Journal articles on the topic 'Quantum confinement of light'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Quantum confinement of light.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Maksimenko, S. A., G. Ya Slepyan, N. N. Ledentsov, V. P. Kalosha, A. Hoffmann, and D. Bimberg. "Light confinement in a quantum dot." Semiconductor Science and Technology 15, no. 6 (2000): 491–96. http://dx.doi.org/10.1088/0268-1242/15/6/301.
Full textSalehani, Hojjatollah K., and Maedeh Zakeri. "Investigation of Light Absorption in a ZnS Quantum Dot." Journal of Spectroscopy 2013 (2013): 1–4. http://dx.doi.org/10.1155/2013/850352.
Full textHoang, Tu, Jisk Holleman, and Jurriaan Schmitz. "SOI-LEDs with Carrier Confinement." Materials Science Forum 590 (August 2008): 101–16. http://dx.doi.org/10.4028/www.scientific.net/msf.590.101.
Full textPavel, Eugen. "Light Amplification by Quantum Confinement (LAQC) in quantum optical lithography." Optics & Laser Technology 143 (November 2021): 107287. http://dx.doi.org/10.1016/j.optlastec.2021.107287.
Full textLi, Shuo, Wenxu Yin, Weitao Zheng, and Xiaoyu Zhang. "Size matters: quantum confinement-driven dynamics in CsPbI3 quantum dot light-emitting diodes." Journal of Semiconductors 46, no. 4 (2025): 042103. https://doi.org/10.1088/1674-4926/24120018.
Full textKELLER, O. "QUANTUM DOTS OF LIGHT." Journal of Nonlinear Optical Physics & Materials 05, no. 01 (1996): 109–32. http://dx.doi.org/10.1142/s0218863596000118.
Full textLazarev, M., A. Rudra, and E. Kapon. "Physical origins of optical anisotropy in quantum-confined semiconductors: The roles of valence band mixing, transition broadening, and state filling." Journal of Applied Physics 133, no. 9 (2023): 094301. http://dx.doi.org/10.1063/5.0131958.
Full textBallarini, Dario, and Simone De Liberato. "Polaritonics: from microcavities to sub-wavelength confinement." Nanophotonics 8, no. 4 (2019): 641–54. http://dx.doi.org/10.1515/nanoph-2018-0188.
Full textLi, Rusong, Fengqi Liu, and Quanyong Lu. "Quantum Light Source Based on Semiconductor Quantum Dots: A Review." Photonics 10, no. 6 (2023): 639. http://dx.doi.org/10.3390/photonics10060639.
Full textLu, Z. H., D. J. Lockwood, and J. M. Baribeau. "Quantum confinement and light emission in SiO2/Si superlattices." Nature 378, no. 6554 (1995): 258–60. http://dx.doi.org/10.1038/378258a0.
Full textKostenko, Boris. "Quark-Parton Model and Relativistic Quantum Mechanics." EPJ Web of Conferences 173 (2018): 02012. http://dx.doi.org/10.1051/epjconf/201817302012.
Full textSugimoto, Hiroshi, Hao Zhou, Miho Takada, Junichiro Fushimi, and Minoru Fujii. "Visible-light driven photocatalytic hydrogen generation by water-soluble all-inorganic core–shell silicon quantum dots." Journal of Materials Chemistry A 8, no. 31 (2020): 15789–94. http://dx.doi.org/10.1039/d0ta01071e.
Full textXing, Zhongqiu, Yongjie Zhou, Aoxiang Zhang, et al. "Reduction of the threshold current of deep-ultraviolet laser diodes with embedded quantum dots in quantum wells." New Journal of Physics 27, no. 2 (2025): 023032. https://doi.org/10.1088/1367-2630/adb77f.
Full textYeo, Inah, Doukyun Kim, Kyu-Tae Lee, et al. "Comparative Chemico-Physical Analyses of Strain-Free GaAs/Al0.3Ga0.7As Quantum Dots Grown by Droplet Epitaxy." Nanomaterials 10, no. 7 (2020): 1301. http://dx.doi.org/10.3390/nano10071301.
Full textGonzález-Fernández, Alfredo, Joan Juvert, Mariano Aceves-Mijares, and Carlos Domínguez. "Luminescence from Si-Implanted SiO2-Si3N4 Nano Bi-Layers for Electrophotonic Integrated Si Light Sources." Sensors 19, no. 4 (2019): 865. http://dx.doi.org/10.3390/s19040865.
Full textHbibi, Mohammed, O. Mommadi, Soufiane Chouef, et al. "Unbound Excitonic Properties in a Multilayered Quantum Dot under Hydrostatic Pressure and Temperature." Defect and Diffusion Forum 428 (August 22, 2023): 105–15. http://dx.doi.org/10.4028/p-uflk2m.
Full textDi Liberto, Giovanni, Ornella Fatale та Gianfranco Pacchioni. "Role of surface termination and quantum size in α-CsPbX3 (X = Cl, Br, I) 2D nanostructures for solar light harvesting". Physical Chemistry Chemical Physics 23, № 4 (2021): 3031–40. http://dx.doi.org/10.1039/d0cp06245f.
Full textMa, Zelin, Poul Kristensen, and Siddharth Ramachandran. "Scaling information pathways in optical fibers by topological confinement." Science 380, no. 6642 (2023): 278–82. http://dx.doi.org/10.1126/science.add1874.
Full textPrevenslik, Thomas. "Quantum Dots by QED." Advanced Materials Research 31 (November 2007): 1–3. http://dx.doi.org/10.4028/www.scientific.net/amr.31.1.
Full textBrodsky, Stanley J., Guy F. de Teramond, and Hans Günter Dosch. "Light-front holographic QCD and color confinement." International Journal of Modern Physics A 29, no. 21 (2014): 1444013. http://dx.doi.org/10.1142/s0217751x14440138.
Full textToscano, Giuseppe, Søren Raza, Wei Yan, et al. "Nonlocal response in plasmonic waveguiding with extreme light confinement." Nanophotonics 2, no. 3 (2013): 161–66. http://dx.doi.org/10.1515/nanoph-2013-0014.
Full textGoyal, A., E. Andrioti, Y. Tang, et al. "Mechanochemical synthesis of stable, quantum-confined CsPbBr3 perovskite nanocrystals with blue-green emission and high PLQY." Journal of Physics: Materials 5, no. 2 (2022): 024005. http://dx.doi.org/10.1088/2515-7639/ac618f.
Full textZhang, Qianpeng, Daquan Zhang, Zhiyong Fan, and Xiaoliang Mo. "Enhanced Stability and High-Efficiency Lighting with Perovskite Quantum Wires." ECS Meeting Abstracts MA2024-02, no. 51 (2024): 3559. https://doi.org/10.1149/ma2024-02513559mtgabs.
Full textShibuya, Kengo, Masanori Koshimizu, Keisuke Asai, and Hiromi Shibata. "Quantum confinement for large light output from pure semiconducting scintillators." Applied Physics Letters 84, no. 22 (2004): 4370–72. http://dx.doi.org/10.1063/1.1756203.
Full textWu, Kaifeng, and Tianquan Lian. "Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion." Chemical Society Reviews 45, no. 14 (2016): 3781–810. http://dx.doi.org/10.1039/c5cs00472a.
Full textBarnasas, Alexandros, Christos S. Garoufalis, Dimitrios I. Anyfantis, et al. "Quantum Confinement Effects of Thin Co3O4 Films." Atoms 9, no. 4 (2021): 70. http://dx.doi.org/10.3390/atoms9040070.
Full textCORNWALL, JOHN M. "ENTROPY IN QUANTUM CHROMODYNAMICS." Modern Physics Letters A 27, no. 09 (2012): 1230011. http://dx.doi.org/10.1142/s021773231230011x.
Full textZhang, Yan-Xia, Hai-Yu Wang, Zhen-Yu Zhang, et al. "Photoluminescence quenching of inorganic cesium lead halides perovskite quantum dots (CsPbX3) by electron/hole acceptor." Physical Chemistry Chemical Physics 19, no. 3 (2017): 1920–26. http://dx.doi.org/10.1039/c6cp04083g.
Full textWu, Ya-Fen. "High-Temperature Electroluminescence of InGaN/GaN Light-Emitting Devices with Multiple Quantum Barriers." Advances in Condensed Matter Physics 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/145689.
Full textUsman, Muhammad, Urooj Mushtaq, Dong-Guang Zheng, Dong-Pyo Han, Muhammad Rafiq, and Nazeer Muhammad. "Enhanced Internal Quantum Efficiency of Bandgap-Engineered Green W-Shaped Quantum Well Light-Emitting Diode." Applied Sciences 9, no. 1 (2018): 77. http://dx.doi.org/10.3390/app9010077.
Full textBashir, Jamshad, Muhammad Usman, Dmitri Sergeevich Arteev, Zoya Noor, and Ahmed Ali. "Enhancing Carriers’ Confinement by Introducing BAlGaN Quantum Barriers for the Better Optoelectronic Performance of Deep UV LEDs." Photonics 12, no. 1 (2025): 49. https://doi.org/10.3390/photonics12010049.
Full textPalstra, Isabelle M., Hugo M. Doeleman, and A. Femius Koenderink. "Hybrid cavity-antenna systems for quantum optics outside the cryostat?" Nanophotonics 8, no. 9 (2019): 1513–31. http://dx.doi.org/10.1515/nanoph-2019-0062.
Full textVelpula, Ravi, Barsha Jain, Trupti Lenka, and Hieu Nguyen. "Controlled electron leakage in electron blocking layer free InGaN/GaN nanowire light-emitting diodes." Facta universitatis - series: Electronics and Energetics 34, no. 3 (2021): 393–400. http://dx.doi.org/10.2298/fuee2103393v.
Full textEl Fatimy, Abdel, Anindya Nath, Byoung Don Kong, et al. "Ultra-broadband photodetectors based on epitaxial graphene quantum dots." Nanophotonics 7, no. 4 (2018): 735–40. http://dx.doi.org/10.1515/nanoph-2017-0100.
Full textLagnese, Gianluca, Federica Maria Surace, Márton Kormos, and Pasquale Calabrese. "Quenches and confinement in a Heisenberg–Ising spin ladder." Journal of Physics A: Mathematical and Theoretical 55, no. 12 (2022): 124003. http://dx.doi.org/10.1088/1751-8121/ac5215.
Full textRipka, Fabian, Harald Kübler, Robert Löw, and Tilman Pfau. "A room-temperature single-photon source based on strongly interacting Rydberg atoms." Science 362, no. 6413 (2018): 446–49. http://dx.doi.org/10.1126/science.aau1949.
Full textBabu, Bathula, Shaik Gouse Peera, and Kisoo Yoo. "Fabrication of ZnWO4-SnO2 Core–Shell Nanorods for Enhanced Solar Light-Driven Photoelectrochemical Performance." Inorganics 11, no. 5 (2023): 213. http://dx.doi.org/10.3390/inorganics11050213.
Full textFerrera, M., M. Rahaman, S. Sanders, et al. "Controlling excitons in the quantum tunneling regime in a hybrid plasmonic/2D semiconductor interface." Applied Physics Reviews 9, no. 3 (2022): 031401. http://dx.doi.org/10.1063/5.0078068.
Full textDOĞAN, Ü., S. SAKİROĞLU, A. YILDIZ, et al. "EXCITON STATES IN A QUANTUM DOT WITH PARABOLIC CONFINEMENT." International Journal of Modern Physics B 25, no. 32 (2011): 4489–97. http://dx.doi.org/10.1142/s0217979211059279.
Full textde Martini, F., O. Jedrkiewicz, and P. Mataloni. "Quantum Light Generation and Superradiance Effects in the Active Microcavity." Journal of Nonlinear Optical Physics & Materials 07, no. 01 (1998): 121–30. http://dx.doi.org/10.1142/s0218863598000107.
Full textZou, Jifan, Mengkai Li, Xiaoyu Zhang, and Weitao Zheng. "Perovskite quantum dots: Synthesis, applications, prospects, and challenges." Journal of Applied Physics 132, no. 22 (2022): 220901. http://dx.doi.org/10.1063/5.0126496.
Full textShen, Yao-Luen, Chih-Yao Chang, Po-Liang Chen, et al. "Study on the Effects of Quantum Well Location on Optical Characteristics of AlGaN/GaN Light-Emitting HEMT." Micromachines 14, no. 2 (2023): 423. http://dx.doi.org/10.3390/mi14020423.
Full textБайрамов, Ф. Б., Е. Д. Полоскин, A. Л. Чернев та ін. "Время жизни колебательных состояний молекул ДНК в функционализированных комплексах полупроводниковых квантовых точек". Письма в журнал технической физики 44, № 2 (2018): 72. http://dx.doi.org/10.21883/pjtf.2018.02.45467.17050.
Full textZinoni, C., B. Alloing, C. Paranthoën, and A. Fiore. "Three-dimensional wavelength-scale confinement in quantum dot microcavity light-emitting diodes." Applied Physics Letters 85, no. 12 (2004): 2178–80. http://dx.doi.org/10.1063/1.1791341.
Full textDjotyan, A. P., A. A. Avetisyan, and E. M. Kazaryan. "Interband Light Absorption in Semiconductor Quantum Dots Connected with the Charged and Neutral Exciton - Donor Complexes." Key Engineering Materials 277-279 (January 2005): 893–98. http://dx.doi.org/10.4028/www.scientific.net/kem.277-279.893.
Full textIbragimov, G. B., and R. Z. Ibaeva. "Light absorption by free charge carriers in the presence of phonons in an anisotropic quantum wire." Advanced Physical Research 6, no. 1 (2024): 56–62. http://dx.doi.org/10.62476/apr61.62.
Full textJo, Masafumi, Yuri Itokazu, and Hideki Hirayama. "Milliwatt-power far-UVC AlGaN LEDs on sapphire substrates." Applied Physics Letters 120, no. 21 (2022): 211105. http://dx.doi.org/10.1063/5.0088454.
Full textXIAO, YANG, CHAOBIN HE, XUEHONG LU, and XINHAI ZHANG. "ORGANIC–INORGANIC HYBRID NANOPARTICLES WITH QUANTUM CONFINEMENT EFFECT." International Journal of Nanoscience 08, no. 01n02 (2009): 185–90. http://dx.doi.org/10.1142/s0219581x09005980.
Full textRatan Mandal, Arup, Artur Ishteev, Sergey Volchematiev, and Denis V. Kuznetsov. "Sensitive Determination for Papain Conjugated CdSe Quantum Dots by Dynamic Light Scattering Analysis." Advanced Materials Research 1119 (July 2015): 19–23. http://dx.doi.org/10.4028/www.scientific.net/amr.1119.19.
Full textSaddam Hussain, Abdul Sattar, Zamin Abbas, and Zaid Ullah. "INVESTIGATING THE ROLE OF QUANTUM CONFINEMENT AND SURFACE PLASMON RESONANCE IN ENHANCING WATER PURIFICATION EFFICIENCY OF NANOMATERIAL-BASED MEMBRANES." Kashf Journal of Multidisciplinary Research 2, no. 02 (2025): 233–50. https://doi.org/10.71146/kjmr289.
Full text