Dissertations / Theses on the topic 'Quantum confinement'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Quantum confinement.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Tsegaye, Takele Dessie. "Confinement Mechanisms in Quantum Chromodynamics." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1051373650.
Full textTakele, Tsegaye. "Confinement mechanisms in quantum cherodynamics." Cincinnati, Ohio : University of Cincinnati, 2002. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=ucin1051373650.
Full textDowning, Charles Andrew. "Quantum confinement in low-dimensional Dirac materials." Thesis, University of Exeter, 2015. http://hdl.handle.net/10871/17215.
Full textWesslén, Carl. "Confinement Sensitivity in Quantum Dot Spin Relaxation." Doctoral thesis, Stockholms universitet, Fysikum, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-142133.
Full textAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Manuscript.
Abdelrahman, Ahmed M. "Magnetic micro-confinement of quantum degenerate gases." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2011. https://ro.ecu.edu.au/theses/411.
Full textHarankahage, Dulanjan Padmajith Dharmasena. "Quantum Confinement Beyond the Exciton Bhor Radius in Quantum Dot Nanoshells." Bowling Green State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1593955468720583.
Full text李德豪 and Tak-ho Alex Li. "Stripe quantum well waveguides using implantation induced optical confinement." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31237381.
Full textKoulentianos, Dimitrios. "Quantum confinement effect in materials for solar cell applications." Thesis, Uppsala universitet, Materialteori, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-237189.
Full textLi, Tak-ho Alex. "Stripe quantum well waveguides using implantation induced optical confinement /." Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19145421.
Full textHart, A. "Magnetic monopoles and confinement in lattice gauge theory." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337718.
Full textBüttner, Kirsten. "Confinement and the infrared behaviour of the gluon propagator." Thesis, Durham University, 1996. http://etheses.dur.ac.uk/5298/.
Full textWorrall, Anthony Duncan. "The Schwinger-Dyson equations and confinement in quantum chromo-dynamics." Thesis, Durham University, 1985. http://etheses.dur.ac.uk/7024/.
Full textWeiss, Stephan. "Nonequilibrium quantum transport and confinement effects in interacting nanoscale conductors." Aachen Shaker, 2008. http://d-nb.info/990088294/04.
Full textPatel, Sailesh. "Magneto-optical studies of 2D, 1D and 0D electron systems." Thesis, University of Exeter, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337804.
Full textAmin, Victor. "Ligand-Mediated Control of the Confinement Potential in Semiconductor Quantum Dots." Thesis, Northwestern University, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3741337.
Full textThis thesis describes the mechanisms by which organic surfactants, particularly thiophenols and phenyldithiocarbamates, reduce the confinement potential experienced by the exciton of semiconductor quantum dots (QDs). The reduction of the confinement potential is enabled by the creation of interfacial electronic states near the band edge of the QD upon ligand adsorption. In the case of thiophenols, we find that this ligand adsorbs in two distinct binding modes, (i) a tightly bound mode capable of exciton delocalization, and (ii) a more weakly bound mode that has no discernable effect on exciton confinement. Both the adsorption constant and reduction in confinement potential are tunable by para substitution and are generally anticorrelated. For tightly bound thiophenols and other moderately delocalizing ligands, the degree of delocalization induced in the QD is approximately linearly proportional to the fractional surface area occupied by the ligand for all sizes of QDs. In the case of phenyldithiocarbamates, the reduction in the confinement potential is much greater, and ligand adjacency must be accounted for to model exciton delocalization. We find that at high surface coverages, exciton delocalization by phenyldithiocarbamates and other highly delocalizing ligands is dominated by ligand packing effects. Finally, we construct a database of electronic structure calculations on organic molecules and propose an algorithm that combines experimental and computational screening to find novel delocalizing ligands.
Renken, Volker. "Electron confinement and quantum well states in two-dimensional magnetic systems." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=985573546.
Full textSun, Xiangzhong 1968. "The effect of quantum confinement on the thermoelectric figure of merit." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/9308.
Full textIncludes bibliographical references (p. 161-165).
The thermoelectric figure of merit (Z) determines the usefulness of a material for thermoelectric energy conversion applications. Since the 1960's, the best thermoelectric material has been Bi2Te3 alloys, with a ZT of 1.0 at a temperature ofT = 300 K. The advancement of nano-scale technologies has opened up the possibility of engineering materials at nano-scale dimensions to achieve low-dimensional thermoelectric structures which may be superior to their bulk forms. In this thesis, I established the basis of the low dimensional thermoelectric transport principle in the Si/Si1-xGex quantum well superlattice (two-dimensional) system and in the Bi quantum wire (one-dimensional) system. In bulk form, Si1_xGex is a promising thermoelectric material for high temperature applications. The Si/Si1 _xGex quantum well superlattice structures are studied based on their electronic band structures using semiclassical transport theory. Detailed subband structures are considered in an infinite series of finite height quantum wells and barriers. A significant enhancement of the thermoelectric figure of merit is expected. Based on my calculations, experimental studies are designed and performed on MBE grown Si/Sii -xGex quantum well superlattice structures. The experimental results are found to be consistent with theoretical predictions and indicate a significant enhancement of Z within the quantum wells over bulk values. The bismuth quantum wire system is a one-dimensional (ID) thermoelectric system. Bismuth as a semimetal is not a good thermoelectric material in bulk form becamm of the approximate cancellation between the electron and hole contributions to the Seebeck coefficient. However, quantum confinement can be introduced by making Bi nanowires to yield a ID semiconductor. ID transport properties are calculated along the principal crystallographic directions. By carefully tailoring the Bi wire size and carrier concentration, substantial enhancement in Z is expected. A preliminary experimental study of Bi nanowire arrays is also presented.
by Xiangzhong Sun.
Ph.D.
Andrew), Patterson Alex A. (Alex. "An analytical framework for field electron emission, incorporating quantum- confinement effects." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/84863.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 141-151).
As field electron emitters shrink to nanoscale dimensions, the effects of quantum confinement of the electron supply and electric field enhancement at the emitter tip play a significant role in determining the emitted current density (ECD). Consequently, the Fowler-Nordheim (FN) equation, which primarily applies to field emission from the planar surface of a bulk metal may not be valid for nanoscale emitters. While much effort has focused on studying emitter tip electrostatics, not much attention has been paid to the consequences of a quantum-confined electron supply. This work builds an analytical framework from which ECD equations for quantum-confined emitters of various geometries and materials can be generated and the effects of quantum confinement of the electron supply on the ECD can be studied. ECD equations were derived for metal emitters from the elementary model and for silicon emitters via a more physically-complete version of the elementary model. In the absence of field enhancement at the emitter tip, decreasing an emitter's dimensions is found to decrease the total ECD. When the effects of field enhancement are incorporated, the ECD increases with decreasing transverse emitter dimensions until a critical dimension dpeak, below which the reduced electron supply becomes the limiting factor for emission and the ECD decreases. Based on the forms of the ECD equations, alternate analytical methods to Fowler-Nordheim plots are introduced for parameter extraction from experimental field emission data. Analysis shows that the FN equation and standard analysis procedures over-predict the ECD from quantum-confined emitters. As a result, the ECD equations and methods introduced in this thesis are intended to replace the Fowler-Nordheim equation and related analysis procedures when treating field emission from suitably small field electron emitters.
by Alex A. Patterson.
S.M.
Riley, James R. "A Systematic Investigation of Quantum Confinement Effects in Bismuth Nanowire Arrays." Thesis, Boston College, 2009. http://hdl.handle.net/2345/693.
Full textBismuth is an interesting element to study because the low effective mass of its charge carriers makes the material sensitive to quantum confinement effects. When bismuth is reduced to the nanoscale two interesting phenomena may occur: it may transition from a semimetal to a semiconductor, or charge carriers in special surface states may begin to dominate the behavior of the material. Arrays of bismuth nanowires of various diameters were studied to investigate these possibilities. The magnetoresistance of the arrays was measured and the period of Shubnikov-de Haas oscillations suggested an increase in the effective mass and density of the material’s charge carriers for small nanowire diameters. These increases suggested that electrons were present in surface states and strongly influenced the material’s behavior when its dimensions were sufficiently reduced. The magnetization of the nanowire arrays was also measured and the lack of de Haas-van Alphen oscillations for certain diameter nanowires suggested that electrons were not present in surface states and that instead the material was transitioning from a semimetal to a semiconductor. Heat capacity measurements were planned to reconcile the two experiments. My detailed calculations demonstrated that heat capacity measurements were feasible to determine the presence, or absence, of surface charge carriers. Because the electronic contribution to the material’s heat capacity is small a calorimeter platform was constructed with ultra-low heat capacity components
Thesis (BS) — Boston College, 2009
Submitted to: Boston College. College of Arts and Sciences
Discipline: College Honors Program
Discipline: Physics
Ford, Frank R. "Loop study of Gribov-Zwanzigar confinement and mass operators in quantum chromodynamics." Thesis, University of Liverpool, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526882.
Full textWeiss, Stephan [Verfasser]. "Nonequilibrium quantum transport and confinement effects in interacting nanoscale conductors / Stephan Weiss." Aachen : Shaker, 2008. http://d-nb.info/1162793899/34.
Full textEddie, Iain Mackenzie. "Carrier confinement in vertical-cavity surface-emitting lasers by quantum well intermixing." Thesis, University of Glasgow, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.433190.
Full textRaciti, Rosario. "Quantum confinement effects on light absorption in Germanium for solar energy conversion." Doctoral thesis, Università di Catania, 2017. http://hdl.handle.net/10761/3689.
Full textAlmalki, Shaimaa. "Nano-engineering of High Harmonic Generation in Solid State Systems." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39308.
Full textWerwa, Eric 1970. "The role of quantum confinement effects in the visible photoluminescence from silicon nanoparticles." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/43547.
Full textKempf, James G. "Probing quantum confinement at the atomic scale with optically detected nuclear magnetic resonance." Diss., Pasadena, Calif. : California Institute of Technology, 2001. http://resolver.caltech.edu/CaltechETD:etd-08282001-123851.
Full textShi, Teng. "Confined States in GaAs-based Semiconducting Nanowires." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1460447182.
Full textReynolds, Bryan. "Electronic Transport Properties of Nanonstructured Semiconductors: Temperature Dependence and Size Effects." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1463130513.
Full textMaelger, Jan. "Perturbative perspectives on the Phase diagram of Quantum ChromoDynamics." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX050/document.
Full textUnravelling the structure of the QCD phase diagram and its many aspects such as (de)confinementand chiral symmetry breaking, is one of the big challenges of modern theoretical physics, and manyapproaches have been devised to this aim. Since perturbation theory is believed to cease feasibilityat low energy scales, these approaches treat the relevant order parameters, the quark condensate andthe Polyakov loop, non-perturbatively. However, it is also well-established that the starting point forperturbation theory, the Fadeev-Popov gauge-fixing procedure, is inherently ill-defined in the infrareddue to the presence of Gribov ambiguities. In this context, a modified perturbative approach based onthe Curci-Ferrari Lagrangian has been introduced, where a phenomenologically motivated effective gluonmass term is added to the Landau gauge-fixed action. Prior to the beginning of the thesis, this approach hasproven extremely fruitful in its descriptions of (unquenched) Yang-Mills correlation functions and thermodynamics at (non)zero temperature and density.Throughout the thesis we extend this analysis to the entire phase structure of QCD and QCD-liketheories and test the validity of the model in various regimes of interest. For instance, to further aprevious one-loop study in the regime of heavy quark masses, we have computed the two-loop quarksunset diagram in the presence of a non-trivial gluon background in a finite temperature and densitysetting. We come to the conclusion that the physics underlying center symmetry is well-described by our perturbative model with a seemingly robust weak-coupling expansion scheme. Furthermore, we study the regime of light quarks by means of a recently proposed resummation scheme which exploits the presence of actual small parameters in the Curci-Ferrari description of infrared QCD. In the quark sector, this leads to the renown rainbow equations. We extend this first-principle setup to nonzero temperature, chemical potential, and gluon background. We perform a first qualitative analysis of the prediction of the model concerning the possible existence of a critical endpoint in the QCD phase diagram by using a simplified version of these general equations
Mondelo-Martell, Manel. "Quantum Confinement of Gaseous Molecules in Nanostructures: Effects on the Dynamics and Internal Structure." Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/586179.
Full textEls efectes de confinament quàntic, entesos com els canvis en l’estructura i la dinàmica d’una molècula quan va des d’un entorn lliure a una cavitat amb alguna longitud característica de l’ordre del nanòmetre, representen un repte i una oportunitat. Un repte, perquè encara hi ha feina per poder comprendre-les i modelar-les correctament. Una oportunitat, perquè ofereixen els mitjans per ajustar les propietats moleculars, com adsorció, difusió o fins i tot reactivitat. La present tesi doctoral es centra en l’estudi teòric i computacional del sistema consistent en una sola molècula de H2 (o bé de D2) atrapada a la cavitat interna d’un nanotub de carboni estrets d’una sola paret. Des de que Dillon i coautors van suggerir al 1997 l’existència d’efectes de confinament quàntic com a explicació de la inesperadament alta adsorció de H2 en nanotubs de carboni, aquest tema ha rebut molta atenció des de punts de vista teòrics i experimentals. La intenció d’aquesta Tesi és obtenir més informació sobre aquest fenomen mitjançant el desenvolupament de noves eines d’anàlisi per a estats propis d’alta dimensionalitat, i la millora del model respecte a treballs anteriors. El primer s’ha aconseguit mitjançant l’ús de funcions de solapament i solapaments parcial, que han proporcionat una manera intuïtiva d’entendre l’acoblament entre els diferents graus de llibertat per comparació amb estats propis reals d’un model separable del sistema. Pel que fa a la millora del model, hem treballat des de dues perspectives: en primer lloc, hem inclòs nous graus de llibertat moleculars al sistema, concretament el moviment del centre de massa de la molècula al llarg de l’eix del nanotub. Això ens ha permès obtenir coeficients de difusió per al H2 i el D2 dins del nanotub utilitzant un formalisme totalment mecànic–quàntic, cosa que no s’havia fet prèviament. L’estudi de la dinàmica de difusió també ens ha permès definir una representació adiabàtica de l’Hamiltonià del sistema, aprofitant la quasi separabilitat entre la coordenada de difusió i la resta de graus de llibertat, per tal d’augmentar l’eficàcia de les propagacions amb gran precisió. Com a segon mitjà per millorar el model, hem desenvolupat un Hamiltonià d’acoblament sistema–bany per tal de veure com els fonons de la nanoestructura afecten la dinàmica de la molècula confinada. Hem vist que ambdós conjunts de graus de llibertat (moleculars i fonons) estan fortament acoblats a causa de l’intercanvi de moment lineal entre ells. Càlculs de Teoria de Perturbacions Dependents del Temps han determinat que el temps característic de l’intercanvi de moment és més curt que el de la difusió, cosa que suggereix que la fricció amb el nanotub pot tenir un efecte rellevant sobre les propietats del transport de la molècula confinada.
Capdevilla, Roldan Rodolfo Maia [UNESP]. "Dynamical chiral symmetry breaking: the fermionic gap equation with dynamical gluon mass and confinement." Universidade Estadual Paulista (UNESP), 2013. http://hdl.handle.net/11449/92026.
Full textAlguns aspectos da quebra de simetria quiral para quarks na representação fundamental são discutidos no contexto das equações de Schwinger-Dyson. Estudamos a equação de gap fermionica incluindo o efeito de uma massa dinêmica para os gluons. Ao estudar esta equação de gap verificamos que a intenção não é forte o suficiente para gerar uma massa dinâmica dos quarks compatível com os dados experimentais. Também discutimos como a introdução de um propagador confinante pode mudar este cenário, exatamente como foi proposto por Cornwall [1] recentemente, desta forma estudamos uma equação de gap completa, composta pela troca de um gluon massivo e por um termo confinante; M('p POT 2') = 'M IND. c('p POT 2') + 'M IND. 1g'('p POT 2'). Encontramos soluções assintótica desta equação de gap nos casos de constante de acoplamento constante e corredora. Este último caso corresponde a um aprimoramento do cálculo com constante de acoplamento constante feito por Doff, Machado e Natale [2]
Some aspects of chiral symmetry breaking for quarks in the fundamental representation are discussed in the framework of the Schwinger-Dyson equations. We study the fermionic gap equation including effects of dynamical gluon mass. Studying the bifurcation equation of this gap equation we verify that the interaction is not strong enough to generate a satisfactory dynamical quark mass. We also discuss how the introduction of a confining propagator may change this scenario as recently pointed out by Cornwall [1], so we study a complete gap equation composed by the one-dressed-gluon exchange term and a confining term: M('p POT 2') = 'M IND. c('p POT 2') + 'M IND. 1g'('p POT 2'). We find asymptotic solutions for this gap equation in the cases of constant coupling and running coupling constant. This last case is an improvement of the constant coupling calculation of Doff, Machado and Natale [2]
Capdevilla, Roldan Rodolfo Maia. "Dynamical chiral symmetry breaking : the fermionic gap equation with dynamical gluon mass and confinement /." São Paulo, 2013. http://hdl.handle.net/11449/92026.
Full textBanca: Adriano Doff Sotta Gomes
Banca: Alex Gomes Dias
Resumo: Alguns aspectos da quebra de simetria quiral para quarks na representação fundamental são discutidos no contexto das equações de Schwinger-Dyson. Estudamos a equação de gap fermionica incluindo o efeito de uma massa dinêmica para os gluons. Ao estudar esta equação de gap verificamos que a intenção não é forte o suficiente para gerar uma massa dinâmica dos quarks compatível com os dados experimentais. Também discutimos como a introdução de um propagador confinante pode mudar este cenário, exatamente como foi proposto por Cornwall [1] recentemente, desta forma estudamos uma equação de gap "completa", composta pela troca de um gluon massivo e por um termo confinante; M('p POT 2') = 'M IND. c('p POT 2') + 'M IND. 1g'('p POT 2'). Encontramos soluções assintótica desta equação de gap nos casos de constante de acoplamento "constante" e "corredora". Este último caso corresponde a um aprimoramento do cálculo com constante de acoplamento "constante" feito por Doff, Machado e Natale [2]
Abstract: Some aspects of chiral symmetry breaking for quarks in the fundamental representation are discussed in the framework of the Schwinger-Dyson equations. We study the fermionic gap equation including effects of dynamical gluon mass. Studying the bifurcation equation of this gap equation we verify that the interaction is not strong enough to generate a satisfactory dynamical quark mass. We also discuss how the introduction of a confining propagator may change this scenario as recently pointed out by Cornwall [1], so we study a "complete" gap equation composed by the one-dressed-gluon exchange term and a confining term: M('p POT 2') = 'M IND. c('p POT 2') + 'M IND. 1g'('p POT 2'). We find asymptotic solutions for this gap equation in the cases of "constant coupling" and "running coupling constant". This last case is an improvement of the constant coupling calculation of Doff, Machado and Natale [2]
Mestre
Williams, Owen Leyton. "A theoretical study of charge confinement in quantum dots : modelling the SnO2 charge writing process." Thesis, Swansea University, 2007. https://cronfa.swan.ac.uk/Record/cronfa42429.
Full textShahid, Robina. "Green Chemical Synthesis of II-VI Semiconductor Quantum Dots." Doctoral thesis, KTH, Funktionella material, FNM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104980.
Full textQC 20121115
Khattak, Shaukat Ali. "Exciton confinement in strain-engineered InAs quantum dots in metamorphic In_{x}Ga_{1-x}As." Thesis, Lancaster University, 2015. http://eprints.lancs.ac.uk/77217/.
Full textThierry, François. "Etude des propriétés de nanoparticules semiconductrices pour les cellules solaires hybrides." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4381.
Full textThis thesis was conducted in the OPTO-PV team of the IM2NP laboratory. Its aim is to study the peculiar properties of low-dimensional nanostructures for use in optoelectronic applications. For photovoltaics in particular, they can be used for the realization of innovative devices with theoretical hight efficiencies at low costs. After we evaluated the various technologies and phenomena that can be used in nanostructured photovoltaics, we decided to choose an hybrid organic polymer - inorganic quantum dots solar cell as study structure. We then developed a numerical approach to determine the intrinsic properties of quantum dots. Our method is fast and requires few parameters so that we can conduct predictive and explicative studies. We start with the evaluation of the electronic properties under the effective mass approximation that we modify to take into account the non-parabolicity of the energy bands. We use the results to derive the optical properties with emphasis on absorption that plays an important role in the photovoltaic process. We take dielectric coupling effects and also thermodynamic effects into account. Those tools allow the study of the effect of quantum confinement on the optoelectronic behavior of various nanostructures: coupled quantum wells, circular cross-section quantum wires and spherical dots. The fabrication and characterization of PMMA thin-films containing homogeneous and (core)shell quantum dots of different semiconductors, validate our approach and constitute the first step towards the study of hybrid active layers for efficient solar cells
DEL, GOBBO SILVANO. "Cadmium sulfide quantum dots: growth and optical properties." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2009. http://hdl.handle.net/2108/873.
Full textIn recent years, there has been a rapid development of the growth techniques of nanostructured materials, and a particular breakthrough was given by the introduction of colloidal growth techniques. These techniques allow to grow by affordable facilities, a wide range of nanostructured materials, metals and semiconductors, with high crystallinity, reduced size, narrow size distribution. Nanostructured cadmium sulfide (CdS) has promising future applications as in the realization of optoelectronic devices, high efficiency solar cells as well as fluorescent biological probe. However, in order to fully exploit the potential technological applications, the study of the physical properties of such materials is of crucial importance. In this thesis, the optoelectronic and optovibrational properties of cadmium sulfide quantum dots (QDs) grown by colloidal chemical method are studied. By the means of colloidal growth, it is possible to grow QDs with reduced size and narrow size distribution. The synthesis of CdS-QDs consists in the thermolysis (T=260 °C) of cadmium stearate in presence of hydrogen sulfide in a high temperature boiling point solvent (1-octadecene). The growth rate and final QDs size are regulated by the presence of the surfactating molecule trioctylphosphine oxide (TOPO). QDs with a determined size and a narrow size distribution can be obtained properly adjusting the growth parameters such as temperature, precursors concentrations, and principally the surfactant concentration and reaction time (arrested growth). The QDs morphology, their size and their size distribution is determined by TEM imaging. By absorption spectroscopy, information regarding the electronic states in QDs are obtained, and exploiting the relation existing between band gap and QD diameter, the mean diameter of the QDS is determined. The emissive properties of the QDs are probed by photoluminescence spectroscopy (PL). From the energy of PL band, an estimation of the QDs diameter can be obtained. Based on the width of absorbance and PL bands, the width of QDs size distributions can be estimated. A large part of the work is concerned with the study of vibrational properties of CdS-QDs by Raman spectroscopy. These investigations are carried out on the CdS-QDs samples purposely grown with different average sizes. In order to perform micro-Raman measurements, the gel-like TOPO-coated CdS-QDs are treated to replace the TOPO layer by thioglycolic acid (TGA). This treatment is necessary in order to have powder-like CdS-QDs being more suitable to a Raman scattering study. To avoid thermal effects or damage to the sample, the micro-Raman measurements must to be performed using very low laser powers (on the sample). In the Raman spectra of CdS-QDs, a decrease of the phonon frequency (red-shift) with respect to the bulk CdS frequency is observed. In particular, the red-shift is expected to be more pronounced for the smallest QDs, while at the increasing of QDs size, the phonon frequency will approach progressively to the bulk value. This red-shift is caused by the lattice expansion and by a subsequent weakening of the bonds which causes a reduction of the resonance frequency. Beyond the red-shift, the quantum confinement is visible also as an asymmetric broadening of the phonon line and by the apparition of a new peak a circa 270 cm-1. Some reports assign this peak to surface modes, while other reports describe this mode as a consequence of new selection rules arising from the reduced dimensionality. The study has also the aim to cross check the theoretical prediction based on the dielectric continuum model and on the surface modes with the experimental results. A relation between the theory and the experiment has been found, in particular, the predicted surface frequencies are in good agreement with the experiments. In conclusion, the goal of this thesis work is to develop a method to grow CdS-QDs with the desired physical characteristics (narrow size distribution) suitable for a systematic study of optical properties (vibrational and electronic).
Palacios-Berraquero, Carmen. "Quantum-confined excitons in 2-dimensional materials." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275721.
Full textSchneider, Philipp-Immanuel. "Theoretical description of strongly correlated ultracold atoms in external confinement." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://dx.doi.org/10.18452/16829.
Full textToday, ultracold atoms can be confined in various optical trapping potentials, while their mutual interaction can be controlled by magnetic Feshbach resonances. The confinement and resonant interaction can lead to a strong correlation of the atoms, which allows for the quantum simulation of physical phenomena whose classical simulation is computationally intractable. A tailored control of these correlations might eventually enable the implementation of a quantum computer with ultracold atoms. In order to take advantage of the flexibility and precise control of ultracold atoms, this thesis aims to provide a precise theoretical description of strongly correlated, confined atoms at a magnetic Feshbach resonance. The interplay between the confinement of the atoms and the Feshbach resonance is investigated by deriving from first principles a model that enables the complete analytic description of harmonically trapped ultracold atoms at a Feshbach resonance. This model is subsequently used to develop a Bose-Hubbard model of atoms in an optical lattice at a Feshbach resonance. In contrast to more elaborate numerical calculations, the model can predict the eigenenergies and the dynamical behavior of atoms in an optical lattice with high accuracy including only a small number of Bloch bands. Furthermore, a method id developed that solves the time-dependent Schrödinger equation for two interacting atoms in a dynamic optical lattice. Finally, a proposal for the implementation of a quantum computer with ultracold atoms in a dynamic optical lattice is presented. It utilizes the correlated Mott-insulator state of repulsively interacting atoms as a quantum register. Quantum operations are driven by a periodic shaking of the optical lattice.
PANTALEI, CLAUDIA. "Single-particle dynamics of helium mixtures and 4He in nanometric confinement." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/473.
Full textThe aim of this thesis work is the study, by means of Deep Inelastic Neutron Scatter- ing, of the microscopic dynamics of two different helium systems at low temperature (T=2K): an isotopic helium mixture (in the fluid phase and near the melting point) and a system of 4He in nanometric confinement. The interest in the helium, from the first decades of 1900, is due to its unique features: it is the only element in nature that doesn't have a solid phase at absolute zero. Thus, at low temperatures it presents quantum effects, usually negligible in other physical systems that in this condition crystallise. The helium is thus the unique test-bed for theoretical quantum models, in particular for studying the interacting boson (4He) and fermion (3He) systems. Moreover, if in 4He are added some atoms of 3He it is possible to derive important information about the interplay of these two statistics. In this context, several experiments on liquid and solid helium have been performed. Measurements on pure 3He and 4He have shown that the mean kinetic energy of pure liquids depends on the density of the system and increases decreasing the molar volume. On the other hand, the microscopic dynamics of helium mixtures reveals quite a different picture with respect to pure 3He and 4He: the mean kinetic energy of the light isotope, above a molar volume of 25cm3/mole, shows a remarkable independence from molar volume and concentration. This behaviour could be explained by quantum effects, such as exchange effects. The first part of the present work deals with the experiments performed to investigate the dynamics of the mixtures from 22cm3/mole to 25cm3/mole and shows how, at these low molar volumes, the mean kinetic energy of 3He starts again to be strongly dependent on the molar volume, increasing until reaching, at 22.7cm3/mole, the corresponding value of pure helium. Recent measurements have been also performed to investigate the influence of confinement on helium. Experiments on 4He, adsorbed in flat surface or slit geometry porous substrates, have shown a large increase in helium mean kinetic energy. This has been attributed to the strong localisation effects induced by the helium-substrate interaction potential, which mainly influence the firsts two or three adsorbed layers. Such effects can be also investigated by confining 4He atoms in cylindrical pore geometries and by studying their dynamics as function of pore size. Aim of the second part of the thesis has been the determination of the single particle mean kinetic energy of 4He adsorbed in cylindrical silica nanopores (Xerogel) having two different pore diameters, namely, 24 ºAand 160 ºA, and to evaluate the dependence of single- particle dynamics on pore sizes, layer coverage, and confining system geometry. The measurements have been performed at a temperature of T=2.5K, saturated vapour pressure, and 95% volume filling. Significant changes in the values of the single particle mean kinetic energy are found: they are remarkably higher than the value of normal liquid 4He at the same conditions. The results are interpreted in terms of a model in which 4He atoms are arranged in concentric annuli along the cylindrical pore axis, growing layer-by-layer and with the mean kinetic energy mainly dependent on the ratio between the atomic diameter and the pore diameter.
Lapitski, Denis. "Development of the Quantum Lattice Boltzmann method for simulation of quantum electrodynamics with applications to graphene." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:e89cd11b-da2c-4c34-be9f-7b3d711e2e64.
Full textGalvani, Benoit. "Modélisation du transport électronique quantique : effet du confinement et des collisions dans les cellules solaires." Electronic Thesis or Diss., Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0402.
Full textThe Shockley-Queisser limit represents the compromise between the non-exploitation of low energy photons andthe thermalization losses of high-energy photo-generated carriers. There are devices that can overcome this limit, based on the quantum properties and transport of carriers. The understanding of the physical phenomena occurring at these nanoscales is a key component to the development of new solutions. The goal of this thesis is to conduct a numerical study of the effects of confinement and scattering in solar cells. In a first part dedicated to the theoretical model, we detail the non-equilibrium Green’s functions formalism and its use in the context of our study. We give details on the numerical model of electron-phonon and electron-photon scatterings with interaction self-energies. The two following parts show examples of application of the Green’s function formalism in the case of two devices. The first system is a multi quantum wells solar cell. Calculations of the local density of states permit to highlight the phenomenon of minibands occurring in such quantum periodic systems. The second system is a solar cell based on perovskite hydrid materials. Already used for the design of tandem cells, there is still uncertainties concerning carrier transport mechanisms in such organic-inorganic materials. Our work has provided information about the effects of electron-phonon scattering in such materials, in particular on the opti-cal and electrical characteristics of the device
Li, Li. "Study of Metal-Insulator-Metal Diodes for Photodetection." University of Dayton / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1367319217.
Full textBriosne, frejaville Clémence. "Transport et confinement optique d'atomes de strontium pour une expérience de microscope à gaz quantique." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP037.
Full textThis manuscript presents the construction of a new quantum ultracold atom experiment using strontium 84. The aim of this experiment is to study the relaxation dynamics of quantum gases initially prepared in an out-of-equilibrium state. We will investigate bidimensional gases on a lattice. This manuscript aims to describe the optical systems designed for trapping and manipulating the atoms during the experiment. Specifically, we present our optical solution to transport the atoms between locations in the vacuum chamber. We also discuss the choices we made to create the bidimensional lattice. Lastly, a quantum gas microscope is implemented to measure the spatial correlation functions from the atoms’ distribution in the lattice. A characterization of the microscope is laid out in this manuscript. Though we determined a first version of our optical systems, there are still a few steps needed to complete the experimental setup
Issac, Abey. "Photoluminescence Intermittency of Semiconductor Quantum Dots in Dielectric Environments." Doctoral thesis, Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601267.
Full textBetrachtet man die Fluoreszenz einzelner Farbstoffmoleküle oder Halbleiternanokristalle bei kontinuierlicher Anregung, so stellt man fest, dass die im Zeitverlauf beobachtete Intensität einer stochastischen Variation unterliegt, d. h. dass das Chromophor zwischen emittierenden und nicht emittierenden Zuständen, auch Hell- und Dunkelzuständen genannt, hin- und herschaltet. Dieses als Blinken bekannte Phänomen ist physikalisch wie auch technologisch herausfordernd, lässt es doch einerseits die Realisierbarkeit einer Reihe von quantenoptischen Anwendungen, so z. B. auf dem Gebiet der Quantenkryptographie, dem Quantum Computing oder der optischen Schaltungstechnik auf Basis einzelner Quantenobjekte, in naher Zukunft möglich erscheinen. Andererseits setzt es gewissen Anwendungen, die auf die permanente Sichtbarkeit des Chromophors aufbauen, Grenzen, so zum Beispiel der Verwendung als Lumineszenzmarker in der medizinischen Diagnostik. Weiterhin ist festzustellen, dass das Blinken kritisch von den äußeren Bedingungen und von den Umgebungsparametern abhängt. Aus diesen und anderen Gründen ist ein fundamentales Verständnis der physikalischen Ursachen und der Wechselwirkungsprozesse unerlässlich. Die Forschung dazu steckt noch in den Kinderschuhen. Basierend auf umfangreiche Messungen der Fluoreszenzzeitreihen einzelner Nanokristalle aus CdSe und CdSe/ZnS in verschiedenen Umgebungen, zeigt diese Dissertation exemplarisch den Einfluss der Dielektrizitätsparameter auf das Blinken. Zur Erklärung des Sachverhalts wird ein so genanntes Self-Trapping-Modell zu Rate gezogen. Demnach kommt es zu einer Ionisation des Quantenobjekts und anschließender Ladungstrennung, woraufhin die abgetrennte Ladung für eine gewisse Zeit in der Umgebung lokalisiert bleibt. Die Dauer der Lokalisierung und damit der emittierenden und nicht emittierenden Perioden hängt von der dielektrischen Funktion des umgebenden Materials ab. Dies ist als direkter Nachweis für den photoinduzierten Ladungstransfer als Ursache des Fluoreszenzblinkens zu deuten. Die Arbeit demonstriert, dass die experimentellen Zeitreihen die charakteristischen Merkmale eines diffusionsgesteuerten Ladungstransferprozesses besitzen und nimmt dabei den gegenwärtigen wissenschaftlichen Diskurs über geeignete theoretische Modelle des Fluoreszenzblinkens auf
Gongyo, Shinya. "The Gribov problem beyond Landau gauge Yang-Mills theory." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199098.
Full textMorfonios, Christian [Verfasser], and Peter [Akademischer Betreuer] Schmelcher. "Control of coherent transport by the interplay of confinement and magnetic fields in open quantum billiards / Christian Morfonios. Betreuer: Peter Schmelcher." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2014. http://d-nb.info/1064077153/34.
Full textScardera, Giuseppe ARC Centre of Excellence in Advanced Silicon Photovoltaics & Photonics Faculty of Engineering UNSW. "Correlating structural and optical properties of silicon nanocrystals embedded in silicon nitride: An experimental study of quantum confinement for photovoltaic applications." Publisher:University of New South Wales. ARC Centre of Excellence in Advanced Silicon Photovoltaics & Photonics, 2008. http://handle.unsw.edu.au/1959.4/41472.
Full textRasin, Ahmed Tasnim. "High efficiency quantum dot-sensitised solar cells by material science and device architecture." Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/78822/1/Ahmed%20Tasnim_Rasin_Thesis.pdf.
Full textZieliński, Marcin. "Nanoscale engineering of semiconductor heterostructures for quadratic nonlinear optics and multiphoton imaging." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2011. http://tel.archives-ouvertes.fr/tel-00585601.
Full text