Academic literature on the topic 'Quantum entanglement'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum entanglement.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Quantum entanglement"

1

BELAVKIN, VIACHESLAV P., and MASANORI OHYA. "QUANTUM ENTROPY AND INFORMATION IN DISCRETE ENTANGLED STATES." Infinite Dimensional Analysis, Quantum Probability and Related Topics 04, no. 02 (June 2001): 137–60. http://dx.doi.org/10.1142/s0219025701000425.

Full text
Abstract:
Quantum entanglements, describing truly quantum couplings, are studied and classified for discrete compound states. We show that classical-quantum correspondences such as quantum encodings can be treated as d-entanglements leading to a special class of separable compound states. The mutual information for the d-compound and for q-compound (entangled) states leads to two different types of entropies for a given quantum state. The first one is the von Neumann entropy, which is achieved as the supremum of the information over all d-entanglements, and the second one is the dimensional entropy, which is achieved at the standard entanglement, the true quantum entanglement, coinciding with a d-entanglement only in the commutative case. The q-conditional entropy and q-capacity of a quantum noiseless channel, defined as the supremum over all entanglements, is given as the logarithm of the dimensionality of the input von Neumann algebra. It can double the classical capacity, achieved as the supremum over all semiquantum couplings (d-entanglements, or encodings), which is bounded by the logarithm of the dimensionality of a maximal Abelian subalgebra. The entropic measure for essential entanglement is introduced.
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Ming-Cui, and Ai-Xi Chen. "Enhanced Entanglement in Hybrid Cavity Mediated by a Two-way Coupled Quantum Dot." Open Physics 18, no. 1 (February 28, 2020): 14–23. http://dx.doi.org/10.1515/phys-2020-0003.

Full text
Abstract:
AbstractWe investigate theoretically the entanglement in a hybrid Fabry-Perot cavity system. A membrane in the cavity acts as a mechanical resonator, and a two-level quantum dot is coupled to both the cavity mode and the mechanical resonator. The entanglements between the cavity field and the mechanical resonator, between the mechanical resonator and the quantum dot, as well as between the cavity field and the quantum dot are observed. The logarithmic negativities in the first two subsystems are much larger than those in the system without two-way coupled quantum dot, and the entanglements are robust against the thermal temperature (entanglements still exist in tens of Kelvin). We also find that without direct coupling between the cavity field and the mechanical resonator, one can till observe effective entanglement between them in our system. Our work is helpful and may have potential applications in the research of multipartite entanglement in physical system.
APA, Harvard, Vancouver, ISO, and other styles
3

Belavkin, Viacheslav P. "On Entangled Information and Quantum Capacity." Open Systems & Information Dynamics 08, no. 01 (March 2001): 1–18. http://dx.doi.org/10.1023/a:1011328315055.

Full text
Abstract:
The pure quantum entanglement is generalized to the case of mixed compound states to include the classical and quantum encodings as particular cases. The true quantum entanglements are characterized as transpose-CP but not CP maps. The entangled information is introduced as the relative entropy of the mutual and the input state and total information of the entangled states leads to two different types of entropy for a given quantum state: the von Neumann entropy, which is achieved as the supremum of the information over all c-entanglements, and the true quantum entropy, which is achieved at the standard entanglement. The q-capacity, defined as the supremum over all entanglements, doubles the c-capacity in the case of the simple algebra. The conditional q-entropy is positive, and q-information of a quantum channel is additive.
APA, Harvard, Vancouver, ISO, and other styles
4

Brezinski, Mark E. "The Advantages of Not Entangling Macroscopic Diamonds at Room Temperature." Journal of Atomic, Molecular, and Optical Physics 2012 (December 27, 2012): 1–9. http://dx.doi.org/10.1155/2012/469043.

Full text
Abstract:
The recent paper entitled by K. C. Lee et al. (2011) establishes nonlocal macroscopic quantum correlations, which they term “entanglement”, under ambient conditions. Photon(s)-phonon entanglements are established within each interferometer arm. However, our analysis demonstrates, the phonon fields between arms become correlated as a result of single-photon wavepacket path indistinguishability, not true nonlocal entanglement. We also note that a coherence expansion (as opposed to decoherence) resulted from local entanglement which was not recognized. It occurred from nearly identical Raman scattering in each arm (importantly not meeting the Born and Markovian approximations). The ability to establish nonlocal macroscopic quantum correlations through path indistinguishability rather than entanglement offers the opportunity to greatly expand quantum macroscopic theory and application, even though it was not true nonlocal entanglement.
APA, Harvard, Vancouver, ISO, and other styles
5

LI, XI-HAN, XIAO-JIAO DUAN, FU-GUO DENG, and HONG-YU ZHOU. "ERROR-REJECTING BENNETT–BRASSARD–MERMIN QUANTUM KEY DISTRIBUTION PROTOCOL BASED ON LINEAR OPTICS OVER A COLLECTIVE-NOISE CHANNEL." International Journal of Quantum Information 08, no. 07 (October 2010): 1141–51. http://dx.doi.org/10.1142/s021974991000623x.

Full text
Abstract:
Quantum entanglement is an important element of quantum information processing. Sharing entangled quantum states between two remote parties is a precondition of most quantum communication schemes. We will show that the protocol proposed by Yamamoto et al. (Phys. Rev. Lett.95 (2005) 040503) for transmitting single quantum qubit against collective noise with linear optics is also suitable for distributing the components of entanglements with some modifications. An additional qubit is introduced to reduce the effect of collective noise, and the receiver can take advantage of the time discrimination and the measurement results of the assistant qubit to reconstruct a pure entanglement with the sender. Although the scheme succeeds probabilistically, the fidelity of the entangled state is almost unity in principle. The resource used in our protocol to get a pure entangled state is finite, which establishes entanglement more easily in practice than quantum entanglement purification. Also, we discuss its application in quantum key distribution over a collective channel in detail.
APA, Harvard, Vancouver, ISO, and other styles
6

Poojary, Bhushan. "Dark Matter and Quantum Entanglement Decoded." International Journal of Applied Physics and Mathematics 4, no. 3 (2014): 180–83. http://dx.doi.org/10.7763/ijapm.2014.v4.279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tao, Yunpeng. "Quantum entanglement: Principles and research progress in quantum information processing." Theoretical and Natural Science 30, no. 1 (January 15, 2024): 263–74. http://dx.doi.org/10.54254/2753-8818/30/20241130.

Full text
Abstract:
Quantum entanglement is a peculiar phenomenon in quantum information science, characterized by nonclassical correlations between quantum states of subsystems in a quantum system. Since the proposal of the Einstein-Podolsky-Rosen (EPR) paradox by Einstein, Podolsky, and Rosen, quantum entanglement has sparked intense debates on local realism. Bells inequality experiment established the nonlocality of quantum mechanics. Currently, high-dimensional quantum entanglement of both deterministic and random states can be realized in systems such as photons and cold atoms. Technologies such as quantum teleportation, quantum teleportation, quantum computing, and others rely on quantum entanglement to achieve effects beyond classical limitations. Current research focuses on the implementation of macroscopic quantum entanglement and its significance in fundamental problems of quantum mechanics. Quantum entanglement opens up a new paradigm for information processing with broad application prospects. It is necessary to conduct in-depth research on the nature of quantum entanglement and its advantages in information processing. This paper reviews the theoretical foundations of quantum entanglement, methods of generation and detection, and research progress in its applications in the field of quantum information. It discusses the important applications of quantum entanglement in quantum communication, computing, and sensing and provides an outlook on the future development prospects of quantum entanglement technologies.
APA, Harvard, Vancouver, ISO, and other styles
8

Horodecki, Ryszard, Paweł Horodecki, Michał Horodecki, and Karol Horodecki. "Quantum entanglement." Reviews of Modern Physics 81, no. 2 (June 17, 2009): 865–942. http://dx.doi.org/10.1103/revmodphys.81.865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vedral, Vlatko. "Quantum entanglement." Nature Physics 10, no. 4 (April 2014): 256–58. http://dx.doi.org/10.1038/nphys2904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

MB. "Quantum entanglement." New Scientist 262, no. 3492 (May 2024): 41–42. http://dx.doi.org/10.1016/s0262-4079(24)00982-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Quantum entanglement"

1

Gühne, Otfried. "Detecting quantum entanglement entanglement witnesses and uncertainty relations /." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972550216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ray, Megan. "Verifying Optical Entanglement." Thesis, University of Oregon, 2013. http://hdl.handle.net/1794/13430.

Full text
Abstract:
We look at the problem of verifying optical entanglement for two types of states relevant to quantum information processing. One type occurs in Hong-Ou-Mandel interference and is relevant to quantum computing. The other type is time frequency entanglement which is useful for quantum key distribution. For these types of states the conventional methods of entanglement verification do not work well, and we develop new criteria and methods to verify entanglement of such states. Explicitly, one method takes into account the possible multimode character of two photons, while the other method takes into account the missing data that occur due to the finite range of detectors. This dissertation includes previously published and unpublished co-authored material.
APA, Harvard, Vancouver, ISO, and other styles
3

Bae, Joonwoo. "Entanglement and Quantum Cryphtography." Doctoral thesis, Universitat de Barcelona, 2007. http://hdl.handle.net/10803/1589.

Full text
Abstract:
Quantum cryptography is one of the most important quantum information applications. The present thesis covers several topics on quantum cryptography, such as the security analysis of quantum channels for key distribution protocols and the study of quantum cloning.
First, we introduce a general formalism to characterize the cryptographic properties of quantum channels in the realistic scenario where the two honest parties employ prepare and measure protocols and the known two-way communication reconciliation techniques. We derive a necessary and sufficient condition to distill a secret key using this type of schemes for arbitrary bipartite quantum systems of finite dimension. The obtained results suggest that there may exist weakly entangling channels useless for key distribution using prepare and measure schemes.
Next, we consider Gaussian states and Gaussian operations for cryptographic tasks and derive a new security condition. As it happens for quantum systems of finite dimension, our results suggest that there may also exist weakly entangled Gaussian states useless for key distribution, using Gaussian operations.
Finally, we study the connection between cloning and state estimation.
It was a long-standing problem to show whether state estimation becomes equivalent to quantum cloning in the asymptotic limit of an infinite number of clones. The equivalence is proven here using two known results in quantum information theory, the monogamy of quantum states and the properties of entanglement-breaking channels.
APA, Harvard, Vancouver, ISO, and other styles
4

Gray, Sean. "Quantum Entanglement and Cryptography." Thesis, Uppsala universitet, Teoretisk fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-227085.

Full text
Abstract:
In this paper the features of quantum systems which lay the foundation of quantum entanglement are studied. General properties of entangled states are discussed, including their entropy and relation to Bell's inequality. Applications of entanglement, namely quantum teleportation and quantum cryptography, are also considered.
APA, Harvard, Vancouver, ISO, and other styles
5

Orús, Lacort Román. "Entanglement, quantum phase transitions and quantum algorithms." Doctoral thesis, Universitat de Barcelona, 2006. http://hdl.handle.net/10803/482202.

Full text
Abstract:
From the seminal ideas of Feynman and until now, quantum information and computation has been a rapidly evolving field. While at the beginning, physicists looked at quantum mechanics as a theoretical framework to describe the fundamental processes that take place in Nature, it was during the 80’s and 90’s that people began to think about the intrinsic quantum behavior of our world as a tool to eventually develop powerful information technologies. As Landauer pointed out, information is physical, so it should not look strange to try to bring together quantum mechanics and information theory. Indeed, it was soon realized that it is possible to use the laws of quantum physics to perform tasks which are unconceivable within the framework of classical physics. For instance, the discovery of quantum teleportation, superdense coding, quantum cryptography, Shor’s factorization algorithm or Grover’s searching algorithm, are some of the remarkable achievements that have attracted the attention of many people, both scientists and non-scientists. This settles down quantum information as a genuine interdisciplinary field, bringing together researchers from different branches of physics, mathematics and engineering. While until recently it was mostly quantum information science that benefited from other fields, today the tools developed within its framework can be used to study problems of different areas, like quantum many-body physics or quantum field theory. The basic reason behind that is the fact that quantum information develops a detailed study of quantum correlations, or quantum entanglement. Any physical system described by the laws of quantum mechanics can then be considered from the perspective of quantum information by means of entanglement theory. It is the purpose of this introduction to give some elementary background about basic concepts of quantum information and computation, together with its possible relation to other fields of physics, like quantum many-body physics. We begin by considering the definition of a qubit, and move then towards the definition of entanglement and the convertibility properties of pure states by introducing majorization and the von Neumann entropy. Then, we consider the notions of quantum circuit and quantum adiabatic algorithm, and move towards what is typically understood by a quantum phase transition, briefly sketching how this relates to renormalization and conformal field theory. We also comment briefly on some possible experimental implementations of quantum computers
Desde las pioneras ideas de Feynman hasta el día de hoy, la información y computación cuánticas han evolucionado de forma veloz. Siendo la mecánica cuántica en sus orígenes considerada esencialmente como un marco teórico en el que poder explicar ciertos procesos fundamentales que acontecían en la Naturaleza, fue durante los años 80 y 90 cuando se empezó a pensar sobre el comportamiento intrínsecamente cuántico del mundo en el que vivimos como una herramienta con la que poder desarrollar tecnologías de la información más potentes, basadas en los mismos principios de la física cuántica. Tal y como Landauer dijo, la información es física, por lo que no debe en absoluto extrañarnos el que se intentara comulgar la mecánica cuántica con la teoría de la información. Y nada más lejos de la realidad, pues pronto se vio que era posible utilizar las leyes de la física cuántica para realizar tareas inconcebibles desde un punto de vista clásico. Por ejemplo, el descubrimiento de la teleportación, la codificación superdensa, la criptografía cuántica, el algoritmo de factorización de Shor o el algoritmo de búsqueda de Grover, constituyen algunos de los logros remarcables que han atraído la atención de mucha gente, dentro y fuera de la ciencia. Queda la información cuántica, pues, constituida como un campo genuinamente pluridisciplinar, en el que se concentran investigadores provenientes de diferentes ramas de la física, las matemáticas y la ingeniería. Mientras en sus orígenes era la información cuántica quien se beneficiaba del conocimiento de otros campos, a día de hoy las herramientas desarrolladas en el marco de la teoría cuántica de la información pueden ser asimismo usadas en el estudio de problemas de diferentes áreas, como la física de muchos cuerpos o la teoría cuántica de campos. Ello es debido al estudio detallado que la información cuántica desarrolla de las correlaciones cuánticas, o entrelazamiento cuántico. Cualquier sistema físico descrito por las leyes de la mecánica cuántica se puede por lo tanto considerar bajo la perspectiva de la teoría cuántica de la información a través de la teoría del entrelazamiento.
APA, Harvard, Vancouver, ISO, and other styles
6

Uyanik, Kivanc. "Entanglement Measures." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609292/index.pdf.

Full text
Abstract:
Being a puzzling feature of quantum mechanics, entanglement caused many debates since the infancy days of quantum theory. But it is the last two decades that it has started to be seen as a resource for physical tasks which are not possible or extremely infeasible to be done classically. Popular examples are quantum cryptography - secure communication based on laws of physics - and quantum computation - an exponential speedup for factoring large integers. On the other hand, with current technological restrictions it seems to be difficult to preserve specific entangled states and to distribute them among distant parties. Therefore a precise measurement of quantum entanglement is necessary. In this thesis, common bipartite and multipartite entanglement measures in the literature are reviewed. Mathematical definitions, proofs of satisfaction of basic axioms and significant properties for each are given as far as possible. For Tangle and Geometric Measure of Entanglement, which is a multipartite measure, results of numerical calculations for some specific states are shown.
APA, Harvard, Vancouver, ISO, and other styles
7

Alsina, Leal Daniel. "Multipartite entanglement and quantum algorithms." Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/459120.

Full text
Abstract:
Quantum information science has grown from being a very small subfield in the 70s until being one of the most dynamic fields in physics, both in fundamentals and applications. In the theoretical section, perhaps the feature that has attracted most interest is the notion of entanglement, the ghostly relation between particles that dazzled Einstein and has provided fabulous challenges to build a coherent interpretation of quantum mechanics. While not completely solved, we have today learned enough to feel less uneasy with this fundamental problem, and the focus has shifted towards its potential powerful applications. Entanglement is now being studied from different perspectives as a resource for performing information processing tasks. With bipartite entanglement being largely understood nowadays, many questions remain unanswered in the multipartite case. The first part of this thesis deals with multipartite entanglement in different contexts. In the first chapters it is studied within the whole corresponding Hilbert space, and we investigate several entanglement measures searching for states that maximize them, including violations of Bell inequalities. Later, focus is shifted towards hamiltonians that have entangled ground states, and we investigate entanglement as a way to establish a distance between theories and we study frustration and methods to efficiently solve hamiltonians that exhibit it. In the practical section, the most promised upcoming technological advance is the advent of quantum computers. In the 90s some quantum algorithms improving the performance of all known classical algorithms for certain problems started to appear, while in the 2000s the first universal computers of few atoms began to be built, allowing implementation of those algorithms in small scales. The D-Wave machine already performs quantum annealing in thousands of qubits, although some controversy over the true quantumness of its internal workings surrounds it. Many countries in the planet are devoting large amounts of money to this field, with the recent European flagship and the involvement of the largest US technological companies giving reasons for optimism. The second part of this thesis deals with some aspects of quantum computation, starting with the creation of the field of cloud quantum computation with the appearance of the first computer available to the general public through internet, which we have used and analysed extensively. Also small incursions in quantum adiabatic computation and quantum thermodynamics are present in this second part.
La informació quàntica ha crescut des d'un petit subcamp als anys setanta fins a esdevenir un dels camps més dinàmics de la física actualment, tant en aspectes fonamentals com en les seves aplicacions. En la secció teòrica, potser la propietat que ha atret més interès és la noció d'entrellaçament, la relació fantasmagòrica entre partícules que va deixar estupefacte Einstein i que ha suposat un enorme desafiament per a construir una interpretació coherent de la mecànica quàntica. Sense estar totalment solucionat, hem après prou per sentir-nos menys incòmodes amb aquest problema fonamental i el focus s'ha desplaçat a les seves aplicacions potencials. L'entrellaçament s'estudia avui en dia des de diferents perspectives com a recurs per realitzar tasques de processament de la informació. L'entrellaçament bipartit està ja molt ben comprès, però en el cas multipartit queden moltes qüestions obertes. La primera part d'aquesta tesi tracta de l'entrellaçament multipartit en diferents contextos. Estudiem l'hiperdeterminant com a mesura d'entrellaçament el cas de 4 qubits, analitzem l'existència i les propietats matemàtiques dels estats absolutament màximament entrellaçats, trobem noves desigualtats de Bell, estudiem l'espectre d'entrellaçament com a mesura de distància entre teories i estudiem xarxes tensorials per tractar eficientment sistemes frustrats. En l'apartat pràctic, el més prometedor avenç tecnològic del camp és l'adveniment dels ordinadors quàntics. La segona part de la tesi tracta d'alguns aspectes de computació quàntica, començant per la creació del camp de la computació quàntica al núvol, amb l'aparició del primer ordinador disponible per al públic general, que hem usat extensament. També fem petites incursions a la computació quàntica adiabàtica i a la termodinàmica quàntica en aquesta segona part
APA, Harvard, Vancouver, ISO, and other styles
8

Tsegaye, Tedros. "Quantum interference, complementarity and entanglement." Doctoral thesis, KTH, Electronic Systems Design, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nozaki, Masahiro. "Quantum Entanglement of Local Operators." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vedral, Vlatko. "Quantum information theory of entanglement." Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Quantum entanglement"

1

Moran, Annalynn M. Quantum entanglement. Hauppauge, N.Y: Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Furusawa, Akira, and Peter van Loock. Quantum Teleportation and Entanglement. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527635283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Streltsov, Alexander. Quantum Correlations Beyond Entanglement. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09656-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Clifton, Rob. Quantum entanglements: Selected papers. Oxford: Oxford University Press, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bokulich, Alisa, and Gregg Jaeger, eds. Philosophy of Quantum Information and Entanglement. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511676550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yu, Yong. Long Distance Entanglement Between Quantum Memories. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7939-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alisa, Bokulich, and Jaeger Gregg, eds. Philosophy of quantum information and entanglement. New York: Cambridge University Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bokulich, Alisa. Philosophy of quantum information and entanglement. New York: Cambridge University Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

1964-, Buchleitner A., Viviescas C, and Tiersch M, eds. Entanglement and decoherence: Foundations and modern trends. Berlin: Springer, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fickler, Robert. Quantum Entanglement of Complex Structures of Photons. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22231-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Quantum entanglement"

1

Hughes, Ciaran, Joshua Isaacson, Anastasia Perry, Ranbel F. Sun, and Jessica Turner. "Entanglement." In Quantum Computing for the Quantum Curious, 59–71. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61601-4_7.

Full text
Abstract:
AbstractSo far, we have discussed the manipulation and measurement of a single qubit. However, quantum entanglement is a physical phenomenon that occurs when multiple qubits are correlated with each other. Entanglement can have strange and useful consequences that could make quantum computers faster than classical computers. Qubits can be “entangled,” providing hidden quantum information that does not exist in the classical world. It is this entanglement that is one of the main advantages of the quantum world!
APA, Harvard, Vancouver, ISO, and other styles
2

Lvovsky, A. I. "Entanglement." In Quantum Physics, 41–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-56584-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gan, Woon Siong. "Entanglement." In Quantum Acoustical Imaging, 9–12. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0983-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gisin, Nicolas. "Quantum Entanglement." In Quantum Chance, 43–52. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-14603-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hayashi, Masahito, Satoshi Ishizaka, Akinori Kawachi, Gen Kimura, and Tomohiro Ogawa. "Quantum Entanglement." In Introduction to Quantum Information Science, 167–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43502-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Streltsov, Alexander. "Quantum Entanglement." In SpringerBriefs in Physics, 11–16. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09656-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rajasekar, S., and R. Velusamy. "Quantum Entanglement." In Quantum Mechanics II, 151–78. 2nd ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003172192-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mittelstaedt, Peter. "Entanglement." In Compendium of Quantum Physics, 201–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_64.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Scherer, Wolfgang. "Entanglement." In Mathematics of Quantum Computing, 127–60. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12358-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wojcieszyn, Filip. "Entanglement." In Quantum Science and Technology, 133–79. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99379-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Quantum entanglement"

1

Zhu, Changlong, Claudiu Genes, and Birgit Stiller. "Optoacoustic entanglement in Brillouin-active waveguides." In Quantum 2.0, QM5A.5. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qm5a.5.

Full text
Abstract:
Entanglement is a key resource to many emerging quantum technologies. Here, we present a scheme to engineer bipartite entanglement between traveling acoustic phonons and photons in Brillouin-active waveguides at a modest high environment temperature.
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Jun-Yi, Pablo Andres-Martinez, Tim Forrer, Daniel Mills, Kosuke Matsui, Luciana Henaut, Kentaro Yamamoto, Akihito Soeda, Ross Duncan, and Mio Murao. "Entanglement-efficient distributed quantum computing." In Quantum 2.0, QM5A.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qm5a.2.

Full text
Abstract:
We introduce an embedding-enhanced nonlocal-handling technique to save the entanglement consumption in distributed quantum computing (DQC) between two quantum processing units. The embedding technique is incorporated into the Steiner-tree distribution for DQC over heterogeneous networks.
APA, Harvard, Vancouver, ISO, and other styles
3

Haddad, Madlene, Offek Tziperman, Ron Ruimy, and Ido Kaminer. "Electron-photon entanglement without recoil." In Quantum 2.0, QW3A.17. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qw3a.17.

Full text
Abstract:
We present a novel entanglement type between free electrons and photons that requires no recoil, hidden within the multimode nature of electron radiation. This discovery opens new avenues for creating desired states of quantum light.
APA, Harvard, Vancouver, ISO, and other styles
4

He, Wenhua, Christos N. Gagatsos, Dalziel J. Wilson, and Saikat Guha. "Modal Entanglement Enhanced Deflectometry." In Quantum Sensing and Metrology, QTh1G.2. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/qsm.2024.qth1g.2.

Full text
Abstract:
We show that exciting a particular high-order spatial mode in a squeezed state affords increased sensitivity for probing a small surface tilt, over optimum classical illumination and Gaussian quantum illumination with a HG00beam.
APA, Harvard, Vancouver, ISO, and other styles
5

Currie, Sebastian, Samuel Gears, Dominic Sulway, and Joshua Silverstone. "Mid-infrared Qubit Entanglement in Silicon." In Quantum 2.0, QM5B.5. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qm5b.5.

Full text
Abstract:
We demonstrate the first instance of integrated quantum entanglement in the mid-infrared, using tailored Silicon photon pair sources, filters and detectors. We show a 6 sigma violation of the CHSH inequality with S=2.74.
APA, Harvard, Vancouver, ISO, and other styles
6

Djordjevic, Ivan B., and Vijay Nafria. "Two-Pumps-Based Entanglement Generation Source Enabling Entanglement-Assisted Communication over Beyond Strong Atmospheric Turbulence Channels." In Quantum 2.0, QTh3A.37. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qth3a.37.

Full text
Abstract:
Two S-/L-band pumps, satisfying PPLN-waveguide quasi-phase-matching-condition, are used to generate bright entangled-photons providing needed flexibility in wavelength-selection over entire C-band. By performing phase-conjugation on idler photons, we demonstrate entanglement-assisted communication at 1Gb/s over 1.5km FSO link operated in beyond strong turbulence regime.
APA, Harvard, Vancouver, ISO, and other styles
7

Larsen, B. L., A. A. E. Hajomer, P. Abiuso, A. Acin, T. Gehring, J. S. Neergaard-Nielsen, and U. L. Andersen. "Experimental demonstration of continuous variable measurement-device-independent resource certification." In Quantum 2.0, QM4A.5. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qm4a.5.

Full text
Abstract:
Relying only on generation of trusted coherent states, we present experimental demonstrations of continuous variable measurement-device-independent (MDI) resource certification of: 1) entanglement, and 2) non-entanglement breaking optical memory.
APA, Harvard, Vancouver, ISO, and other styles
8

Lam, Hahn, Evan Sutcliffe, and Alejandra Beghelli. "Impact of Noise on Multipartite Entanglement Distribution in Quantum Networks." In Quantum 2.0, QTh3A.35. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qth3a.35.

Full text
Abstract:
We examine non-ideal entanglement swapping and fusion operations in single-path and multipath routing for multipartite entanglement distribution. Results show the distance-invariant multipartite distribution rate of multipath routing is lost in the presence of noise.
APA, Harvard, Vancouver, ISO, and other styles
9

Rahmouni, A., P. S. Kuo, Y. S. Li-Baboud, I. A. Burenkov, Y. Shi, M. V. Jabir, N. Lal, et al. "100-km Entanglement Distribution with Co-existing Quantum and Classical Signals in a Single Fiber." In Quantum 2.0, QTh2B.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qth2b.4.

Full text
Abstract:
We demonstrate metropolitan-scale polarization entanglement distribution with co-existing quantum and WR-PTP classical synchronization signals in the same single-core fiber. We achieved high-fidelity entanglement between nodes separated by 100 km of optical fiber.
APA, Harvard, Vancouver, ISO, and other styles
10

Webb, Jonathan, Joseph Ho, Federico Grasselli, Gláucia Murta, Alexander Pickston, Andrés Ulibarrena, and Alessandro Fedrizzi. "Experimental anonymous quantum conferencing." In Quantum 2.0, QTh2B.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qth2b.2.

Full text
Abstract:
Using a six-photon maximally entangled state, we demonstrate anonymous key distribution protocols showing a substantial reduction in network resources when multi-partite entanglement is available over solely bi-partite entanglement, considered in the asymptotic- and finite-key regime.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Quantum entanglement"

1

Das Sarma, Sankar, Michael Freedman, Victor Galitski, Chetan Nayak, and Kirill Shtengel. Topological Quantum Entanglement. Fort Belvoir, VA: Defense Technical Information Center, February 2014. http://dx.doi.org/10.21236/ada597621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ramos Reina, Isaac, and Artemio González López. Integrability and entanglement in quantum systems. Fundación Avanza, May 2023. http://dx.doi.org/10.60096/fundacionavanza/1792022.

Full text
Abstract:
Integrability, the Calogero model and its different versions and computation of the partition function of the PF spin chain via the "freezing trick". Entanglement and entanglement entropy. Application to a block of the XX spin chain.
APA, Harvard, Vancouver, ISO, and other styles
3

Eberly, J. H. Evolution and Survival of Quantum Entanglement. Fort Belvoir, VA: Defense Technical Information Center, November 2009. http://dx.doi.org/10.21236/ada519007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Blain, Matthew Glenn, Francisco M. Benito, Jonathan David Sterk, and David Lynn Moehring. Ion-photon quantum interface : entanglement engineering. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1051703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shih, Yanhua. Multi-Photon Entanglement and Quantum Teleportation. Fort Belvoir, VA: Defense Technical Information Center, July 1999. http://dx.doi.org/10.21236/ada391161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Perez, R. B. Entanglement and Quantum Computation: An Overview. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/815790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Steel, Duncan G. Quantum Entanglement of Quantum Dot Spin Using Flying Qubits. Fort Belvoir, VA: Defense Technical Information Center, May 2015. http://dx.doi.org/10.21236/ada623828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Catalano, Jesse. Spontaneous Parametric Down-Conversion and Quantum Entanglement. Portland State University Library, January 2014. http://dx.doi.org/10.15760/honors.85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shapiro, Jeffrey H. Quantum Information Technology: Entanglement, Teleportation, and Memory. Fort Belvoir, VA: Defense Technical Information Center, October 2005. http://dx.doi.org/10.21236/ada447271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Leigh, Robert. Entanglement in Gravity and Quantum Field Theory. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1984935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography