Academic literature on the topic 'Quantum dots. Spintronics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum dots. Spintronics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantum dots. Spintronics"
Rokhinson, Leonid P., Lingue J. Guo, Steven Y. Chou, and Daniel C. Tsui. "Spintronics with Si quantum dots." Microelectronic Engineering 63, no. 1-3 (August 2002): 147–53. http://dx.doi.org/10.1016/s0167-9317(02)00609-3.
Full textDroth, Matthias, and Guido Burkard. "Spintronics with graphene quantum dots." physica status solidi (RRL) - Rapid Research Letters 10, no. 1 (July 27, 2015): 75–90. http://dx.doi.org/10.1002/pssr.201510182.
Full textBurkard, Guido, Hans-Andreas Engel, and Daniel Loss. "Spintronics and Quantum Dots for Quantum Computing and Quantum Communication." Fortschritte der Physik 48, no. 9-11 (September 2000): 965–86. http://dx.doi.org/10.1002/1521-3978(200009)48:9/11<965::aid-prop965>3.0.co;2-v.
Full textWood, Jonathan. "Charging up magnetic quantum dots for spintronics." Materials Today 9, no. 5 (May 2006): 13. http://dx.doi.org/10.1016/s1369-7021(06)71479-1.
Full textService, R. F. "PHYSICS: Quantum Dots Chemically Wired for Spintronics." Science 301, no. 5633 (August 1, 2003): 580. http://dx.doi.org/10.1126/science.301.5633.580.
Full textDroth, Matthias, and Guido Burkard. "ChemInform Abstract: Spintronics with Graphene Quantum Dots." ChemInform 47, no. 10 (February 2016): no. http://dx.doi.org/10.1002/chin.201610267.
Full textEngel, Hans-Andreas, Patrik Recher, and Daniel Loss. "Electron spins in quantum dots for spintronics and quantum computation." Solid State Communications 119, no. 4-5 (July 2001): 229–36. http://dx.doi.org/10.1016/s0038-1098(01)00110-7.
Full textLeburton, Jean-Pierre, Satyadev Nagaraja, Philippe Matagne, and Richard M. Martin. "Spintronics and exchange engineering in coupled quantum dots." Microelectronics Journal 34, no. 5-8 (May 2003): 485–89. http://dx.doi.org/10.1016/s0026-2692(03)00080-6.
Full textSukhorukov, E. V., and D. Loss. "Spintronics and Spin-Based Qubits in Quantum Dots." physica status solidi (b) 224, no. 3 (April 2001): 855–62. http://dx.doi.org/10.1002/(sici)1521-3951(200104)224:3<855::aid-pssb855>3.0.co;2-1.
Full textPoornaprakash, B., U. Chalapathi, P. T. Poojitha, S. V. Prabhakar Vattikuti, and Si-Hyun Park. "CdS:Eu quantum dots for spintronics and photocatalytic applications." Journal of Materials Science: Materials in Electronics 30, no. 9 (March 21, 2019): 8220–25. http://dx.doi.org/10.1007/s10854-019-01137-y.
Full textDissertations / Theses on the topic "Quantum dots. Spintronics"
Torresani, Patrick. "Hole quantum spintronics in strained germanium heterostructures." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY040/document.
Full textThis thesis focuses on low temperature experiments in germaniumbased heterostructure in the scope of quantumspintronic. First, theoretical advantages of Ge for quantum spintronic are detailed, specifically the low hyperfine interaction and strong spin orbit coupling expected in Ge. In a second chapter, the theory behind quantum dots and double dots systems is explained, focusing on the aspects necessary to understand the experiments described thereafter, that is to say charging effects in quantum dots and double dots and Pauli spin blockade. The third chapter focuses on spin orbit interaction. Its origin and its effect on energy band diagrams are detailed. This chapter then focuses on consequences of the spin orbit interaction specific to two dimensional germaniumheterostructure, that is to say Rashba spin orbit interaction, D’Yakonov Perel spin relaxation mechanism and weak antilocalization.In the fourth chapter are depicted experiments in Ge/Si core shell nanowires. In these nanowire, a quantumdot formnaturally due to contact Schottky barriers and is studied. By the use of electrostatic gates, a double dot system is formed and Pauli spin blockade is revealed.The fifth chapter reports magneto-transport measurements of a two-dimensional holegas in a strained Ge/SiGe heterostructure with the quantum well laying at the surface, revealing weak antilocalization. By fitting quantumcorrection to magneto-conductivity characteristic transport times and spin splitting energy of 2D holes are extracted. Additionally, suppression of weak antilocalization by amagnetic field parallel to the quantum well is reported and this effect is attributed to surface roughness and virtual occupation of unoccupied subbands.Finally, chapter number six reportsmeasurements of quantization of conductance in strained Ge/SiGe heterostructure with a buried quantumwell. First the heterostructure is characterized by means ofmagneto-conductance measurements in a Hall bar device. Then another device engineered specifically as a quantum point contact is measured and displays steps of conductance. Magnetic field dependance of these steps is measured and an estimation of the g-factor for heavy holes in germanium is extracted
Pramanik, Sandipan. "Spin Polarized Transport in Nanoscale Devices." VCU Scholars Compass, 2006. http://scholarscompass.vcu.edu/etd/1092.
Full textArtioli, Alberto. "Formation de polarons magnétiques dans des boîtes quantiques de (Cd,Mn)Te insérées dans des nanofils de ZnTe." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY006/document.
Full textIn this PhD work we study the optical properties of anisotropic (Cd,Mn)Te magnetic quantum dots inserted in ZnTe nanowires. The quantum dots containing typically 10% of Mn spins are elongated along the nanowire axis which tend to stabilize a light hole ground state with a spin susceptibility perpendicular to the nanowire axis. The main goal was to study the formation of exciton Magnetic Polarons in such quantum dots and to determine their magnetic anisotropy.We investigate first the optical properties of ZnTe and ZnTe/(Zn,Mg)Te core shell nanowires. We model the elastic strain profile in core-shell nanowires and in elongated quantum dots. From the strain profiles, we estimate the value of the light hole heavy hole splitting expected in the dot and in the nanowire.In a second step we study single nanowires containing magnetic and non magnetic quantum dots by magneto-optical spectroscopy. The exchange interactions between confined carriers and Mn spins induce a large Zeeman shift of the exciton line (Giant Zeeman Effect). To extract quantitative parameters, we combine different experimental techniques (photo and cathodoluminescence, energy dispersive X ray spectroscopy) on the same nanowire. We use also different magnetic field orientations in order to determine the hole anisotropy in the dot. The experimental values are smaller than the theoretical ones suggesting a weak confinement of the holes in the dot due to a small (Cd,Mn)Te/ZnTe valence band offset.In a third step we study nanowires containing (Cd,Mn)Te quantum dots surrounded by a (Zn,Mg)Te alloy. Thanks to the better hole confinement induced by the (Zn,Mg)Te alloy, the formation of exciton magnetic polarons can be observed. We perform time resolved photoluminescence studies on single nanowires in order to determine the energy and the formation time of magnetic polarons from 5K to 50K. The quantum dot emission line shows an unusual Zeeman shift, characteristic of a light hole magnetic polaron. We develop a theoretical model describing the formation of exciton magnetic polaron in quantum dots. We use this model, based on the free energy and valid for any temperature and magnetic field, to fit the whole set of experimental data. It allows us to determine the characteristic parameters of the light hole magnetic polarons (energy, orientation and magnitude of the magnetic moment, exchange volume, hole anisotropy)
Hell, Michael [Verfasser]. "Virtual fluctuations with real implications : quantum-dot spintronics and qubit readout / Michael Hell." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2015. http://d-nb.info/1076065430/34.
Full textSouza, Fabricio Macedo de. "Transporte quântico em spintrônica: corrente e shot noise via funções de Green de não equilíbrio." Universidade de São Paulo, 2004. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-26112008-143946/.
Full textWe study spin dependent quantum transport in quantum dots and quantum well devices attached to magnetic leads. We first derive general formulas, including electron-electron interaction and spin flip, for both current and noise, using the no equilibrium Green function technique (Keldysh). From our equations we regain limiting cases in the literature - in particular the Landauer-Buttiker formula when we neglect electron-electron interaction. We apply these formulas to study three distinct systems: (1) a quantum dot attached to two ferromagnetic leads, (2) a quantum dot linked to many ferromagnetic leads, and (3) a quantum well coupled to dilute magnetic semiconductor (DMS) terminals. In the first system we consider both parallel (P) and anti-parallel (AP) ferromagnetic alignments of the leads. Coulomb interaction and spin flip scattering are also taken into account. With the formulas for the current and the noise derived here, we find, for instance, that the Coulomb interaction, combined with the magnetism of the electrodes, gives rise to a spin-dependent Coulomb blockade. This effect allows the control (intensity and sign) of the current polarization via the bias voltage. We also observe that spin flip scattering yields contrasting behavior between current and shot noise. While the current in the AP configuration increases with the spin flip, the shot noise becomes suppressed for a range of spin flip rates. Another interesting finding is the possibility to suppress the thermal noise via a gate voltage. For the dot coupled to three magnetic leads, we show that it is possible to inject current ↑-polarized into the dot from the FM emitter, detect simultaneously ↑ and ↓ - polarized currents at distinct collectors. In addition, we find that the current has its polarization amplified when going from the emitter to one of the collectors. Therefore we have a device that operates as both as current polarization inverter and amplifier. Finally, we analyze the effects of DMS leads and Landau quantization on the current and noise of system (3). We and that the giant Zeeman effect in the DMS leads, due to the it s-d exchange interaction, gives rise to a spin polarized current, and for a particular bias voltage range, full suppression of one spin component. This gives rise to the possibility of tuning the current polarization via the bias voltage. We also observe oscillations in the current, the noise and the Fano factor as a function of the magnetic field.
Siqueira, Ezequiel Costa. "Transporte por reflexão de Andreev em pontos quânticos duplos acoplados a eletrodos supercondutores e ferromagnéticos." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/277834.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-09-24T19:09:49Z (GMT). No. of bitstreams: 1 Siqueira_EzequielCosta_D.pdf: 16155551 bytes, checksum: 43337169b3f9ac0ffbe444e3859ff790 (MD5) Previous issue date: 2010
Resumo: Neste trabalho é estudado o transporte quântico em nanoestruturas híbridas compostas por pontos quânticos (PQ) duplos acoplados a eletrodos supercondutores (S) e ferromagnéticos (F). A primeira nanoestrutura, denotada por F - PQa - PQb - S consiste em dois PQs em série acoplados a um eletrodo ferromagnético e outro supercondutor. O segundo sistema, denotado por (F1, F2) - PQa - PQb - S consiste em dois PQs em série acoplados a dois eletrodos ferromagnéticos e um supercondutor. Através do método de funções de Green de não equilíbrio foram obtidas expressões para a corrente elétrica, condutância diferencial, densidade local de estados (LDOS) e a transmitância para energias inferiores ao gap supercondutor. Neste regime, o mecanismo de transmissão de carga é a reflexão de Andreev, a qual permite controlar a corrente através da polarização do ferromagneto. A presença de interações nos PQs é considerada usando um tratamento de campo médio. Para o sistema F - PQa - PQb - S, as interações tendem a localizar os elétrons nos PQs levando a um padrão assimétrico da LDOS reduzindo a transmissão através da nanoestrutura. Em particular, a interação intra PQ levanta a degenerescência de spin reduzindo o valor máximo da corrente devido ao desequilíbrio nas populações de spin up e spin down. Regiões de condutância diferencial negativa (CDN) aparecem em determinados valores do potencial aplicado, como resultado da competição entre o espalhamento Andreev e as correlações eletrônicas. Aplicando-se um potencial de gate nos pontos quânticos é possível sintonizar o efeito mudando a região onde este fenômeno ocorre. Para o sistema (F1, F2) - PQa - PQb - S observou-se que o sinal da magnetoresistência pode mudar de positivo para negativo mudando-se o sinal do potencial aplicado. Além disso é possível controlar a corrente no primeiro eletrodo mudando-se o valor do potencial no segundo ferromagneto. Este tipo de controle pode ser interessante do ponto de vista de aplicações desde que é um comportamento similar a um transistor. Na presença de interações nos PQs, observou-se novamente regiões de CDN para determinados valores do potencial aplicado mesmo para quando os ferromagnetos estão completamente polarizados. Desta forma, a interação entre supercondutividade e correlações eletrônicas permitiu observar fenômenos originais mostrando que este sistemas podem ser utilizados em aplicações tecnológicas futuras
Abstract: In this work we studied the quantum transport in two hybrid nanostructures composed of double quantum dots (DQD)s coupled to superconductor (S) and ferromagnetic (F) leads. The first nanostructure, denoted by F - QDa - QDb - S, is composed of a ferromagnet, two quantum dots, and a superconductor connected in series. In the second nanostructure, denoted by ( F1, F2) - QDa - Q Db - S, a second ferromagnetic lead is added and coupled to the first QD. By using the non-equilibrium Green's function approach, we have calculated the electric current, the differential conductance and the transmittance for energies within the superconductor gap. In this regime, the mechanism of charge transmission is the Andreev re°ection, which allows for a control of the current through the ferromagnet polarization. We have also included interdot and intradot interactions, and have analyzed their influence through a mean field approximation. For the F - QDa - QDb - S system the presence of interactions tend to localize the electrons at the double-dot system, leading to an asymmetric pattern for the density of states at the dots, and thus reducing the transmission probability through the device. In particular, for non-zero polarization, the intradot interaction splits the spin degeneracy, reducing the maximum value of the current due to different spin-up and spin-down densities of states. Negative differential conductance (NDC) appears for some regions of the voltage bias, as a result of the interplay of the Andreev scattering with electronic correlations. By applying a gate voltage at the dots, one can tune the effect, changing the voltage region where this novel phenomenon appears. In the (F1, F2) - QDa - QDb - S, we have found that the signal of the magnetoresistance can be changed through the external potential applied in the ferromagnets. In addition, it is possible to control the current of the first ferromagnet (F1) through the potential applied in the second one (F2). This transistor-like behavior can be useful in technological applications. In the presence of interaction at the dots it was observed the NDC effect even when the electrodes were fully polarized. The results presented in this thesis show that the interplay between the superconductor correlation and electronic interactions can give rise to original effects which can be used in future technological applications
Doutorado
Física da Matéria Condensada
Doutor em Ciências
Nóbrega, Jaldair Araújo e. "Magneto luminescência em diodos de tunelamento ressonante contendo pontos quânticos de InAs." Universidade Federal de São Carlos, 2011. https://repositorio.ufscar.br/handle/ufscar/5033.
Full textFinanciadora de Estudos e Projetos
In this work, we have studied the spin polarization of carriers in n-type resonant tunneling diodes (RTDs) of GaAs/AlGaAs which incorporates a single layer of InAs selfassembled quantum dots in the center of the GaAs quantum well (QW) grown on (3 1 1)B oriented GaAs substrates.We have performed electrical and optical measurements in the presence and absence of magnetic _eld. The spin-dependent carrier transport in the structure was investigated by measuring the left- and right-circularly polarized photoluminescence (PL) from InAs dots (QD) and contact layers as a function of the applied voltage, laser intensity and magnetic _eld up to 15 T. Under laser excitation, photogenerated holes tunnel through the QW and can be captured by the QDs and eventually recombine radiatively. Due to this fast carrier capture process, the QD photoluminescence will be very sensitive to the resonant tunneling condition and consequently to the applied bias voltage. We have observed a clear correlation between the current voltage characteristics curve (I(V)) and QD PL intensity for both circular _+ and _ polarizations even though the spin-splitting of the QD PL emission is negligible and does not show any appreciable variation with the applied voltage. We have also observed that the QD circular polarization degree is always negative and that its value depends on both the applied bias voltage and the light excitation intensity. Our experimental results are explained by the tunneling of minority carriers into the QW, carrier capture into the InAs QDs, carrier accumulation in the QW region, and partial thermalization of minority carriers. The observed control of spin polarization of carriers by light and bias voltage may be explored to design new devices for spintronic applications.
Neste trabalho realizamos um estudo detalhado de efeitos de spin em um diodo tunelamento ressonante (RTD) de GaAs/AlGaAs crescidos em um substrato GaAs (311)B. Em particular estudamos RTDs do tipo n contendo pontos quânticos (QD) de InAs no poço quântico (QW). Os estudos foram realizados a partir de medidas elétricas e ópticas na presença e na ausência de campo magnético. Realizamos medidas de fotoluminescência (PL) resolvida em polarização do contato GaAs e pontos quânticos de InAs em função de intensidade de laser , voltagem e campo magnético de até 15T . Na presença de luz e voltagem aplicada , buracos são fotogerados no contato, tunelam para o QW e são capturados por QDs. Portadores capturados pelos QDs recombinam e dão origem ao sinal de fotoluminência. Devido ao tempo curto desse processo de captura de portadores, a PL do QD será muito sensível à condição de tunelamento ressonante. Os resultados experimentais mostram uma clara correlação entre a curva característica de corrente-tensão (I(V)) e intensidade de PL do QD para ambas polarizações _+ e _. Observamos que o grau de polarização circular do QD é sempre negativo e que seu valor depende fortemente da voltagem aplicada e da intensidade da luz de excitação. Os resultados experimentais são explicados pelo tunelamento e captura de portadores minoritários pelo QD de InAs, acúmulo de cargas na região de QW e termalização parcial dos portadores minoritários. O controle da polarização de spin de portadores por luz e voltagem pode ser um efeito interessante para o desenvolvimento de novos dispositivos para aplicação em spintrônica.
Saygun, Turab. "Magnetic State Detection in Magnetic Molecules Using Electrical Currents." Thesis, Uppsala universitet, Materialteori, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-257094.
Full textSantos, Ednilson Carlos dos. "Polarização de spin em heteroestruturas semicondutoras contendo pontos quânticos de InAs." Universidade Federal de São Carlos, 2010. https://repositorio.ufscar.br/handle/ufscar/5027.
Full textUniversidade Federal de Sao Carlos
In this work, we have studied spin polarization of carriers in a resonant tunneling diode GaAs/AlGaAs with InAs quantum dots in the center of the quantum well. We have observed that the photoluminescence of quantum dots depends on applied voltage and light intensity. Our results were explained by the capture of minority carriers (holes) to quantum dot energy levels in the resonant conditions. We have also studied the polarized resolved photoluminescence under magnetic field applied parallel to the tunnel current. We have observed that the degree of circular polarization is voltage-dependent under low voltage and laser intensity condition. We have also observed that the degree of polarization of quantum dots tends to zero for high applied voltages. Our results show that the circular polarization depends on the injection and capture of holes by quantum dots. Finally, we observed that the circular polarization from quantum dots can be voltage and light-controlled and could be interesting for the developing of new spintronics devices.
Neste trabalho realizamos um estudo detalhado de efeitos de spin em um diodo de tunelamento ressonante GaAs/AlGaAs do tipo n com pontos quânticos de InAs no poço quântico. Os estudos foram realizados a partir de medidas elétricas e ópticas na presença e ausência de campo magnético. Os resultados obtidos na ausência de campo magnético são semelhantes aos resultados publicados na literatura para mesma amostra estudada. Em particular, obtivemos uma boa correlação entre a intensidade de luminescência dos quantum dots e a curva característica corrente - tensão (I(V)) do diodo. Os dados obtidos foram associados aos processos de tunelamento, relaxação e captura de portadores nos níveis de energia dos dots. As medidas realizadas na presença de campo magnético foram feitas da configuração de campo magnético paralelo à corrente elétrica no dispositivo. Tal disposição leva à quebra na degenerescência dos níveis em spin dos dots, e resulta em recombinação de portadores com regras de seleção bem definidas com luz circularmente polarizada. Observamos que tanto a emissão circularmente polarizada à esquerda como à direita são dependentes da tensão aplicada no diodo, principalmente na região de baixas voltagens. À medida que a tensão aumenta, a intensidade de polarização tende a zero. Os resultados obtidos são originais e devem auxiliar na compreensão de fenômenos de spin desses sistemas. Esse trabalho poderá também ter interesse no desenvolvimento de possíveis dispositivos de spintronica contendo pontos quânticos.
Vincent, Romain. "Spintronique moléculaire : étude de la dynamique d'un spin nucléaire unique." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00945672.
Full textBooks on the topic "Quantum dots. Spintronics"
International Winter School on New Developments in Solid State Physics (13th 2004 Mauterndorf, Austria). Proceedings of the Thirteenth International Winterschool on New Developments in Solid State Physics: Low-dimensional systems : held in Mauterndorf, Austria, 15-20 February 2004. Edited by Bauer G. 1942-, Jantsch W. 1946-, and Kuchar F. 1941-. Amsterdam, The Netherlands: Elsevier, 2004.
Find full textInternational Winter School on New Developments in Solid State Physics (13th 2004 Mauterndorf, Austria). Proceedings of the Thirteenth International Winterschool on New Developments in Solid State Physics: Low-dimensional systems : held in Mauterndorf, Austria, 15-20 February 2004. Edited by Bauer G. 1942-, Jantsch W. 1946-, and Kuchar F. 1941-. Amsterdam, The Netherlands: Elsevier, 2004.
Find full textMelnikov, D. V., J. Kim, L. X. Zhang, and J. P. Leburton. Few-electron quantum-dot spintronics. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.2.
Full textM, Razeghi, Brown Gail J, and Society of Photo-optical Instrumentation Engineers., eds. Quantum sensing: Evolution and revolution from past to future : 27-30 January, 2003, San Jose, California, USA. Bellingham, Wash: SPIE, 2003.
Find full textNarlikar, A. V., and Y. Y. Fu, eds. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.001.0001.
Full textGlazov, M. M. Introduction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0001.
Full textBook chapters on the topic "Quantum dots. Spintronics"
Kioseoglou, G., C. H. Li, and B. T. Jonker. "Electrical Spin Injection into InGaAs Quantum Dots." In Handbook of Spintronics, 1–27. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-7604-3_19-1.
Full textKioseoglou, G., C. H. Li, and B. T. Jonker. "Electrical Spin Injection into InGaAs Quantum Dots." In Handbook of Spintronics, 399–430. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-007-6892-5_19.
Full textRecher, Patrik, Daniel Loss, and Jeremy Levy. "Spintronics and Quantum Computing with Quantum Dots." In Macroscopic Quantum Coherence and Quantum Computing, 293–306. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1245-5_30.
Full textSachrajda, A., P. Hawrylak, and M. Ciorga. "Nano-Spintronics with Lateral Quantum Dots." In Electron Transport in Quantum Dots, 87–122. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0437-5_3.
Full textBurkard, Guido, and Daniel Loss. "Electron Spins in Quantum Dots as Qubits for Quantum Information Processing." In Semiconductor Spintronics and Quantum Computation, 229–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05003-3_8.
Full textBurkard, Guido, Hans-Andreas Engel, and Daniel Loss. "Spintronics and Quantum Dots for Quantum Computing and Quantum Communication." In Complexity from Microscopic to Macroscopic Scales: Coherence and Large Deviations, 83–104. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0419-0_4.
Full textBurkard, Guido, Hans-Andreas Engel, and Daniel Loss. "Spintronics and Quantum Dots for Quantum Computing and Quantum Communication." In Scalable Quantum Computers, 195–216. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603182.ch13.
Full textRossier, Joaquín Fernández‑, and Ramón Aguado. "Magnetism and Transport in DMS Quantum Dots." In Spintronics Handbook: Spin Transport and Magnetism, Second Edition, 199–235. Second edition. | Boca Raton : Taylor & Francis, CRC Press, 2018. |: CRC Press, 2019. http://dx.doi.org/10.1201/9780429441189-6.
Full textLudwig, Arne, Björn Sothmann, Henning Höpfner, Nils C. Gerhardt, Jörg Nannen, Tilmar Kümmell, Jürgen König, Martin R. Hofmann, Gerd Bacher, and Andreas D. Wieck. "Quantum Dot Spintronics: Fundamentals and Applications." In Springer Tracts in Modern Physics, 235–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32042-2_7.
Full textYamamoto, Yoshihisa, Matthew Pelton, Charles Santori, Glenn S. Solomon, Oliver Benson, Jelena Vuckovic, and Axel Scherer. "Regulated Single Photons and Entangled Photons From a Quantum Dot Microcavity." In Semiconductor Spintronics and Quantum Computation, 277–305. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05003-3_9.
Full textConference papers on the topic "Quantum dots. Spintronics"
Sargent, Edward H. "Optical sources based on perovskites and quantum dots." In Spintronics XIII, edited by Henri-Jean M. Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2020. http://dx.doi.org/10.1117/12.2561717.
Full textCadiz, Fabian, Delphine Lagarde, Shiheng Liang, Bingshan Tao, Julien Frougier, Yuan Lu, Bo Xu, et al. "Very efficient electrical spin injection (/detection) into quantum dots at zero magnetic field." In Spintronics X, edited by Henri Jaffrès, Henri-Jean Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2017. http://dx.doi.org/10.1117/12.2273746.
Full textEble, Benoit, B. Siarry, Frederick Bernardot, P. Grinberg, Chrsitophe Testelin, and Aristide Lemaitre. "Exciton spin coherence in InGaAs/GaAs quantum dots revisited by heterodyne pump-probe experiment (Withdrawal Notice)." In Spintronics IX, edited by Henri-Jean Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2016. http://dx.doi.org/10.1117/12.2236319.
Full textMüller, Kai, Tobias Simmet, Fuxiang Li, Alexander Bechtold, Nikolai Sinitsyn, and Jonathan J. Finley. "Dephasing dynamics of optically active electron and hole spin qubits in self-assembled quantum dots (Conference Presentation)." In Spintronics XI, edited by Henri Jaffrès, Henri-Jean Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2321201.
Full textTACKEUCHI, A., T. KURODA, Y. NAKATA, and N. YOKOYAMA. "ANTIFERROMAGNETIC COUPLING BETWEEN SEMICONDUCTOR QUANTUM DOTS." In Toward the Controllable Quantum States - International Symposium on Mesoscopic Superconductivity and Spintronics (MS+S2002). WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705556_0071.
Full textSUZUKI, T., M. HAYASHI, H. IMAMURA, and H. EBISAWA. "SUPERCONDUCTING CORRELATION IN ORBITAL MAGNETISM OF QUANTUM DOTS." In Toward the Controllable Quantum States - International Symposium on Mesoscopic Superconductivity and Spintronics (MS+S2002). WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705556_0068.
Full textTANAKA, Y., and N. KAWAKAMI. "SPIN-POLARIZED TRANSPORT PROPERTIES THROUGH DOUBLE QUANTUM DOTS." In Proceedings of the International Symposium on Mesoscopic Superconductivity and Spintronics — In the Light of Quantum Computation. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701619_0067.
Full textHADA, YOKO, and MIKIO ETO. "ELECTRONIC STATES AND SPIN CONFIGURATIONS IN SILICON QUANTUM DOTS." In Toward the Controllable Quantum States - International Symposium on Mesoscopic Superconductivity and Spintronics (MS+S2002). WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705556_0077.
Full textMARTINEK, J., M. SINDEL, L. BORDA, Y. UTSUMI, H. IMAMURA, J. BARNAŚ, S. MAEKAWA, J. KÖNIG, J. VON DELFT, and G. SCHÖN. "KONDO EFFECT IN QUANTUM DOTS IN PRESENCE OF ITINERANT-ELECTRON MAGNETISM." In Proceedings of the International Symposium on Mesoscopic Superconductivity and Spintronics — In the Light of Quantum Computation. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701619_0065.
Full textFALCI, G., A. MASTELLONE, and ROSARIO FAZIO. "INTERPLAY BETWEEN THE PAIRING AND EXCHANGE INTERACTIONS IN SMALL METALLIC DOTS." In Toward the Controllable Quantum States - International Symposium on Mesoscopic Superconductivity and Spintronics (MS+S2002). WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705556_0064.
Full text