. This ion trap overcomes the challenges of surface-electrode ion traps. Numerical electrostatic simulations show that this symmetric trap produces a deep (1 eV for 171Yb+ ion), radially symmetric RF confinement potential. The trap has an angled through-chip slot that allows back-side ion loading and generous through laser access, while avoiding surface-light scattering and dielectric charging that can corrupt the design control electrode compensating potentials. The geometry of the trap and its dimensions are optimized for trapping long and linear ion chains with equal spacing for use with quantum simulation problems and quantum computation architectures.
APA, Harvard, Vancouver, ISO, and other styles
10

Müller, Tina. "Novel colour centres in diamond : silicon-vacancy and chromium centres as candidates for quantum information applications." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Van, Assche Gilles. "Information-Theoretic aspects of quantum key distribution." Doctoral thesis, Universite Libre de Bruxelles, 2005. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211050.

Full text
Abstract:

La distribution quantique de clés est une technique cryptographique permettant l'échange de clés secrètes dont la confidentialité est garantie par les lois de la mécanique quantique. Le comportement particulier des particules élémentaires est exploité. En effet, en mécanique quantique, toute mesure sur l'état d'une particule modifie irrémédiablement cet état. En jouant sur cette propriété, deux parties, souvent appelées Alice et Bob, peuvent encoder une clé secrète dans des porteurs quantiques tels que des photons uniques. Toute tentative d'espionnage demande à l'espion, Eve, une mesure de l'état du photon qui transmet un bit de clé et donc se traduit par une perturbation de l'état. Alice et Bob peuvent alors se rendre compte de la présence d'Eve par un nombre inhabituel d'erreurs de transmission.

L'information échangée par la distribution quantique n'est pas directement utilisable mais doit être d'abord traitée. Les erreurs de transmissions, qu'elles soient dues à un espion ou simplement à du bruit dans le canal de communication, doivent être corrigées grâce à une technique appelée réconciliation. Ensuite, la connaissance partielle d'un espion qui n'aurait perturbé qu'une partie des porteurs doit être supprimée de la clé finale grâce à une technique dite d'amplification de confidentialité.

Cette thèse s'inscrit dans le contexte de la distribution quantique de clé où les porteurs sont des états continus de la lumière. En particulier, une partie importante de ce travail est consacrée au traitement de l'information continue échangée par un protocole particulier de distribution quantique de clés, où les porteurs sont des états cohérents de la lumière. La nature continue de cette information implique des aménagements particuliers des techniques de réconciliation, qui ont surtout été développées pour traiter l'information binaire. Nous proposons une technique dite de réconciliation en tranches qui permet de traiter efficacement l'information continue. L'ensemble des techniques développées a été utilisé en collaboration avec l'Institut d'Optique à Orsay, France, pour produire la première expérience de distribution quantique de clés au moyen d'états cohérents de la lumière modulés continuement.

D'autres aspects importants sont également traités dans cette thèse, tels que la mise en perspective de la distribution quantique de clés dans un contexte cryptographique, la spécification d'un protocole complet, la création de nouvelles techniques d'amplification de confidentialité plus rapides à mettre en œuvre ou l'étude théorique et pratique d'algorithmes alternatifs de réconciliation.

Enfin, nous étudions la sécurité du protocole à états cohérents en établissant son équivalence à un protocole de purification d'intrication. Sans entrer dans les détails, cette équivalence, formelle, permet de valider la robustesse du protocole contre tout type d'espionnage, même le plus compliqué possible, permis par les lois de la mécanique quantique. En particulier, nous généralisons l'algorithme de réconciliation en tranches pour le transformer en un protocole de purification et nous établissons ainsi un protocole de distribution quantique sûr contre toute stratégie d'espionnage.

Quantum key distribution is a cryptographic technique, which allows to exchange secret keys whose confidentiality is guaranteed by the laws of quantum mechanics. The strange behavior of elementary particles is exploited. In quantum mechnics, any measurement of the state of a particle irreversibly modifies this state. By taking advantage of this property, two parties, often called Alice and bob, can encode a secret key into quatum information carriers such as single photons. Any attempt at eavesdropping requires the spy, Eve, to measure the state of the photon and thus to perturb this state. Alice and Bob can then be aware of Eve's presence by a unusually high number of transmission errors.

The information exchanged by quantum key distribution is not directly usable but must first be processed. Transmission errors, whether they are caused by an eavesdropper or simply by noise in the transmission channel, must be corrected with a technique called reconciliation. Then, the partial knowledge of an eavesdropper, who would perturb only a fraction of the carriers, must be wiped out from the final key thanks to a technique called privacy amplification.

The context of this thesis is the quantum key distribution with continuous states of light as carriers. An important part of this work deals with the processing of continuous information exchanged by a particular protocol, where the carriers are coherent states of light. The continuous nature of information in this case implies peculiar changes to the reconciliation techniques, which have mostly been developed to process binary information. We propose a technique called sliced error correction, which allows to efficiently process continuous information. The set of the developed techniques was used in collaboration with the Institut d'Optique, Orsay, France, to set up the first experiment of quantum key distribution with continuously-modulated coherent states of light.

Other important aspects are also treated in this thesis, such as placing quantum key distribution in the context of a cryptosystem, the specification of a complete protocol, the creation of new techniques for faster privacy amplification or the theoretical and practical study of alternate reconciliation algorithms.

Finally, we study the security of the coherent state protocol by analyzing its equivalence with an entanglement purification protocol. Without going into the details, this formal equivalence allows to validate the robustness of the protocol against any kind of eavesdropping, even the most intricate one allowed by the laws of quantum mechanics. In particular, we generalize the sliced error correction algorithm so as to transform it into a purification protocol and we thus establish a quantum key distribution protocol secure against any eavesdropping strategy.


Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
12

Roland, Jérémie. "Adiabatic quantum computation." Doctoral thesis, Universite Libre de Bruxelles, 2004. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211148.

Full text
Abstract:
Le développement de la Théorie du Calcul Quantique provient de l'idée qu'un ordinateur est avant tout un système physique, de sorte que ce sont les lois de la Nature elles-mêmes qui constituent une limite ultime sur ce qui peut être calculé ou non. L'intérêt pour cette discipline fut stimulé par la découverte par Peter Shor d'un algorithme quantique rapide pour factoriser un nombre, alors qu'actuellement un tel algorithme n'est pas connu en Théorie du Calcul Classique. Un autre résultat important fut la construction par Lov Grover d'un algorithme capable de retrouver un élément dans une base de donnée non-structurée avec un gain de complexité quadratique par rapport à tout algorithme classique. Alors que ces algorithmes quantiques sont exprimés dans le modèle ``standard' du Calcul Quantique, où le registre évolue de manière discrète dans le temps sous l'application successive de portes quantiques, un nouveau type d'algorithme a été récemment introduit, où le registre évolue continûment dans le temps sous l'action d'un Hamiltonien. Ainsi, l'idée à la base du Calcul Quantique Adiabatique, proposée par Edward Farhi et ses collaborateurs, est d'utiliser un outil traditionnel de la Mécanique Quantique, à savoir le Théorème Adiabatique, pour concevoir des algorithmes quantiques où le registre évolue sous l'influence d'un Hamiltonien variant très lentement, assurant une évolution adiabatique du système. Dans cette thèse, nous montrons tout d'abord comment reproduire le gain quadratique de l'algorithme de Grover au moyen d'un algorithme quantique adiabatique. Ensuite, nous montrons qu'il est possible de traduire ce nouvel algorithme adiabatique, ainsi qu'un autre algorithme de recherche à évolution Hamiltonienne, dans le formalisme des circuits quantiques, de sorte que l'on obtient ainsi trois algorithmes quantiques de recherche très proches dans leur principe. Par la suite, nous utilisons ces résultats pour construire un algorithme adiabatique pour résoudre des problèmes avec structure, utilisant une technique, dite de ``nesting', développée auparavant dans le cadre d'algorithmes quantiques de type circuit. Enfin, nous analysons la résistance au bruit de ces algorithmes adiabatiques, en introduisant un modèle de bruit utilisant la théorie des matrices aléatoires et en étudiant son effet par la théorie des perturbations.
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
13

Kissinger, Aleks. "Pictures of processes : automated graph rewriting for monoidal categories and applications to quantum computing." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:61fb3161-a353-48fc-8da2-6ce220cce6a2.

Full text
Abstract:
This work is about diagrammatic languages, how they can be represented, and what they in turn can be used to represent. More specifically, it focuses on representations and applications of string diagrams. String diagrams are used to represent a collection of processes, depicted as "boxes" with multiple (typed) inputs and outputs, depicted as "wires". If we allow plugging input and output wires together, we can intuitively represent complex compositions of processes, formalised as morphisms in a monoidal category. While string diagrams are very intuitive, existing methods for defining them rigorously rely on topological notions that do not extend naturally to automated computation. The first major contribution of this dissertation is the introduction of a discretised version of a string diagram called a string graph. String graphs form a partial adhesive category, so they can be manipulated using double-pushout graph rewriting. Furthermore, we show how string graphs modulo a rewrite system can be used to construct free symmetric traced and compact closed categories on a monoidal signature. The second contribution is in the application of graphical languages to quantum information theory. We use a mixture of diagrammatic and algebraic techniques to prove a new classification result for strongly complementary observables. Namely, maximal sets of strongly complementary observables of dimension D must be of size no larger than 2, and are in 1-to-1 correspondence with the Abelian groups of order D. We also introduce a graphical language for multipartite entanglement and illustrate a simple graphical axiom that distinguishes the two maximally-entangled tripartite qubit states: GHZ and W. Notably, we illustrate how the algebraic structures induced by these operations correspond to the (partial) arithmetic operations of addition and multiplication on the complex projective line. The third contribution is a description of two software tools developed in part by the author to implement much of the theoretical content described here. The first tool is Quantomatic, a desktop application for building string graphs and graphical theories, as well as performing automated graph rewriting visually. The second is QuantoCoSy, which performs fully automated, model-driven theory creation using a procedure called conjecture synthesis.
APA, Harvard, Vancouver, ISO, and other styles
14

Magnin, Loïck C. A. "Two-player interaction in quantum computing: cryptographic primitives and query complexity." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209783.

Full text
Abstract:
Cette thèse étudie deux aspects d'interaction entre deux joueurs dans le modèle du calcul et de la communication quantique.

Premièrement, elle étudie deux primitives cryptographiques quantiques, des briques de base pour construire des protocoles cryptographiques complexes entre deux joueurs, comme par exemple un protocole d'identification.

La première primitive est la "mise en gage quantique". Cette primitive ne peut pas être réalisée de manière inconditionnellement sûre, mais il est possible d'avoir une sécurité lorsque les deux parties sont soumises à certaines contraintes additionnelles. Nous étudions cette primitive dans le cas où les deux joueurs sont limités à l'utilisation d'états et d'opérations gaussiennes, un sous-ensemble de la physique quantique central en optique, donc parfaitement adapté pour la communication via fibres optiques. Nous montrons que cette restriction ne permet malheureusement pas la réalisation de la mise en gage sûre. Pour parvenir à ce résultat, nous introduisons la notion de purification intrinsèque, qui permet de contourner l'utilisation du théorème de Uhlman, en particulier dans le cas gaussien.

Nous examinons ensuite une primitive cryptographique plus faible, le "tirage faible à pile ou face", dans le modèle standard du calcul quantique. Carlos Mochon a donné une preuve d'existence d'un tel protocole avec un biais arbitrairement petit. Nous donnons une interprétation claire de sa preuve, ce qui nous permet de la simplifier et de la raccourcir grandement.

La seconde partie de cette thèse concerne l'étude de méthodes pour prouver des bornes inférieures dans le modèle de la complexité en requête. Il s'agit d'un modèle de complexité central en calcul quantique dans lequel de nombreux résultats majeurs ont été obtenus. Dans ce modèle, un algorithme ne peut accéder à l'entrée uniquement qu'en effectuant des requêtes sur chacune des variables de l'entrée. Nous considérons une extension de ce modèle dans lequel un algorithme ne calcule pas une fonction, mais doit générer un état quantique.

Cette généralisation nous permet de comparer les différentes méthodes pour prouver des bornes inférieures dans ce modèle. Nous montrons d'abord que la méthode par adversaire ``multiplicative" est plus forte que la méthode ``additive". Nous montrons ensuite une réduction de la méthode polynomiale à la méthode multiplicative, ce qui permet de conclure à la supériorité de la méthode par adversaire multiplicative sur toutes les autres méthodes.

Les méthodes par adversaires sont en revanche souvent difficiles à utiliser car elles nécessitent le calcul de normes de matrices de très grandes tailles. Nous montrons comment l'étude des symétries d'un problème simplifie grandement ces calculs.

Enfin, nous appliquons ces formules pour prouver la borne inférieure optimale du problème Index-Erasure, un problème de génération d'état quantique lié au célèbre problème Isomorphisme-de-Graphes.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
15

La, Guardia Giuliano Gadioli. "Metodos de construção de codigos quanticos CSS e conexões entre codigos quanticos e matroides." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/261090.

Full text
Abstract:
Orientadores: Reginaldo Palazzo Junior, Carlile Campos Lavor
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-08-11T22:44:54Z (GMT). No. of bitstreams: 1 LaGuardia_GiulianoGadioli_D.pdf: 1126065 bytes, checksum: c3ad65915db4e87e1752adbbbbef2841 (MD5) Previous issue date: 2008
Resumo: Como principais contribuições desta tese, apresentamos novos métodos de construção que geram novas famílias de códigos quânticos CSS. As construções são baseadas em códigos cíclicos (clássicos) BCH, Reed-Solomon, Reed-Muller, Resíduos quadráticos e também nos códigos derivados do produto tensorial de dois códigos Reed-Solomon. Os principais códigos quânticos construídos neste trabalho, em termos de parâmetros, são os derivados dos códigos BCH clássicos. Além disso, estudamos as condições necessárias para analisar as situações nas quais os códigos cíclicos quânticos (clássicos) são códigos MDS (do inglês, Maximum- Distance-Separable codes). Apresentamos, também, novas conexões entre a teoria de matróides e a teoria dos códigos quânticos CSS, que acreditamos serem as primeiras conexões entre tais teorias. Mais especificamente, demonstramos que a função enumeradora de pesos de um código quântico CSS é uma avaliação do polinômio de Tutte da soma direta dos matróides originados a partir dos códigos clássicos utilizados na construção CSS.
Abstract: This thesis proposes, as the main contributions, constructions method of new families of quantum CSS codes. These constructions are based on classical cyclic codes of the types BCH, Reed-Solomon, Reed-Muller, Quadratic Residue and also are based on product codes of classical Reed-Solomon codes. The main family of quantum codes constructed in this work, i. e., quantum codes having better parameters, are the ones derived from classical BCH codes. Moreover, we present some new conditions in which quantum CSS cyclic codes are quantumMDS codes. In addition, we provide the elements to connect matroid theory and quantum coding theory. More specifically, we show that the weight enumerator of a CSS quantum code is equivalent to evaluating the Tutte polynomial of the direct sum of the matroid associated to the classical codes used in the CSS construction.
Doutorado
Telecomunicações e Telemática
Doutor em Engenharia Elétrica
APA, Harvard, Vancouver, ISO, and other styles
16

Cervati, Neto Alaor. "Teoria de controle ótimo em sistemas abertos." Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/152661.

Full text
Abstract:
Submitted by Alaor Cervati Neto null (alaor_c_neto@yahoo.com.br) on 2018-02-01T18:40:52Z No. of bitstreams: 1 Dissertação.pdf: 2196475 bytes, checksum: eac241d8769cc274b9f87757c15cb5ef (MD5)
Rejected by Elza Mitiko Sato null (elzasato@ibilce.unesp.br), reason: Solicitamos que realize correções na submissão seguindo as orientações abaixo: 01) Primeira e segunda páginas antes da capa estão excedentes; 02) A ficha catalográfica deve ser na sequência da folha de rosto; 03) Na folha de aprovação deve constar a data (dia, mês e ano) da defesa 04) As folhas viii, 4, 42, 60, 66, 72, 74 e 78 estão em branco. Será encaminhado via e-mail o modelo das páginas pré-textuais para que você possa fazer as correções. Agradecemos a compreensão. on 2018-02-02T12:37:02Z (GMT)
Submitted by Alaor Cervati Neto null (alaor_c_neto@yahoo.com.br) on 2018-02-02T15:13:41Z No. of bitstreams: 2 Dissertação.pdf: 2196475 bytes, checksum: eac241d8769cc274b9f87757c15cb5ef (MD5) Dissertação corrigida.pdf: 2223044 bytes, checksum: 7fd8ad5a2c1a98b7bf95f401b2c2b358 (MD5)
Approved for entry into archive by Elza Mitiko Sato null (elzasato@ibilce.unesp.br) on 2018-02-02T16:47:25Z (GMT) No. of bitstreams: 1 cervatineto_a_me_sjrp.pdf: 2223044 bytes, checksum: 7fd8ad5a2c1a98b7bf95f401b2c2b358 (MD5)
Made available in DSpace on 2018-02-02T16:47:25Z (GMT). No. of bitstreams: 1 cervatineto_a_me_sjrp.pdf: 2223044 bytes, checksum: 7fd8ad5a2c1a98b7bf95f401b2c2b358 (MD5) Previous issue date: 2018-01-29
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A teoria de informação e computação quântica é uma área de pesquisa que vem crescendo de maneira acentuada nos últimos anos devido aos inúmeros avanços tecnológicos que a acompanham. Neste mestrado começamos nossos estudos nesta área de pesquisa onde nos introduzimos e aprofundamos em seus aspectos intrigantes e peculiares. Dada nossa formação inicial na área de ciências da computação, inicialmente nos dedicamos a entender os aspectos fundamentais da mecânica quântica, assim como da teoria de informação e computação quântica. Focamos principalmente nos sistemas quânticos abertos, visto que o maior obstáculo a ser superado para o desenvolvimento destes computadores é o efeito deletério do meio ambiente. A princípio, concentramos nossos estudos nos ditos processos não-Markovianos, que apresentam efeitos de memória. Aprendemos sobre as novas medidas de não-Markovianidade, principalmente as medidas baseadas na dinâmica do emaranhamento e na dinâmica da informação mútua. Conseguimos publicar nosso primeiro resultado, onde provamos a inequivalência destas duas medidas de não-Markovianidade. De fato, mostramos que tais medidas, em geral, podem discordar sobre o tipo de processo dissipativo, sendo que uma pode reconhecê-lo como Markoviano enquanto outra pode reconhecê-lo como não-Markoviano. Como mostramos, esta inequivalência está diretamente relacionada com o refluxo de informação do meio ambiente para o sistema, e como mensuramos tal informação nestas duas medidas distintas de não-Markovianidade. Finalmente, na fase final de nossos estudos, tivemos como objetivo encontrar um meio de otimizar o controle das operações lógicas. Especificamente, trabalhamos com um método numérico utilizado em sistemas fechados para otimizar sistemas abertos Markovianos. Observamos que a eficácia deste método depende do tipo e intensidade da interferência do ambiente e das condições iniciais do sistema, obtendo melhores resultados em casos específicos.
Quantum information theory and computation is a field of research that has been growing acutely in the past few years due to the many technological improvements it follows. In this masters’ course, we began our studies in this area of research where we were introduced and immersed in its intriguing and peculiar aspects. Given our initial formation in computer science, we initially dedicated ourselves to understanding the fundamentals of quantum mechanics, as well as of information theory and quantum computation. Our main focus were open quantum systems, since the greatest obstacle to the development of these computers is the harmful effect of the environment. At first, we concentrated our studies in the so called non-Markovian processes, that show memory effects. We learned about the new non-Markovianity measurements, mainly those based on the dynamics of entanglement and mutual information. We managed to publish our first result, where we proved the inequivalence of these two measurements of non-Markovianity. Indeed, we showed that such measurements, in general, can disagree about the dissipative process, so that one can regard it as Markovian and the other as non-Markovian. As we demonstrated, this inequivalence is directly related to the information back-flow from the environment to the system, and how this information is measured by each of the two distinct measurements. Finally, in the last stage of our studies, our goal was to find a way to optimize the control of the logical operations. Specifically, we worked with a numeric method used in closed systems to optimize Markovian open systems. We have observed that the effectiveness of this method depends on the type and intensity of the interference of the environment and of its initial conditions, attaining better results for specific cases.
APA, Harvard, Vancouver, ISO, and other styles
17

Kartsaklis, Dimitrios. "Compositional distributional semantics with compact closed categories and Frobenius algebras." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:1f6647ef-4606-4b85-8f3b-c501818780f2.

Full text
Abstract:
The provision of compositionality in distributional models of meaning, where a word is represented as a vector of co-occurrence counts with every other word in the vocabulary, offers a solution to the fact that no text corpus, regardless of its size, is capable of providing reliable co-occurrence statistics for anything but very short text constituents. The purpose of a compositional distributional model is to provide a function that composes the vectors for the words within a sentence, in order to create a vectorial representation that re ects its meaning. Using the abstract mathematical framework of category theory, Coecke, Sadrzadeh and Clark showed that this function can directly depend on the grammatical structure of the sentence, providing an elegant mathematical counterpart of the formal semantics view. The framework is general and compositional but stays abstract to a large extent. This thesis contributes to ongoing research related to the above categorical model in three ways: Firstly, I propose a concrete instantiation of the abstract framework based on Frobenius algebras (joint work with Sadrzadeh). The theory improves shortcomings of previous proposals, extends the coverage of the language, and is supported by experimental work that improves existing results. The proposed framework describes a new class of compositional models thatfind intuitive interpretations for a number of linguistic phenomena. Secondly, I propose and evaluate in practice a new compositional methodology which explicitly deals with the different levels of lexical ambiguity (joint work with Pulman). A concrete algorithm is presented, based on the separation of vector disambiguation from composition in an explicit prior step. Extensive experimental work shows that the proposed methodology indeed results in more accurate composite representations for the framework of Coecke et al. in particular and every other class of compositional models in general. As a last contribution, I formalize the explicit treatment of lexical ambiguity in the context of the categorical framework by resorting to categorical quantum mechanics (joint work with Coecke). In the proposed extension, the concept of a distributional vector is replaced with that of a density matrix, which compactly represents a probability distribution over the potential different meanings of the specific word. Composition takes the form of quantum measurements, leading to interesting analogies between quantum physics and linguistics.
APA, Harvard, Vancouver, ISO, and other styles
18

Schumann, Robert Helmut. "Quantum information theory." Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51892.

Full text
Abstract:
Thesis (MSc)--Stellenbosch University, 2000
ENGLISH ABSTRACT: What are the information processing capabilities of physical systems? As recently as the first half of the 20th century this question did not even have a definite meaning. What is information, and how would one process it? It took the development of theories of computing (in the 1930s) and information (late in the 1940s) for us to formulate mathematically what it means to compute or communicate. Yet these theories were abstract, based on axiomatic mathematics: what did physical systems have to do with these axioms? Rolf Landauer had the essential insight - "Information is physical" - that information is always encoded in the state of a physical system, whose dynamics on a microscopic level are well-described by quantum physics. This means that we cannot discuss information without discussing how it is represented, and how nature dictates it should behave. Wigner considered the situation from another perspective when he wrote about "the unreasonable effectiveness of mathematics in the natural sciences". Why are the computational techniques of mathematics so astonishingly useful in describing the physical world [1]? One might begin to suspect foul play in the universe's operating principles. Interesting insights into the physics of information accumulated through the 1970s and 1980s - most sensationally in the proposal for a "quantum computer". If we were to mark a particular year in which an explosion of interest took place in information physics, that year would have to be 1994, when Shor showed that a problem of practical interest (factorisation of integers) could be solved easily on a quantum computer. But the applications of information in physics - and vice versa - have been far more widespread than this popular discovery. These applications range from improved experimental technology, more sophisticated measurement techniques, methods for characterising the quantum/classical boundary, tools for quantum chaos, and deeper insight into quantum theory and nature. In this thesis I present a short review of ideas in quantum information theory. The first chapter contains introductory material, sketching the central ideas of probability and information theory. Quantum mechanics is presented at the level of advanced undergraduate knowledge, together with some useful tools for quantum mechanics of open systems. In the second chapter I outline how classical information is represented in quantum systems and what this means for agents trying to extract information from these systems. The final chapter presents a new resource: quantum information. This resource has some bewildering applications which have been discovered in the last ten years, and continually presents us with unexpected insights into quantum theory and the universe.
AFRIKAANSE OPSOMMING: Tot watter mate kan fisiese sisteme informasie verwerk? So onlangs soos die begin van die 20ste eeu was dié vraag nog betekenisloos. Wat is informasie, en wat bedoel ons as ons dit wil verwerk? Dit was eers met die ontwikkeling van die teorieë van berekening (in die 1930's) en informasie (in die laat 1940's) dat die tegnologie beskikbaar geword het wat ons toelaat om wiskundig te formuleer wat dit beteken om te bereken of te kommunikeer. Hierdie teorieë was egter abstrak en op aksiomatiese wiskunde gegrond - mens sou wel kon wonder wat fisiese sisteme met hierdie aksiomas te make het. Dit was Rolf Landauer wat uiteindelik die nodige insig verskaf het - "Informasie is fisies" - informasie word juis altyd in 'n fisiese toestand gekodeer, en so 'n fisiese toestand word op die mikroskopiese vlak akkuraat deur kwantumfisika beskryf. Dit beteken dat ons nie informasie kan bespreek sonder om ook na die fisiese voorstelling te verwys nie, of sonder om in ag te neem nie dat die natuur die gedrag van informasie voorskryf. Hierdie situasie is vanaf 'n ander perspektief ook deur Wigner beskou toe hy geskryf het oor "die onredelike doeltreffendheid van wiskunde in die natuurwetenskappe". Waarom slaag wiskundige strukture en tegnieke van wiskunde so uitstekend daarin om die fisiese wêreld te beskryf [1]? Dit laat 'n mens wonder of die beginsels waarvolgens die heelal inmekaar steek spesiaal so saamgeflans is om ons 'n rat voor die oë te draai. Die fisika van informasie het in die 1970's en 1980's heelwat interessante insigte opgelewer, waarvan die mees opspraakwekkende sekerlik die gedagte van 'n kwantumrekenaar is. As ons één jaar wil uitsonder as die begin van informasiefisika, is dit die jaar 1994 toe Shor ontdek het dat 'n belangrike probleem van algemene belang (die faktorisering van groot heelgetalle) moontlik gemaak word deur 'n kwantumrekenaar. Die toepassings van informasie in fisika, en andersom, strek egter veel wyer as hierdie sleutel toepassing. Ander toepassings strek van verbeterde eksperimentele metodes, deur gesofistikeerde meetmetodes, metodes vir die ondersoek en beskrywing van kwantumchaos tot by dieper insig in die samehang van kwantumteorie en die natuur. In hierdie tesis bied ek 'n kort oorsig oor die belangrikste idees van kwantuminformasie teorie. Die eerste hoofstuk bestaan uit inleidende materiaal oor die belangrikste idees van waarskynlikheidsteorie en klassieke informasie teorie. Kwantummeganika word op 'n gevorderde voorgraadse vlak ingevoer, saam met die nodige gereedskap van kwantummeganika vir oop stelsels. In die tweede hoofstuk spreek ek die voorstelling van klassieke informasie en kwantumstelsels aan, en die gepaardgaande moontlikhede vir 'n agent wat informasie uit sulke stelsels wil kry. Die laaste hoofstuk ontgin 'n nuwe hulpbron: kwantuminformasie. Gedurende die afgelope tien jaar het hierdie nuwe hulpbron tot verbysterende nuwe toepassings gelei en ons keer op keer tot onverwagte nuwe insigte oor kwantumteorie en die heelal gelei.
APA, Harvard, Vancouver, ISO, and other styles
19

Galvão, Ernesto Fagundes. "Foundations od quantum theory and quantum information applications." Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Cortese, John A. Preskill John P. "Quantum information theory : classical communication over quantum channels /." Diss., Pasadena, Calif. : California Institute of Technology, 2004. http://resolver.caltech.edu/CaltechETD:etd-02172004-173217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Faghfoor, Maghrebi Mohammad. "Information gain in quantum theory." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/2724.

Full text
Abstract:
In this thesis I address the fundamental question that how the information gain is possible in the realm of quantum mechanics where a single measurement alters the state of the system. I study an ensemble of particles in some unknown (but product) state in detail and suggest an optimal way of gaining the maximum information and also quantify the corresponding information exactly. We find a rather novel result which is quite different from other well-known definitions of the information gain in quantum theory.
APA, Harvard, Vancouver, ISO, and other styles
22

Vedral, Vlatko. "Quantum information theory of entanglement." Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Girolami, Davide. "Quantum correlations in information theory." Thesis, University of Nottingham, 2013. http://eprints.nottingham.ac.uk/13397/.

Full text
Abstract:
The project concerned the study of quantum correlations (QC) in compound systems, i.e. statistical correlations more general than entanglement which are predicted by quantum mechanics but not described in any classical scenario. I aimed to understand the technical and operational properties of the measures of QC, their interplay with entanglement quantifiers and the experimental accessibility. In the first part of my research path, after having acquired the conceptual and technical rudiments of the project, I provided solutions for some computational issues: I developed analytical and numerical algorithms for calculating bipartite QC in finite dimensional systems. Then, I tackled the problem of the experimental detection of QC. There is no Hermitian operator associated with entanglement measures, nor with QC ones. However, the information encoded in a density matrix is redundant to quantify them, thus the full knowledge of the state is not required to accomplish the task. I reported the first protocol to measure the QC of an unknown state by means of a limited number of measurements, without performing the tomography of the state. My proposal has been implemented experimentally in a NMR (Nuclear Magnetic Resonance) setting. In the final stage of the project, I explored the foundational and operational merits of QC. I showed that the QC shared by two subsystems yield a genuinely quantum kind of uncertainty on single local observables. The result is a promising evidence of the potential exploitability of separable (unentangled) states for quantum metrology in noisy conditions.
APA, Harvard, Vancouver, ISO, and other styles
24

Butterley, Paul. "Topics in quantum information theory." Thesis, University of York, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Abeyesinghe, Anura Yamesh Preskill John P. "Unification of quantum information theory /." Diss., Pasadena, Calif. : Caltech, 2006. http://resolver.caltech.edu/CaltechETD:etd-05252006-222551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Timpson, Christopher Gordon. "Quantum information theory and the foundations of quantum mechanics." Thesis, University of Oxford, 2004. http://ora.ox.ac.uk/objects/uuid:457a0257-016d-445d-a6b2-f1bdd2648523.

Full text
Abstract:
This thesis is a contribution to the debate on the implications of quantum information theory for the foundational problems of quantum mechanics. In Part I an attempt is made to shed some light on the nature of information and quantum information theory. It is emphasized that the everyday notion of information is to be firmly distinguished from the technical notions arising in information theory; however it is maintained that in both settings ‘information’ functions as an abstract noun, hence does not refer to a particular or substance. The popular claim ‘Information is Physical’ is assessed and it is argued that this proposition faces a destructive dilemma. Accordingly, the slogan may not be understood as an ontological claim, but at best, as a methodological one. A novel argument is provided against Dretske’s (1981) attempt to base a semantic notion of information on ideas from information theory. The function of various measures of information content for quantum systems is explored and the applicability of the Shannon information in the quantum context maintained against the challenge of Brukner and Zeilinger (2001). The phenomenon of quantum teleportation is then explored as a case study serving to emphasize the value of recognising the logical status of ‘information’ as an abstract noun: it is argued that the conceptual puzzles often associated with this phenomenon result from the familiar error of hypostatizing an abstract noun. The approach of Deutsch and Hayden (2000) to the questions of locality and information flow in entangled quantum systems is assessed. It is suggested that the approach suffers from an equivocation between a conservative and an ontological reading; and the differing implications of each is examined. Some results are presented on the characterization of entanglement in the Deutsch-Hayden formalism. Part I closes with a discussion of some philosophical aspects of quantum computation. In particular, it is argued against Deutsch that the Church-Turing hypothesis is not underwritten by a physical principle, the Turing Principle. Some general morals are drawn concerning the nature of quantum information theory. In Part II, attention turns to the question of the implications of quantum information theory for our understanding of the meaning of the quantum formalism. Following some preliminary remarks, two particular information-theoretic approaches to the foundations of quantum mechanics are assessed in detail. It is argued that Zeilinger’s (1999) Foundational Principle is unsuccessful as a foundational principle for quantum mechanics. The information-theoretic characterization theorem of Clifton, Bub and Halvorson (2003) is assessed more favourably, but the generality of the approach is questioned and it is argued that the implications of the theorem for the traditional foundational problems in quantum mechanics remains obscure.
APA, Harvard, Vancouver, ISO, and other styles
27

Maroney, Owen Jack Ernest. "Information and entropy in quantum theory." Thesis, Birkbeck (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268835.

Full text
Abstract:
Recent developments in quantum computing have revived interest in the notion of information as a foundational principle in physics. It has been suggested that information provides a means of interpreting quantum theory and a means of understanding the role of entropy in thermodynamics. The thesis presents a critical examination of these ideas, and contrasts the use of Shannon information with the concept of 'active information' introduced by Bohm and Hiley. We look at certain thought experiments based upon the 'delayed choice' and 'quantum eraser' interference experiments, which present a complementarity between information gathered from a quantum measurement and interference effects. It has been argued that these experiments show the Bohm interpretation of quantum theory is untenable. We demonstrate that these experiments depend critically upon the assumption that a quantum optics device can operate as a measuring device, and show that, in the context of these experiments, it cannot be consistently understood in this way. By contrast, we then show how the notion of 'active information' in the Bohm interpretation provides a coherent explanation of the phenomena shown in these experiments. We then examine the relationship between information and entropy. The thought experiment connecting these two quantities is the Szilard Engine version of Maxwell's Demon, and it has been suggested that quantum measurement plays a key role in this. We provide the first complete description of the operation of the Szilard Engine as a quantum system. This enables us to demonstrate that the role of quantum measurement suggested is incorrect, and further, that the use of information theory to resolve Szilard's paradox is both unnecessary and insufficient. Finally we show that, if the concept of 'active information' is extended to cover thermal density matrices, then many of the conceptual problems raised by this paradox appear to be resolved.
APA, Harvard, Vancouver, ISO, and other styles
28

Meznaric, Sebastian. "Information theoretic resources in quantum theory." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:ac3a801c-6351-4882-b6ed-5b2f635cff45.

Full text
Abstract:
Resource identification and quantification is an essential element of both classical and quantum information theory. Entanglement is one of these resources, arising when quantum communication and nonlocal operations are expensive to perform. In the first part of this thesis we quantify the effective entanglement when operations are additionally restricted to account for both fundamental restrictions on operations, such as those arising from superselection rules, as well as experimental errors arising from the imperfections in the apparatus. For an important class of errors we find a linear relationship between the usual and effective higher dimensional generalization of concurrence, a measure of entanglement. Following the treatment of effective entanglement, we focus on a related concept of nonlocality in the presence of superselection rules (SSR). Here we propose a scheme that may be used to activate nongenuinely multipartite nonlocality, in that a single copy of a state is not multipartite nonlocal, while two or more copies exhibit nongenuinely multipartite nonlocality. The states used exhibit the more powerful genuinely multipartite nonlocality when SSR are not enforced, but not when they are, raising the question of what is needed for genuinely multipartite nonlocality. We show that whenever the number of particles is insufficient, the degrading of genuinely multipartite to nongenuinely multipartite nonlocality is necessary. While in the first few chapters we focus our attention on understanding the resources present in quantum states, in the final part we turn the picture around and instead treat operations themselves as a resource. We provide our observers with free access to classical operations - ie. those that cannot detect or generate quantum coherence. We show that the operation of interest can then be used to either generate or detect quantum coherence if and only if it violates a particular commutation relation. Using the relative entropy, the commutation relation provides us with a measure of nonclassicality of operations. We show that the measure is a sum of two contributions, the generating power and the distinguishing power, each of which is separately an essential ingredient in quantum communication and information processing. The measure also sheds light on the operational meaning of quantum discord - we show it can be interpreted as the difference in superdense coding capacity between a quantum state and a classical state.
APA, Harvard, Vancouver, ISO, and other styles
29

Fukuda, Motohisa. "Additivity conjectures in quantum information theory." Thesis, University of Cambridge, 2007. https://www.repository.cam.ac.uk/handle/1810/252051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Constantin, Carmen Maria. "Sheaf-theoretic methods in quantum mechanics and quantum information theory." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:788d9d90-8fb1-4e1d-a0fa-346ba64d228a.

Full text
Abstract:
In this thesis we use the language of sheaf theory in an attempt to develop a deeper understanding of some of the fundamental differences - such as entanglement, contextuality and non-locality - which separate quantum from classical physics. We first present, based on the work of Abramsky and Brandenburger [2], how sheaves, defined over certain posets of physically meaningful contexts, give a natural setting for capturing and analysing important quantum mechanical phenomena, such as quantum non-locality and contextuality. We also describe how this setting naturally leads to a three level hierarchy of quantum contextuality: weak contextuality, logical non-locality and strong contextuality. One of the original contributions of this thesis is to use these insights in order to classify a particular class of multipartite entangled states, which we have named balanced states with functional dependencies. Almost all of these states turn out to be at least logically non-local, and a number of them even turn out to be strongly contextual. We then further extend this result by showing that in fact all n-qubit entangled states, with the exception of tensor products of single-qubit and bipartite maximally-entangled states, are logically non-local. Moreover, our proof is constructive: given any n-qubit state, we present an algorithm which produces n + 2 local observables witnessing its logical non-locality. In the second half of the thesis we use the same basic principle of sheaves defined over physically meaningful contexts, in order to present an elegant mathematical language, known under the name of the Topos Approach [62], in which many quan- tum mechanical concepts, such as states, observables, and propositions about these, can be expressed. This presentation is followed by another original contribution in which we show that the language of the Topos Approach is as least as expressive, in logical terms, as traditional quantum logic. Finally, starting from a topos-theoretic perspective, we develop the construction of contextual entropy in order to give a unified treatment of classical and quantum notions of information theoretic entropy.
APA, Harvard, Vancouver, ISO, and other styles
31

Ho, Ki-hiu, and 何其曉. "Study of quantum low density parity check and quantum degeneratecodes." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B41897109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Oreshkov, Ognyan. "Topics in quantum information and the theory of open quantum systems." Doctoral thesis, University of Southern California, Los Angeles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/225666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kómár, Péter. "Quantum Information Science and Quantum Metrology: Novel Systems and Applications." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:26718726.

Full text
Abstract:
The current frontier of our understanding of the physical universe is dominated by quantum phenomena. Uncovering the prospects and limitations of acquiring and processing information using quantum effects is an outstanding challenge in physical science. This thesis presents an analysis of several new model systems and applications for quantum information processing and metrology. First, we analyze quantum optomechanical systems exhibiting quantum phenomena in both optical and mechanical degrees of freedom. We investigate the strength of non-classical correlations in a model system of two optical and one mechanical mode. We propose and analyze experimental protocols that exploit these correlations for quantum computation. We then turn our attention to atom-cavity systems involving strong coupling of atoms with optical photons, and investigate the possibility of using them to store information robustly and as relay nodes. We present a scheme for a robust two-qubit quantum gate with inherent error-detection capabilities. We consider several remote entanglement protocols employing this robust gate, and we use these systems to study the performance of the gate in practical applications. Finally, we present a new protocol for running multiple, remote atomic clocks in quantum unison. We show that by creating a cascade of independent Greenberger-Horne-Zeilinger states distributed across the network, the scheme asymptotically reaches the Heisenberg limit, the fundamental limit of measurement accuracy. We propose an experimental realization of such a network consisting of neutral atom clocks, and analyze the practical performance of such a system.
Physics
APA, Harvard, Vancouver, ISO, and other styles
34

Pope, Damian. "Contrasting quantum mechanics to local hidden variables theories in quantum optics and quantum information science /." [St. Luica, Qld.], 2002. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe16765.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Barrett, J. "Entanglement, non-locality and quantum information theory." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.596412.

Full text
Abstract:
In this dissertation, motivated both by our incomplete physical understanding, and by quantum information theory, we investigate quantum non-locality. In Chapter 2, we ask the question, which quantum states are non-local? We show that any entangled pure state is non-local, but that things are complicated with mixed states. In particular, following Werner’s local hidden variable model for projective measurements on a class of entangled states, we write down an extended model that works for arbitrary positive operator valued measurements performed by the separated observers. We also show that the existence of such a model for one particular quantum state implies the existence of a similar model for a wide class of other quantum states. Finally, we discuss the fact that some quantum states display a hidden non-locality, and describe a general classification scheme for the non-locality of quantum states. In Chapter 3, we turn to a particular protocol of quantum information theory, namely, quantum teleportation. We discuss the connections between quantum teleportation and non-locality. We drive a Bell-type inequality pertaining to the teleportation scenario and investigate when it is violated. We give an example of a situation in which a teleportation fidelity of ¾ is achieved without non-locality, even though this is greater than the classical limit of 2/3. In Chapter 4, we describe the experiments that have been performed as tests of quantum non-locality and the associated loopholes. We point out an assumption, the no-memory assumption that is common to nearly all analyses of Bell-type experiments, yet is not implied by locality. We remove the assumption and give a new analysis of the ideal case.
APA, Harvard, Vancouver, ISO, and other styles
36

Goyal, Philip. "An information-theoretic approach to quantum theory." Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Borsten, Leron. "Aspects of M-theory and quantum information." Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/6051.

Full text
Abstract:
As the frontiers of physics steadily progress into the 21st century we should bear in mind that the conceptual edifice of 20th-century physics has at its foundations two mutually incompatible theories; quantum mechanics and Einstein’s general theory of relativity. While general relativity refuses to succumb to quantum rule, black holes are raising quandaries that strike at the very heart of quantum theory. M-theory is a compelling candidate theory of quantum gravity. Living in eleven dimensions it encompasses and connects the five possible 10-dimensional superstring theories. However, Mtheory is fundamentally non-perturbative and consequently remains largely mysterious, offering up only disparate corners of its full structure. The physics of black holes has occupied centre stage in uncovering its non-perturbative structure. The dawn of the 21st-century has also played witness to the birth of the information age and with it the world of quantum information science. At its heart lies the phenomenon of quantum entanglement. Entanglement has applications in the emerging technologies of quantum computing and quantum cryptography, and has been used to realize quantum teleportation experimentally. The longest standing open problem in quantum information is the proper characterisation of multipartite entanglement. It is of utmost importance from both a foundational and a technological perspective. In 2006 the entropy formula for a particular 8-charge black hole appearing in M-theory was found to be given by the ’hyperdeterminant’, a quantity introduced by the mathematician Cayley in 1845. Remarkably, the hyperdeterminant also measures the degree of tripartite entanglement shared by three qubits, the basic units of quantum information. It turned out that the different possible types of three-qubit entanglement corresponded directly to the different possible subclasses of this particular black hole. This initial observation provided a link relating various black holes and quantum information systems. Since then, we have been examining this two-way dictionary between black holes and qubits and have used our knowledge of M-theory to discover new things about multipartite entanglement and quantum information theory and, vice-versa, to garner new insights into black holes and M-theory. There is now a growing dictionary, which translates a variety of phenomena in one language to those in the other. Developing these fascinating relationships, exploiting them to better understand both M-theory and quantum entanglement is the goal of this thesis. In particular, we adopt the elegant mathematics of octonions, Jordan algebras and the Freudenthal triple system as our guiding framework. In the course of this investigation we will see how these fascinating algebraic structures can be used to quantify entanglement and define new black hole dualities.
APA, Harvard, Vancouver, ISO, and other styles
38

Ho, Ki-hiu. "Study of quantum low density parity check and quantum degenerate codes." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B41897109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

García, Díaz María. "The theory of quantum coherence." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670162.

Full text
Abstract:
La coherència quàntica, o la propietat dels sistemes que es troben en una superposició d’estats capaç de donar lloc a patrons d’interferència en els experiments adequats, és el segell distintiu de la mecànica quàntica. Més enllà de les seves fascinants implicacions epistemològiques, la coherència quàntica resulta també un recurs valuós a l’hora de dur a terme diferents tasques quàntic-informacionals i ha estat fins i tot emprada en la descripció de certs processos biològics. Per aquest motiu s’ha fet necessari el desenvolupament d’una teoria de recursos que formalitzi rigorosament la noció de coherència, i que permeti així quantificar la coherència present en els sistemes físics, així com estudiar la seva manipulació amb vista a un millor aprofitament d’aquest recurs. Aquesta tesi doctoral pretén contribuir a la teoria de la coherència de la següent manera. En primer lloc, demostrem que la coherència, tal com la teoria la formalitza, està sòlidament ancorada en la física dels interferòmetres ­—almenys en el context de les Operacions Estrictament Incoherents—, i encarna, per tant, el seu propi principi operacional. En segon lloc, després de fer notar que els estats poden ser entesos com a canals de “output” constant, emprenem la generalització de la teoria de la coherència dels estats a la teoria dels canals. En concret, proposem diverses maneres de mesurar el contingut en coherència d’un canal quàntic i el calculem considerant dues classes diferents d’operacions del tipus “free”: Operacions Incoherents i Operacions Màximament Incoherents. Finalment, investiguem si la coherència pot ser també testimoni d’alguna manifestació de no classicitat diferent dels propis efectes interferomètrics. En particular, analitzem la connexió de la coherència amb la no classicitat dels processos estocàstics quàntics, tant en el règim markovià com en el no markovià.
La coherencia cuántica, o la propiedad de los sistemas que se encuentran en una superposición de estados capaz de dar lugar a patrones de interferencia en los experimentos adecuados, es el sello distintivo de la mecánica cuántica. Más allá de sus fascinantes implicaciones epistemológicas, la coherencia cuántica resulta también un recurso valioso a la hora de llevar a cabo diferentes tareas cuántico-informacionales y ha sido incluso empleada en la descripción de ciertos procesos biológicos. Por este motivo se ha hecho necesario el desarrollo de una teoría de recursos que formalice rigurosamente la noción de coherencia, y que permita así cuantificar la coherencia presente en los sistemas físicos, así como estudiar su manipulación con vistas a un mejor aprovechamiento de este recurso. Esta tesis doctoral pretende contribuir a la teoría de la coherencia del siguiente modo. En primer lugar, demostramos que la coherencia, tal y como la teoría la formaliza, está sólidamente anclada en la física de los interferómetros —al menos en el contexto de las Operaciones Estrictamente Incoherentes—, con lo que encarna su propio principio operacional. En segundo lugar, tras hacer notar que los estados pueden ser entendidos como canales de “output” constante, emprendemos la generalización de la teoría de la coherencia de los estados a la teoría de los canales. En concreto, proponemos diversas maneras de medir el contenido en coherencia de un canal cuántico y lo calculamos considerando dos clases diferentes de opera- ciones de tipo “free”: Operaciones Incoherentes y Operaciones Máximamente Incoherentes. Finalmente, investigamos si la coherencia puede ser también testigo de alguna manifestación de no clasicidad distinta de los propios efectos inter- ferométricos. En particular, analizamos la conexión de la coherencia con la no clasicidad de los procesos estocásticos cuánticos, tanto en el régimen markoviano como en el no markoviano.
Quantum coherence, or the property of systems which are in a superpo- sition of states yielding interference patterns in suitable experiments, is the main hallmark of departure of quantum mechanics from classical physics. Besides its fascinating epistemological implications, quantum coherence also turns out to be a valuable resource for quantum information tasks, and has even been used in the description of fundamental biological processes. This calls for the development of a resource theory which rigorously formalizes the notion of coherence, that further allows both to quantify the coherence present in physical systems and to study its manipulation in order to better leverage it. This thesis intends to make a contribution to the recently built resource theory of coherence in a number of ways. First, we show that coherence, as formalized by its resource theory, is soundly grounded in the physics of interferometers—at least in the con- text of Strictly Incoherent Operations—and thus embodies its operational foundations. Second, we note that states can be thought of as constant-output channels, and start to generalize the coherence theory of states to that of channels. In particular, we propose several measures of the coherence content of a channel and further compute them when considering two different classes of free operations: Incoherent Operations and the largest set of Maximally Incoherent Operations. Finally, we investigate the question whether coherence can witness some other manifestations of non-classicality (we mean, beyond interference effects). In particular, we analyze the connection of coherence to the non-classicality of quantum stochastic processes both in the Markovian and in the non-Markovian regimes.
APA, Harvard, Vancouver, ISO, and other styles
40

Allen, John-Mark. "Reality, causality, and quantum theory." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:01413eef-0944-4ec5-ad53-ac8378bcf4be.

Full text
Abstract:
Quantum theory describes our universe incredibly successfully. To our classically-inclined brains, however, it is a bizarre description that requires a reimagining of what fundamental reality, or 'ontology', could look like. This thesis examines different ontological features in light of the success of quantum theory, what it requires, and what it rules out. While these investigations are primarily foundational, they also have relevance to quantum information, quantum communication, and experiments on quantum systems. The way that quantum theory describes the state of a system is one of its most unintuitive features. It is natural, therefore, to ask whether a similarly strange description of states is required on an ontological level. This thesis proves that almost all quantum superposition states for d > 3 dimensions must be real - that is, present in the ontology in a well-defined sense. This is a strong requirement which prevents intuitive explanations of the many quantum phenomena which are based on superpositions. A new theorem is also presented showing that quantum theory is incompatible with macro-realist ontologies, where certain physical quantities must always have definite values. This improves on the Leggett-Garg argument, which also aims to prove incompatibility with macro-realism but contains loopholes. Variations on both of these results that are error-tolerant (and therefore amenable to experimentation) are presented, as well as numerous related theorems showing that the ontology of quantum states must be somewhat similar to the quantum states themselves in various specific ways. Extending these same methods to quantum communication, a simple proof is found showing that an exponential number of classical bits are required to communicate a linear number of qubits. That is, classical systems are exponentially bad at storing quantum data. Causal influences are another part of ontology where quantum theory demands a revision of our classical notions. This follows from the outcomes of Bell experiments, as rigorously shown in recent analyses. Here, the task of constructing a native quantum framework for reasoning about causal influences is tackled. This is done by first analysing the simple example of a common cause, from which a quantum version of Reichenbach's principle is identified. This quantum principle relies on an identification of quantum conditional independence which can be defined in four ways, each naturally generalising a corresponding definition for classical conditional independence. Not only does this allow one to reason about common causes in a quantum experiments, but it can also be generalised to a full framework of quantum causal models (mirroring how classical causal models generalise Reichenbach's principle). This new definition of quantum causal models is illustrated by examples and strengthened by it's foundation on a robust quantum Reichenbach's principle. An unusual, but surprisingly fruitful, setting for considering quantum ontology is found by considering time travel to the past. This provides a testbed for different ontological concepts in quantum theory and new ways to compare classical and quantum frameworks. It is especially useful for comparing computational properties. In particular, time travel introduces non-linearity to quantum theory, which brings (sometimes implicit) ontological assumptions to the fore while introducing strange new abilities. Here, a model for quantum time travel is presented which arguably has fewer objectionable features than previous attempts, while remaining similarly well-motivated. This model is discussed and compared with previous quantum models, as well as with the classical case. Together, these threads of investigation develop a better understanding of how quantum theory affects possible ontologies and how ontological prejudices influence quantum theory.
APA, Harvard, Vancouver, ISO, and other styles
41

Lancien, Cécilia. "High dimension and symmetries in quantum information theory." Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/386501.

Full text
Abstract:
En unas palabras, el tema de esta tesis se podría resumir como: fenómenos varios en alta (pero finita) dimensión en teoría cuántica de la información. Dicho esto, sin embargo podemos dar algunos detalles de más. Empezando con la observación que la física cuántica ineludiblemente tiene que tratar con objetos de alta dimensión, se pueden seguir esencialmente dos caminos: o intentar reducir su estudio al de otros que tienen dimensión más baja, o intentar comprender qué tipo de comportamiento universal surge precisamente en este régimen. Aquí no elegimos cuál de estas dos posturas hay que adoptar, sino que oscilamos constantemente entre una y la otra. En la primera parte de este manuscrito (Capítulos 5 y 6), nuestro objetivo es reducir al mínimo posible la complejidad de ciertos procesos cuánticos, preservando sus características esenciales. Los dos tipos de procesos que nos interesan son canales cuánticos y medidas cuánticas. En ambos casos, la complejidad de una transformaci ón se cuantifica con el número de operadores necesarios para describir su acción, y la proximidad entre la transformación de origen y su aproximación se define por el hecho de que, cualquiera que sea el estado de entrada, los respectivos estados de salida deben ser suficientemente similares. Proponemos maneras universales de alcanzar nuestras metas de compresión de canales cuánticos y rarefacción de medidas cuánticas (basadas en construcciones aleatorias) y demostramos su optimalidad. En contrapartida, la segunda parte de este manuscrito (Capítulos 7, 8 y 9) se dedica específicamente al análisis de sistemos cuánticos de alta dimensión y sus rasgos típicos. El énfasis se pone sobre sistemos multipartidos y sus propiedades de entrelazamiento. En resumen, establecemos principalmente lo siguiente: cuando las dimensiones de los espacios subyacentes aumentan, es genérico para estados cuánticos multipartidos ser prácticamente indistinguible mediante observaciones locales, y es genérico para relajaciones de la noción de separabilidad ser burdas aproximaciones de ella. Desde un punto de vista técnico, estos resultados se derivan de estimaciones de promedio para supremosa de procesos gaussianos, combinadas con el fenómeno de concentración de la medida. En la tercera parte de este manuscrito (Capítulos 10 y 11), finalmente volvemos a una filosofía de reducción de dimensionalidad. Pero esta vez, nuestra estrategia es utilizar las simetrías inherentes a cada situación particular que consideramos para derivar una simplificación adecuada. Vinculamos de manera cuantitativa simetría por permutación y independencia, lo que nos permite establecer el comportamiento multiplicativo de varias cuantidades que ocurren en teoría cuántica de la información (funciones de soporte de conjuntos de estados, probabilidad de éxito en juegos multi-jugadores no locales etc.). La principal herramienta técnica que desarrollamos con este fin es un resultado de tipo de Finetti muy adaptable.
S'il fallait résumer le sujet de cette thèse en une expression, cela pourrait être quelque chose comme: phénomènes de grande dimension (mais néanmoins finie) en théorie quantique de l'information. Cela étant dit, essayons toutefois de développer brièvement. La physique quantique a inéluctablement afiaire à des objets de grande dimension. Partant de cette observation, il y a, en gros, deux stratégies qui peuvent être adoptées: ou bien essayer de ramener leur étude à celle de situations de plus petite dimension, ou bien essayer de comprendre quels sont les comportements universels précisément susceptibles d'émerger dans ce régime. Nous ne donnons ici notre préférence à aucune de ces deux attitudes, mais au contraire oscillons constamment entre l'une et l'autre. Notre but dans la première partie de ce manuscrit (Chapitres 5 et 6) est de réduire autant que possible la complexité de certains processus quantiques, tout en préservant, évidemment, leurs caractéristiques essentielles. Les deux types de processus auxquels nous nous intéressons sont les canaux quantiques et les mesures quantiques. Dans les deux cas, la complexité d'une transformation est mesurée par le nombre d'opérateurs nécessaires pour décrire son action, tandis que la proximité entre la transformation d'origine et son approximation est définie par le fait que, quel que soit l'état d'entrée, les deux états de sortie doivent être proches l'un de l'autre. Nous proposons des solutions universelles (basées sur des constructions aléatoires) à ces problèmes de compression de canaux quantiques et d'amenuisement de mesures quantiques, et nous prouvons leur optimalité. La deuxième partie de ce manuscrit (Chapitres 7, 8 et 9) est, au contraire, spécifiquement dédiée à l'analyse de systèmes quantiques de grande dimension et certains de leurs traits typiques. L'accent est mis sur les systèmes multi-partites et leurs propriétés ayant un lien avec l'intrication. Les principaux résultats auxquels nous aboutissons peuvent se résumer de la façon suivante: lorsque les dimensions des espaces sous-jacents augmentent, il est générique pour les états quantiques multi-partites d'être à peine distinguables par des observateurs locaux, et il est générique pour les relaxations de la notion de séparabilité d'en être des approximations très grossières. Sur le plan technique, ces assertions sont établies grâce à des estimations moyennes de suprema de processus gaussiens, combinées avec le phénomène de concentration de la mesure. Dans la troisième partie de ce manuscrit (Chapitres 10 et 11), nous revenons pour finir à notre état d'esprit de réduction de dimensionnalité. Cette fois pourtant, la stratégie est plutôt: pour chaque situation donnée, tenter d'utiliser au maximum les symétries qui lui sont inhérentes afin d'obtenir une simplification qui lui soit propre. En reliant de manière quantitative symétrie par permutation et indépendance, nous nous retrouvons en mesure de montrer le comportement multiplicatif de plusieurs quantités apparaissant en théorie quantique de l'information (fonctions de support d'ensembles d'états, probabilités de succès dans des jeux multi-joueurs non locaux etc.). L'outil principal que nous développons dans cette optique est un résultat de type de Finetti particulièrement malléable.
If a one-phrase summary of the subject of this thesis were required, it would be something like: miscellaneous large (but finite) dimensional phenomena in quantum information theory. That said, it could nonetheless be helpful to briefly elaborate. Starting from the observation that quantum physics unavoidably has to deal with high dimensional objects, basically two routes can be taken: either try and reduce their study to that of lower dimensional ones, or try and understand what kind of universal properties might precisely emerge in this regime. We actually do not choose which of these two attitudes to follow here, and rather oscillate between one and the other. In the first part of this manuscript, our aim is to reduce as much as possible the complexity of certain quantum processes, while of course still preserving their essential characteristics. The two types of processes we are interested in are quantum channels and quantum measurements. In both cases, complexity of a transformation is measured by the number of operators needed to describe its action, and proximity of the approximating transformation towards the original one is defined in terms of closeness between the two outputs, whatever the input. We propose universal ways of achieving our quantum channel compression and quantum measurement sparsification goals (based on random constructions) and prove their optimality. Oppositely, the second part of this manuscript is specifically dedicated to the analysis of high dimensional quantum systems and some of their typical features. Stress is put on multipartite systems and on entanglement-related properties of theirs. We essentially establish the following: as the dimensions of the underlying spaces grow, being barely distinguishable by local observers is a generic trait of multipartite quantum states, and being very rough approximations of separability itself is a generic trait of separability relaxations. On the technical side, these statements stem mainly from average estimates for suprema of Gaussian processes, combined with the concentration of measure phenomenon. In the third part of this manuscript, we eventually come back to a more dimensionality reduction state of mind. This time though, the strategy is to make use of the symmetries inherent to each particular situation we are looking at in order to derive a problem-dependent simplification. By quantitatively relating permutation-symmetry and independence, we are able to show the multiplicative behaviour of several quantities showing up in quantum information theory (such as support functions of sets of states, winning probabilities in multi-player non-local games etc.). The main tool we develop for that purpose is an adaptable de Finetti type result.
APA, Harvard, Vancouver, ISO, and other styles
42

Eggeling, Tilo. "On multipartite symmetric states in quantum information theory." [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=967787947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zibold, Tobias. "Semiconductor based quantum information devices theory and simulations /." kostenfrei, 2007. http://mediatum2.ub.tum.de/doc/617147/document.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Lancien, Cécilia. "High dimension and symmetries in quantum information theory." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1077/document.

Full text
Abstract:
S'il fallait résumer le sujet de cette thèse en une expression, cela pourrait être quelque chose comme: phénomènes de grande dimension (mais néanmoins finie) en théorie quantique de l'information. Cela étant dit, essayons toutefois de développer brièvement. La physique quantique a inéluctablement affaire à des objets de grande dimension. Partant de cette observation, il y a, en gros, deux stratégies qui peuvent être adoptées: ou bien essayer de ramener leur étude à celle de situations de plus petite dimension, ou bien essayer de comprendre quels sont les comportements universels précisément susceptibles d'émerger dans ce régime. Nous ne donnons ici notre préférence à aucune de ces deux attitudes, mais au contraire oscillons constamment entre l'une et l'autre. Notre but dans la première partie de ce manuscrit (Chapitres 5 et 6) est de réduire autant que possible la complexité de certains processus quantiques, tout en préservant, évidemment, leurs caractéristiques essentielles. Les deux types de processus auxquels nous nous intéressons sont les canaux quantiques et les mesures quantiques. Dans les deux cas, la complexité d'une transformation est mesurée par le nombre d'opérateurs nécessaires pour décrire son action, tandis que la proximité entre la transformation d'origine et son approximation est définie par le fait que, quel que soit l'état d'entrée, les deux états de sortie doivent être proches l'un de l'autre. Nous proposons des solutions universelles (basées sur des constructions aléatoires) à ces problèmes de compression de canaux quantiques et d'amenuisement de mesures quantiques, et nous prouvons leur optimalité. La deuxième partie de ce manuscrit (Chapitres 7, 8 et 9) est, au contraire, spécifiquement dédiée à l'analyse de systèmes quantiques de grande dimension et certains de leurs traits typiques. L'accent est mis sur les systèmes multi-partites et leurs propriétés ayant un lien avec l'intrication. Les principaux résultats auxquels nous aboutissons peuvent se résumer de la façon suivante: lorsque les dimensions des espaces sous-jacents augmentent, il est générique pour les états quantiques multi-partites d'être à peine distinguables par des observateurs locaux, et il est générique pour les relaxations de la notion de séparabilité d'en être des approximations très grossières. Sur le plan technique, ces assertions sont établies grâce à des estimations moyennes de suprema de processus gaussiens, combinées avec le phénomène de concentration de la mesure. Dans la troisième partie de ce manuscrit (Chapitres 10 et 11), nous revenons pour finir à notre état d'esprit de réduction de dimensionnalité. Cette fois pourtant, la stratégie est plutôt: pour chaque situation donnée, tenter d'utiliser au maximum les symétries qui lui sont inhérentes afin d'obtenir une simplification qui lui soit propre. En reliant de manière quantitative symétrie par permutation et indépendance, nous nous retrouvons en mesure de montrer le comportement multiplicatif de plusieurs quantités apparaissant en théorie quantique de l'information (fonctions de support d'ensembles d'états, probabilités de succès dans des jeux multi-joueurs non locaux etc.). L'outil principal que nous développons dans cette optique est un résultat de type de Finetti particulièrement malléable
If a one-phrase summary of the subject of this thesis were required, it would be something like: miscellaneous large (but finite) dimensional phenomena in quantum information theory. That said, it could nonetheless be helpful to briefly elaborate. Starting from the observation that quantum physics unavoidably has to deal with high dimensional objects, basically two routes can be taken: either try and reduce their study to that of lower dimensional ones, or try and understand what kind of universal properties might precisely emerge in this regime. We actually do not choose which of these two attitudes to follow here, and rather oscillate between one and the other. In the first part of this manuscript (Chapters 5 and 6), our aim is to reduce as much as possible the complexity of certain quantum processes, while of course still preserving their essential characteristics. The two types of processes we are interested in are quantum channels and quantum measurements. In both cases, complexity of a transformation is measured by the number of operators needed to describe its action, and proximity of the approximating transformation towards the original one is defined in terms of closeness between the two outputs, whatever the input. We propose universal ways of achieving our quantum channel compression and quantum measurement sparsification goals (based on random constructions) and prove their optimality. Oppositely, the second part of this manuscript (Chapters 7, 8 and 9) is specifically dedicated to the analysis of high dimensional quantum systems and some of their typical features. Stress is put on multipartite systems and on entanglement-related properties of theirs. We essentially establish the following: as the dimensions of the underlying spaces grow, being barely distinguishable by local observers is a generic trait of multipartite quantum states, and being very rough approximations of separability itself is a generic trait of separability relaxations. On the technical side, these statements stem mainly from average estimates for suprema of Gaussian processes, combined with the concentration of measure phenomenon. In the third part of this manuscript (Chapters 10 and 11), we eventually come back to a more dimensionality reduction state of mind. This time though, the strategy is to make use of the symmetries inherent to each particular situation we are looking at in order to derive a problem-dependent simplification. By quantitatively relating permutation symmetry and independence, we are able to show the multiplicative behavior of several quantities showing up in quantum information theory (such as support functions of sets of states, winning probabilities in multi-player non-local games etc.). The main tool we develop for that purpose is an adaptable de Finetti type result
APA, Harvard, Vancouver, ISO, and other styles
45

Zander, Claudia. "Information measures, entanglement and quantum evolution." Diss., University of Pretoria, 2007. http://upetd.up.ac.za/thesis/available/etd-04212008-090506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Bowen, Garry Andrew. "Theoretical aspects of quantum communication." Thesis, University of Oxford, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Streltsov, Alexander [Verfasser]. "The role of quantum correlations beyond entanglement in quantum information theory / Alexander Streltsov." Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2013. http://d-nb.info/1036494616/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Gunlycke, Daniel. "Theory of gated carbon nanotubes for quantum information processing." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bowles, Peter. "Applications of local asymptotic normality in quantum information theory." Thesis, University of Nottingham, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598050.

Full text
Abstract:
Quantum mechanics is the fundamental theory of the microscopic world. It is now over a century since Planck's first insights led to it eventually replacing the classical worldview consisting of Newtonian mechanics, Maxwell's electromagnetism and statistical mechanics. In contrast to the determinism of classical mechanics, quantum mechanics is intrinsically probabilistic, showing that randomness is an innate feature of reality. Until the 1960s this randomness was not directly observable. Experiments were performed on huge ensembles of particles and the probabilities one would observe were the frequencies of different outcomes. But thanks to technological advances. individual quantum systems can now be prepared, manipulated and measured with a high degree of control. The fundamental motivation for manipulating individual systems is that quantum mechanics offers the promise of completely new technologies which utilise quantum effects to achieve superior performance in comparison to classical methods. Such advances have led to the birth of a new field of study known as Quantum Information Science, a synthesis of quantum mechanics and the classical disciplines of information theory, computation, control theory, probability and statistics.
APA, Harvard, Vancouver, ISO, and other styles
50

Presnell, Stuart. "Minimal resources in quantum information theory : compression and measurement." Thesis, University of Bristol, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography