To see the other types of publications on this topic, follow the link: Quantum critical point.

Journal articles on the topic 'Quantum critical point'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Quantum critical point.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sakurai, Hiroya, Naohito Tsujii, and Eiji Takayama-Muromachi. "Quantum critical point of -." Physica B: Condensed Matter 378-380 (May 2006): 121–22. http://dx.doi.org/10.1016/j.physb.2006.01.048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ramazashvili, R., and P. Coleman. "Superconducting Quantum Critical Point." Physical Review Letters 79, no. 19 (November 10, 1997): 3752–54. http://dx.doi.org/10.1103/physrevlett.79.3752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bauer, E. D., D. Mixson, F. Ronning, N. Hur, R. Movshovich, J. D. Thompson, J. L. Sarrao, M. F. Hundley, P. H. Tobash, and S. Bobev. "Antiferromagnetic quantum critical point in." Physica B: Condensed Matter 378-380 (May 2006): 142–43. http://dx.doi.org/10.1016/j.physb.2006.01.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shaginyan, V. R., E. V. Kirichenko, and V. A. Stephanovich. "Quantum critical point in ferromagnet." Physica B: Condensed Matter 403, no. 5-9 (April 2008): 755–57. http://dx.doi.org/10.1016/j.physb.2007.10.223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mielczarek, Jakub. "Big Bang as a Critical Point." Advances in High Energy Physics 2017 (2017): 1–5. http://dx.doi.org/10.1155/2017/4015145.

Full text
Abstract:
This article addresses the issue of possible gravitational phase transitions in the early universe. We suggest that a second-order phase transition observed in the Causal Dynamical Triangulations approach to quantum gravity may have a cosmological relevance. The phase transition interpolates between a nongeometric crumpled phase of gravity and an extended phase with classical properties. Transition of this kind has been postulated earlier in the context of geometrogenesis in the Quantum Graphity approach to quantum gravity. We show that critical behavior may also be associated with a signature change in Loop Quantum Cosmology, which occurs as a result of quantum deformation of the hypersurface deformation algebra. In the considered cases, classical space-time originates at the critical point associated with a second-order phase transition. Relation between the gravitational phase transitions and the corresponding change of symmetry is underlined.
APA, Harvard, Vancouver, ISO, and other styles
6

Continentino, Mucio Amado. "Quantum critical point in heavy fermions." Brazilian Journal of Physics 35, no. 1 (March 2005): 197–203. http://dx.doi.org/10.1590/s0103-97332005000100018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bruyn, John R. de, and David A. Balzarini. "Quantum effects near the liquid–vapour critical point." Canadian Journal of Physics 68, no. 4-5 (April 1, 1990): 449–53. http://dx.doi.org/10.1139/p90-069.

Full text
Abstract:
We gather together a number of recent measurements of the coexistence curve and compressibility of fluids close to the critical point, and investigate the variation of the critical exponents and amplitudes as quantum effects become more important. We find that the universal critical exponents and amplitude ratios are the same for quantum fluids as for room-temperature fluids, as expected. Some of the nonuniversal critical amplitudes, however, show systematic variations as quantum effects become significant, in at least qualitative agreement with theoretical predictions.
APA, Harvard, Vancouver, ISO, and other styles
8

Watanabe, Shinji. "New Frontiers of Quantum Critical End Point." JPSJ News and Comments 8 (January 17, 2011): 12. http://dx.doi.org/10.7566/jpsjnc.8.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schlottmann, P. "Undercompensated Kondo Impurity with Quantum Critical Point." Physical Review Letters 84, no. 7 (February 14, 2000): 1559–62. http://dx.doi.org/10.1103/physrevlett.84.1559.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sebastian, S. E., N. Harrison, C. D. Batista, L. Balicas, M. Jaime, P. A. Sharma, N. Kawashima, and I. R. Fisher. "Dimensional reduction at a quantum critical point." Nature 441, no. 7093 (June 2006): 617–20. http://dx.doi.org/10.1038/nature04732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Shchelkachev, N. M. "Critical current in superconducting quantum point contacts." Journal of Experimental and Theoretical Physics Letters 71, no. 12 (June 2000): 504–7. http://dx.doi.org/10.1134/1.1307476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Khodel, V. A. "Two scenarios of the quantum critical point." JETP Letters 86, no. 11 (February 2008): 721–26. http://dx.doi.org/10.1134/s0021364007230087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Khodel, V. A., J. W. Clark, and M. V. Zverev. "Topological crossovers near a quantum critical point." JETP Letters 94, no. 1 (September 2011): 73–80. http://dx.doi.org/10.1134/s0021364011130108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Herbut, Igor F. "Superconductor-insulator quantum critical point in1+εdimensions." Physical Review B 57, no. 3 (January 15, 1998): 1303–7. http://dx.doi.org/10.1103/physrevb.57.1303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Efetov, K. B., H. Meier, and C. Pépin. "Pseudogap state near a quantum critical point." Nature Physics 9, no. 7 (June 2, 2013): 442–46. http://dx.doi.org/10.1038/nphys2641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Shaginyan, V. R., M. Ya Amusia, K. G. Popov, and V. A. Stephanovich. "Quantum critical point in high-temperature superconductors." Physics Letters A 373, no. 6 (February 2009): 686–92. http://dx.doi.org/10.1016/j.physleta.2008.12.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Shaginyan, V. R., and K. G. Popov. "General properties ofCePd1-xRhxat quantum critical point." Physica B: Condensed Matter 404, no. 19 (October 2009): 3179–82. http://dx.doi.org/10.1016/j.physb.2009.07.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Wölfle, P., and A. Rosch. "Fermi Liquid Near a Quantum Critical Point." Journal of Low Temperature Physics 147, no. 3-4 (February 16, 2007): 165–77. http://dx.doi.org/10.1007/s10909-007-9308-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Paglione, Johnpierre, M. A. Tanatar, D. G. Hawthorn, Etienne Boaknin, R. W. Hill, F. Ronning, M. Sutherland, Louis Taillefer, C. Petrovic, and P. C. Canfield. "Field-induced quantum critical point in CeCoIn5." Physica C: Superconductivity 408-410 (August 2004): 705–6. http://dx.doi.org/10.1016/j.physc.2004.03.120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Prochaska, L., X. Li, D. C. MacFarland, A. M. Andrews, M. Bonta, E. F. Bianco, S. Yazdi, et al. "Singular charge fluctuations at a magnetic quantum critical point." Science 367, no. 6475 (January 16, 2020): 285–88. http://dx.doi.org/10.1126/science.aag1595.

Full text
Abstract:
Strange metal behavior is ubiquitous in correlated materials, ranging from cuprate superconductors to bilayer graphene, and may arise from physics beyond the quantum fluctuations of a Landau order parameter. In quantum-critical heavy-fermion antiferromagnets, such physics may be realized as critical Kondo entanglement of spin and charge and probed with optical conductivity. We present terahertz time-domain transmission spectroscopy on molecular beam epitaxy–grown thin films of YbRh2Si2, a model strange-metal compound. We observed frequency over temperature scaling of the optical conductivity as a hallmark of beyond-Landau quantum criticality. Our discovery suggests that critical charge fluctuations play a central role in the strange metal behavior, elucidating one of the long-standing mysteries of correlated quantum matter.
APA, Harvard, Vancouver, ISO, and other styles
21

COLEMAN, P. "DOES THE HEAVY ELECTRON MAINTAIN ITS INTEGRITY AT QUANTUM CRITICAL POINT?" International Journal of Modern Physics B 16, no. 20n22 (August 30, 2002): 2991. http://dx.doi.org/10.1142/s0217979202013407.

Full text
Abstract:
This talk will discuss non-Fermi liquid and quantum critical behavior in heavy fermion materials, focussing on the mechanism by which the electron mass appears to diverge at the quantum critical point. Is the quantum critical point merely a case of electron diffraction off a quantum critical spin density wave, or does it involve a fundamental break-down in the composite nature of the heavy electron place at the quantum critical point? We discuss the nature of the critical langrangian and show that the Hall constant changes continuously in the first scenario, but may "jump" discontinuously at a quantum critical point where the composite character of the electron quasiparticles changes.
APA, Harvard, Vancouver, ISO, and other styles
22

Liu, Zi Hong, Gaopei Pan, Xiao Yan Xu, Kai Sun, and Zi Yang Meng. "Itinerant quantum critical point with fermion pockets and hotspots." Proceedings of the National Academy of Sciences 116, no. 34 (August 1, 2019): 16760–67. http://dx.doi.org/10.1073/pnas.1901751116.

Full text
Abstract:
Metallic quantum criticality is among the central themes in the understanding of correlated electronic systems, and converging results between analytical and numerical approaches are still under review. In this work, we develop a state-of-the-art large-scale quantum Monte Carlo simulation technique and systematically investigate the itinerant quantum critical point on a 2D square lattice with antiferromagnetic spin fluctuations at wavevector Q=(π,π)—a problem that resembles the Fermi surface setup and low-energy antiferromagnetic fluctuations in high-Tc cuprates and other critical metals, which might be relevant to their non–Fermi-liquid behaviors. System sizes of 60×60×320 (L×L×Lτ) are comfortably accessed, and the quantum critical scaling behaviors are revealed with unprecedented high precision. We found that the antiferromagnetic spin fluctuations introduce effective interactions among fermions and the fermions in return render the bare bosonic critical point into a different universality, different from both the bare Ising universality class and the Hertz–Mills–Moriya RPA prediction. At the quantum critical point, a finite anomalous dimension η∼0.125 is observed in the bosonic propagator, and fermions at hotspots evolve into a non-Fermi liquid. In the antiferromagnetically ordered metallic phase, fermion pockets are observed as the energy gap opens up at the hotspots. These results bridge the recent theoretical and numerical developments in metallic quantum criticality and can serve as the stepping stone toward final understanding of the 2D correlated fermions interacting with gapless critical excitations.
APA, Harvard, Vancouver, ISO, and other styles
23

GRIGERA, S. A., A. P. MACKENZIE, A. J. SCHOFIELD, S. R. JULIAN, and G. G. LONZARICH. "A METAMAGNETIC QUANTUM CRITICAL ENDPOINT IN Sr3Ru2O7." International Journal of Modern Physics B 16, no. 20n22 (August 30, 2002): 3258–64. http://dx.doi.org/10.1142/s0217979202014115.

Full text
Abstract:
In this paper, we discuss the concept of a metamagnetic quantum critical end-point, consequence of the depression to zero temperature of a critical end-point terminating a line of first order first transitions. This new type of quantum critical point (QCP) is interesting both from a fundamental point of view: a study of a symmetry conserving QCP, and because it opens the possibility of the use of symmetry breaking tuning parameters, notably the magnetic field. In addition, we discuss the experimental evidence for the existence of such a QCP in the bilayer ruthenate Sr3Ru2O7.
APA, Harvard, Vancouver, ISO, and other styles
24

Kim, K.-S., and C. Pépin. "Quantum Boltzmann equation study for the Kondo breakdown quantum critical point." Journal of Physics: Condensed Matter 22, no. 2 (December 9, 2009): 025601. http://dx.doi.org/10.1088/0953-8984/22/2/025601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Yanase, Youichi. "FFLO Superconductivity near the Antiferromagnetic Quantum Critical Point." Journal of the Physical Society of Japan 77, no. 6 (June 15, 2008): 063705. http://dx.doi.org/10.1143/jpsj.77.063705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Licciardello, S., J. Buhot, J. Lu, J. Ayres, S. Kasahara, Y. Matsuda, T. Shibauchi, and N. E. Hussey. "Electrical resistivity across a nematic quantum critical point." Nature 567, no. 7747 (February 13, 2019): 213–17. http://dx.doi.org/10.1038/s41586-019-0923-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Amico, L., and D. Patanè. "Entanglement crossover close to a quantum critical point." Europhysics Letters (EPL) 77, no. 1 (January 2007): 17001. http://dx.doi.org/10.1209/0295-5075/77/17001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Khodel, V. A., J. W. Clark, and M. V. Zverev. "Contrasting different scenarios for the quantum critical point." JETP Letters 90, no. 9 (January 2010): 628–32. http://dx.doi.org/10.1134/s0021364009210085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Gegenwart, P., T. Westerkamp, C. Krellner, Y. Tokiwa, S. Paschen, C. Geibel, F. Steglich, E. Abrahams, and Q. Si. "Multiple Energy Scales at a Quantum Critical Point." Science 315, no. 5814 (February 16, 2007): 969–71. http://dx.doi.org/10.1126/science.1136020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Castellani, C., C. Di Castro, and M. Grilli. "The charge-density-wave quantum-critical-point scenario." Physica C: Superconductivity 282-287 (August 1997): 260–63. http://dx.doi.org/10.1016/s0921-4534(97)00243-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Sereni, J. G., R. Küchler, and C. Geibel. "Evidence for a ferromagnetic quantum critical point in." Physica B: Condensed Matter 359-361 (April 2005): 41–43. http://dx.doi.org/10.1016/j.physb.2004.12.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ramazashvili, R. "Anomalous behavior at a superconducting quantum critical point." Physical Review B 56, no. 9 (September 1, 1997): 5518–20. http://dx.doi.org/10.1103/physrevb.56.5518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Robinson, R. A., D. J. Goossens, M. S. Torikachvili, K. Kakurai, and H. Okumura. "A quantum multi-critical point in CeCu6−xAux." Physica B: Condensed Matter 385-386 (November 2006): 38–40. http://dx.doi.org/10.1016/j.physb.2006.05.095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Michor, H., E. Bauer, C. Dusek, G. Hilscher, P. Rogl, B. Chevalier, J. Etourneau, G. Giester, U. Killer, and E. W. Scheidt. "Heavy-fermion quantum critical point behavior in CeNi9Ge4." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): 227–28. http://dx.doi.org/10.1016/j.jmmm.2003.12.675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kawasaki, Ikuto, Daichi Nishikawa, Hiroyuki Hidaka, Tatsuya Yanagisawa, Kenichi Tenya, Makoto Yokoyama, and Hiroshi Amitsuka. "Magnetic properties around quantum critical point ofCePt1-xRhx." Physica B: Condensed Matter 404, no. 19 (October 2009): 2908–11. http://dx.doi.org/10.1016/j.physb.2009.07.139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hartnoll, Sean A., David M. Ramirez, and Jorge E. Santos. "Thermal conductivity at a disordered quantum critical point." Journal of High Energy Physics 2016, no. 4 (April 2016): 1–24. http://dx.doi.org/10.1007/jhep04(2016)022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kubo, Katsunori. "Uniform susceptibility near an antiferromagnetic quantum critical point." Physica B: Condensed Matter 281-282 (June 2000): 414–16. http://dx.doi.org/10.1016/s0921-4526(99)01013-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

de Medeiros, S. N., M. A. Continentino, M. T. D. Orlando, M. B. Fontes, E. M. Baggio-Saitovitch, A. Rosch, and A. Eichler. "Quantum critical point in CeCo(Ge1−xSix)3." Physica B: Condensed Matter 281-282 (June 2000): 340–42. http://dx.doi.org/10.1016/s0921-4526(99)01222-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kotegawa, Hisashi, Valentin Taufour, Dai Aoki, Georg Knebel, and Jacques Flouquet. "Evolution toward Quantum Critical End Point in UGe2." Journal of the Physical Society of Japan 80, no. 8 (August 15, 2011): 083703. http://dx.doi.org/10.1143/jpsj.80.083703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hidaka, Hiroyuki, Sosuke Takahashi, Yusei Shimizu, Tatsuya Yanagisawa, and Hiroshi Amitsuka. "Pressure-Induced Quantum Critical Point in Ferromagnet U4Ru7Ge6." Journal of the Physical Society of Japan 80, Suppl.A (January 2, 2011): SA102. http://dx.doi.org/10.1143/jpsjs.80sa.sa102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Knebel, G., D. Braithwaite, P. C. Canfield, G. Lapertot, and J. Flouquet. "The Quantum Critical Point Revisited in CeIn 3." High Pressure Research 22, no. 1 (January 2002): 167–70. http://dx.doi.org/10.1080/08957950211370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Lavagna, M., and C. Pépin. "Critical phenomena near the antiferromagnetic quantum critical point of heavy fermions." Physical Review B 62, no. 10 (September 2000): 6450–57. http://dx.doi.org/10.1103/physrevb.62.6450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ivanov, Alexandre, and Daniel Petitgrand. "Critical scattering near quantum critical point in a quasi-2D antiferromagnet." Physica B: Condensed Matter 385-386 (November 2006): 421–24. http://dx.doi.org/10.1016/j.physb.2006.05.141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Tallon, J. L., J. W. Loram, G. V. M. Williams, J. R. Cooper, I. R. Fisher, J. D. Johnson, M. P. Staines, and C. Bernhard. "Critical Doping in Overdoped High-Tc Superconductors: a Quantum Critical Point?" physica status solidi (b) 215, no. 1 (September 1999): 531–40. http://dx.doi.org/10.1002/(sici)1521-3951(199909)215:1<531::aid-pssb531>3.0.co;2-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

DIEGO, OSCAR, and JOSÉ GONZÁLEZ. "MULTICRITICALITY IN STABILIZED 2D QUANTUM GRAVITY." Modern Physics Letters A 07, no. 37 (December 7, 1992): 3465–77. http://dx.doi.org/10.1142/s0217732392002871.

Full text
Abstract:
We study the simplest perturbation of the matrix model for pure gravity susceptible of reaching the k=3 multicritical point in the framework of the stochastic stabilization of 2D quantum gravity. We show the existence of a line of points in the phase diagram with the genuine critical behavior of the k=2 theory. All the points of the critical line, up to the tricritical point, can be approached from a stable phase at the dominant level in 1/N expansion.
APA, Harvard, Vancouver, ISO, and other styles
46

SI, QIMIAO, J. LLEWEILUN SMITH, and KEVIN INGERSENT. "QUANTUM CRITICAL BEHAVIOR IN KONDO SYSTEMS." International Journal of Modern Physics B 13, no. 18 (July 20, 1999): 2331–42. http://dx.doi.org/10.1142/s0217979299002435.

Full text
Abstract:
This article briefly reviews three topics related to the quantum critical behavior of certain heavy-fermion systems. First, we summarize an extended dynamical mean-field theory for the Kondo lattice, which treats on an equal footing the quantum fluctuations associated with the Kondo and RKKY couplings. The resulting dynamical mean-field equations describe a Kondo impurity model with an additional coupling to vector bosons. Two types of quantum phase transition appear to be possible within this approach — the first a conventional spin-density-wave transition, the second driven by local physics. For the second type of transition to be realized, the effective impurity model must have a quantum critical point exhibiting an anomalous local spin susceptibility. In the second part of the paper, such a critical point is shown to occur in two variants of the Kondo impurity problem. Finally, we propose an operational test for the existence of quantum critical behavior driven by local physics. Neutron scattering results suggest that CeCu 6-x Au x passes this test.
APA, Harvard, Vancouver, ISO, and other styles
47

Belitz, D., and T. R. Kirkpatrick. "Quantum Triple Point and Quantum Critical End Points in Metallic Magnets." Physical Review Letters 119, no. 26 (December 26, 2017). http://dx.doi.org/10.1103/physrevlett.119.267202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Vasin, M., V. Ryzhov, and V. M. Vinokur. "Quantum-to-classical crossover near quantum critical point." Scientific Reports 5, no. 1 (December 21, 2015). http://dx.doi.org/10.1038/srep18600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Xu, Yichen, Xiao-Chuan Wu, and Cenke Xu. "Deconfined quantum critical point with nonlocality." Physical Review B 106, no. 15 (October 18, 2022). http://dx.doi.org/10.1103/physrevb.106.155131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Tokiwa, Y., E. D. Bauer, and P. Gegenwart. "Zero-Field Quantum Critical Point inCeCoIn5." Physical Review Letters 111, no. 10 (September 4, 2013). http://dx.doi.org/10.1103/physrevlett.111.107003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography