Journal articles on the topic 'Quantum Dot synthesis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Quantum Dot synthesis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Xu, Bin, Jiankang Zhou, Chengran Zhang, Yunfu Chang, and Zhengtao Deng. "Research Progress on Quantum Dot-Embedded Polymer Films and Plates for LCD Backlight Display." Polymers 17, no. 2 (2025): 233. https://doi.org/10.3390/polym17020233.
Full textKang, Daekyung, Mareddi Bharath Kumar, Changhee Son, Hongsik Park, and Jonghoo Park. "Simple Synthesis Method and Characterizations of Aggregation-Free Cysteamine Capped PbS Quantum Dot." Applied Sciences 9, no. 21 (2019): 4661. http://dx.doi.org/10.3390/app9214661.
Full textMa, Qiang, Chao Wang, and Xingguang Su. "Synthesis and Application of Quantum Dot-Tagged Fluorescent Microbeads." Journal of Nanoscience and Nanotechnology 8, no. 3 (2008): 1138–49. http://dx.doi.org/10.1166/jnn.2008.18161.
Full textWang, Lan, Xiaojiao Kang, Lijian Huang, and Daocheng Pan. "Temperature-dependent photoluminescence of cadmium-free Cu–Zn–In–S quantum dot thin films as temperature probes." Dalton Transactions 44, no. 47 (2015): 20763–68. http://dx.doi.org/10.1039/c5dt03821a.
Full textK. Tiwari, Pawan, Mugdha Sahu, Gagan Kumar, and Mohsen Ashourian. "Pivotal Role of Quantum Dots in the Advancement of Healthcare Research." Computational Intelligence and Neuroscience 2021 (August 6, 2021): 1–9. http://dx.doi.org/10.1155/2021/2096208.
Full textFang, Zhongzhou. "A Review on Quantum Dot Solar Cells." Applied and Computational Engineering 172, no. 1 (2025): 119–26. https://doi.org/10.54254/2755-2721/2025.gl24767.
Full textWang, Wenjing. "Single-photon Source Based on Self-Assembled Quantum Dots and Its Applications." Transactions on Computer Science and Intelligent Systems Research 7 (November 25, 2024): 93–98. https://doi.org/10.62051/0vk8p722.
Full textZhou, Xiaopeng, Jiejun Ren, Xuan Dong, Xicheng Wang, Takatoshi Seto, and Yuhua Wang. "Controlling the nucleation process of InP/ZnS quantum dots using zeolite as a nucleation site." CrystEngComm 22, no. 20 (2020): 3474–81. http://dx.doi.org/10.1039/d0ce00078g.
Full textArunan, Ravi, Printo Joseph, Muthusamy Sivakumar, and Suthanthira Cross Guevara Kiruba Daniel. "One Pot Aqueous Synthesis of L-Histidine Amino Acid Capped Mn: ZnS Quantum Dots for Dopamine Sensing." Current Nanoscience 16, no. 1 (2020): 71–78. http://dx.doi.org/10.2174/1573413715666190520093625.
Full textBhanoth, Sreenu, Priyesh V. More, Aditi Jadhav, and Pawan K. Khanna. "Core–shell ZnSe–CdSe quantum dots: a facile approach via decomposition of cyclohexeno-1,2,3-selenadiazole." RSC Adv. 4, no. 34 (2014): 17526–32. http://dx.doi.org/10.1039/c4ra00676c.
Full textJosé-Yacamán, M., C. Gutiérrez-Wing, P. Santiago, J. A. Ascencio, and A. Camacho. "Synthesis and Characterization of Quantum Dot Superlattices." Microscopy and Microanalysis 8, no. 1 (2002): 64–69. http://dx.doi.org/10.1017/s1431927602010115.
Full textWang, Qiangbin, Yan Liu, Yonggang Ke, and Hao Yan. "Quantum Dot Bioconjugation during Core–Shell Synthesis." Angewandte Chemie International Edition 47, no. 2 (2008): 316–19. http://dx.doi.org/10.1002/anie.200703648.
Full textWang, Qiangbin, Yan Liu, Yonggang Ke, and Hao Yan. "Quantum Dot Bioconjugation during Core–Shell Synthesis." Angewandte Chemie 120, no. 2 (2008): 322–25. http://dx.doi.org/10.1002/ange.200703648.
Full textJiang, Yuanzhi, Changjiu Sun, Jian Xu, et al. "Synthesis-on-substrate of quantum dot solids." Nature 612, no. 7941 (2022): 679–84. http://dx.doi.org/10.1038/s41586-022-05486-3.
Full textKande, Bhupendra, and Prachi Parmar. "Carbon Quantum Dot and Application: A Review." Spectrum of Emerging Sciences 2, no. 1 (2022): 11–24. http://dx.doi.org/10.55878/ses2022-2-1-3.
Full textNötzel, Richard, and Klaus H. Ploog. "Direct synthesis of semiconductor quantum-wire and quantum-dot structures." Advanced Materials 5, no. 1 (1993): 22–29. http://dx.doi.org/10.1002/adma.19930050104.
Full textDan, Xu, Li Ruiyi, Wang Qinsheng, Yang Yongqiang, Zhu Haiyan, and Li Zaijun. "A NiAg-graphene quantum dot-graphene hybrid with high oxidase-like catalytic activity for sensitive colorimetric detection of malathion." New Journal of Chemistry 45, no. 16 (2021): 7129–37. http://dx.doi.org/10.1039/d1nj00621e.
Full textPadmanaban, Dilli Babu, Ruairi McGlynn, Emily Byrne, et al. "Understanding plasma–ethanol non-equilibrium electrochemistry during the synthesis of metal oxide quantum dots." Green Chemistry 23, no. 11 (2021): 3983–95. http://dx.doi.org/10.1039/d0gc03291c.
Full textBag, Narmada, Rashi Mathur, Firasat Hussain, et al. "Synthesis and in vivo toxicity assessment of CdSe:ZnS quantum dots functionalized with EDTA-Bis-Cysteamine." Toxicology Research 4, no. 5 (2015): 1416–25. http://dx.doi.org/10.1039/c5tx00090d.
Full textPourmand, Seyed Mohammad Hossein, Nastaran Hashemzadeh, Jafar Soleymani, Abolghasem Jouyban, Yosra Vaez-Gharamaleki, and Elaheh Rahimpour. "Utilizing a graphene quantum dot/hydrogel nanocomposite for determination of cisplatin in urine samples." RSC Advances 14, no. 35 (2024): 25329–36. http://dx.doi.org/10.1039/d4ra04294h.
Full textDu, Chao-Feng, Ting You, Lei Jiang, et al. "Controllable synthesis of ultrasmall CuInSe2 quantum dots for photovoltaic application." RSC Adv. 4, no. 64 (2014): 33855–60. http://dx.doi.org/10.1039/c4ra04727c.
Full textLiu, Hao, and Junhong Yang. "Research on Photoelectric Detection Performance Based on Pb Se Quantum Dots." Journal of Physics: Conference Series 2290, no. 1 (2022): 012047. http://dx.doi.org/10.1088/1742-6596/2290/1/012047.
Full textLi, Yongsheng, Xiaoxia Zhong, Amanda E. Rider, Scott A. Furman, and Kostya (Ken) Ostrikov. "Fast, energy-efficient synthesis of luminescent carbon quantum dots." Green Chem. 16, no. 5 (2014): 2566–70. http://dx.doi.org/10.1039/c3gc42562b.
Full textJOHN U., Kiran, and Siby Mathew. "Synthesis and Photoluminescence Characterization of 3- MPA Capped CdZnTe Quantum Dots." ECS Transactions 107, no. 1 (2022): 12543–51. http://dx.doi.org/10.1149/10701.12543ecst.
Full textRahmatpanah, Zahra, Mir Mohammad Alavi Nikje, and Maryam Dargahi. "Optical Active Thermal Stable Nanocomposites Using Polybutadiene-Based Polyurethane and Graphene Quantum Dot-MnO2." International Journal of Polymer Science 2022 (April 7, 2022): 1–13. http://dx.doi.org/10.1155/2022/2377803.
Full textStevenson, James M., Andrew W. Ruttinger, and Paulette Clancy. "Uncovering the reaction mechanism initiating the nucleation of lead sulfide quantum dots in a hines synthesis." Journal of Materials Chemistry A 6, no. 20 (2018): 9402–10. http://dx.doi.org/10.1039/c8ta00220g.
Full textLe, Thu-Huong, Dang Thi Thanh Le, and Nguyen Van Tung. "Synthesis of Colloidal Silicon Quantum Dot from Rice Husk Ash." Journal of Chemistry 2021 (March 2, 2021): 1–9. http://dx.doi.org/10.1155/2021/6689590.
Full textWeaver, Joe, Rashid Zakeri, Samir Aouadi, and Punit Kohli. "Synthesis and characterization of quantum dot–polymer composites." Journal of Materials Chemistry 19, no. 20 (2009): 3198. http://dx.doi.org/10.1039/b820204d.
Full textGupta, Deepak Kumar, Mahesh Verma, D. Patidar, K. B. Sharma, and N. S. Saxena. "Organic Synthesis of Highly Luminescent CdSe Quantum Dot." Advanced Science Letters 22, no. 11 (2016): 3893–96. http://dx.doi.org/10.1166/asl.2016.8065.
Full textJiao, Yuechao, Xiaoyong Gao, Jingxiao Lu, Yongsheng Chen, Jianpeng Zhou, and Xinli Li. "A novel method for PbS quantum dot synthesis." Materials Letters 72 (April 2012): 116–18. http://dx.doi.org/10.1016/j.matlet.2011.12.068.
Full textEspiau de Lamaestre, R., and H. Bernas. "Ion beam-induced quantum dot synthesis in glass." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 257, no. 1-2 (2007): 1–5. http://dx.doi.org/10.1016/j.nimb.2006.12.110.
Full textXue, Luping, Chenfei Shen, Mingbo Zheng, et al. "Hydrothermal synthesis of graphene–ZnS quantum dot nanocomposites." Materials Letters 65, no. 2 (2011): 198–200. http://dx.doi.org/10.1016/j.matlet.2010.09.087.
Full textEpps, Robert W., Michael S. Bowen, Amanda A. Volk, et al. "Artificial Chemist: An Autonomous Quantum Dot Synthesis Bot." Advanced Materials 32, no. 30 (2020): 2001626. http://dx.doi.org/10.1002/adma.202001626.
Full textMostafa, Ayman M., Samir A. Yousef, Wael H. Eisa, Mahmoud A. Ewaida, and Emad A. Al-Ashkar. "WO3 quantum dot: Synthesis, characterization and catalytic activity." Journal of Molecular Structure 1185 (June 2019): 351–56. http://dx.doi.org/10.1016/j.molstruc.2019.03.007.
Full textSpangler, Leah C., Li Lu, Christopher J. Kiely, Bryan W. Berger, and Steven McIntosh. "Biomineralization of PbS and PbS–CdS core–shell nanocrystals and their application in quantum dot sensitized solar cells." Journal of Materials Chemistry A 4, no. 16 (2016): 6107–15. http://dx.doi.org/10.1039/c5ta10534j.
Full textSpangler, Leah C., Joseph P. Cline, Christopher J. Kiely, and Steven McIntosh. "Low temperature aqueous synthesis of size-controlled nanocrystals through size focusing: a quantum dot biomineralization case study." Nanoscale 10, no. 44 (2018): 20785–95. http://dx.doi.org/10.1039/c8nr06166a.
Full textSong, Jung Hoon, Taewan Kim, Taiho Park, and Sohee Jeong. "Suppression of hydroxylation on the surface of colloidal quantum dots to enhance the open-circuit voltage of photovoltaics." Journal of Materials Chemistry A 8, no. 9 (2020): 4844–49. http://dx.doi.org/10.1039/c9ta12598a.
Full textGao, Xiaohui, Cheng Du, Zhihua Zhuang, and Wei Chen. "Carbon quantum dot-based nanoprobes for metal ion detection." Journal of Materials Chemistry C 4, no. 29 (2016): 6927–45. http://dx.doi.org/10.1039/c6tc02055k.
Full textVerma, Priyanka, Ravinder Kumar Wanchoo, and Amrit Pal Toor. "A green and energy-efficient photocatalytic process for the accelerated synthesis of lactic acid esters using functionalized quantum dots." Reaction Chemistry & Engineering 6, no. 5 (2021): 905–19. http://dx.doi.org/10.1039/d1re00017a.
Full textWang, Yuanqiang, Qinghong Zhang, Yaogang Li, and Hongzhi Wang. "Preparation of AgInS2 quantum dot/In2S3 co-sensitized photoelectrodes by a facile aqueous-phase synthesis route and their photovoltaic performance." Nanoscale 7, no. 14 (2015): 6185–92. http://dx.doi.org/10.1039/c4nr06458e.
Full textVIGNEASHWARI, B., S. DASH, A. K. TYAGI, and S. AUSTIN SUTHANTHIRARAJ. "SYNTHESIS, CHARACTERIZATION, AND ASSEMBLY OF CdSe QUANTUM DOT ARRAY." International Journal of Nanoscience 07, no. 01 (2008): 9–19. http://dx.doi.org/10.1142/s0219581x0800516x.
Full textAbdelhamid, Hani Nasser, and Hui-Fen Wu. "Synthesis and characterization of quantum dots for application in laser soft desorption/ionization mass spectrometry to detect labile metal–drug interactions and their antibacterial activity." RSC Advances 5, no. 93 (2015): 76107–15. http://dx.doi.org/10.1039/c5ra11301f.
Full textPacheco, Marta, Beatriz Jurado-Sánchez, and Alberto Escarpa. "Lab-on-a-micromotor: catalytic Janus particles as mobile microreactors for tailored synthesis of nanoparticles." Chemical Science 9, no. 42 (2018): 8056–64. http://dx.doi.org/10.1039/c8sc03681k.
Full textHu, Siyi, Butian Zhang, Shuwen Zeng, et al. "Microfluidic chip enabled one-step synthesis of biofunctionalized CuInS2/ZnS quantum dots." Lab on a Chip 20, no. 16 (2020): 3001–10. http://dx.doi.org/10.1039/d0lc00202j.
Full textShen, Wei, Haiyan Tang, Xiaolei Yang, et al. "Synthesis of highly fluorescent InP/ZnS small-core/thick-shell tetrahedral-shaped quantum dots for blue light-emitting diodes." Journal of Materials Chemistry C 5, no. 32 (2017): 8243–49. http://dx.doi.org/10.1039/c7tc02927f.
Full textTripathi, Gagan Kant. "Synthesis and Characterization of Cdse Quantum Dot by SolvoThermal Method to Determine its Photocatalytic Applications." Nanomedicine & Nanotechnology Open Access 9, no. 3 (2024): 1–11. http://dx.doi.org/10.23880/nnoa-16000317.
Full textFacure, Murilo H. M., Rodrigo Schneider, Luiza A. Mercante, and Daniel S. Correa. "A review on graphene quantum dots and their nanocomposites: from laboratory synthesis towards agricultural and environmental applications." Environmental Science: Nano 7, no. 12 (2020): 3710–34. http://dx.doi.org/10.1039/d0en00787k.
Full textLv, Yuguang, Yuqing Cheng, Kuilin Lv, Guoliang Zhang, and Jiang Wu. "Felodipine Determination by a CdTe Quantum Dot-Based Fluorescent Probe." Micromachines 13, no. 5 (2022): 788. http://dx.doi.org/10.3390/mi13050788.
Full textKausar, Ayesha. "Multifunctional Hybrids of Graphene Quantum Dots with Inorganic Nanoparticles (Metal, Metal Oxide and MOF) - Topical State and Evolutions." Trends in Sciences 22, no. 6 (2025): 9924. https://doi.org/10.48048/tis.2025.9924.
Full textGomase, Amol, Sagar Sangale, Akshay Mundhe, Pravin Gadakh, and Vikrant Nikam. "Quantum Dots: Method of Preparation and Biological Application." Journal of Drug Delivery and Therapeutics 9, no. 4-s (2019): 670–72. http://dx.doi.org/10.22270/jddt.v9i4-s.3333.
Full text