Academic literature on the topic 'Quantum entanglement'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum entanglement.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantum entanglement"
BELAVKIN, VIACHESLAV P., and MASANORI OHYA. "QUANTUM ENTROPY AND INFORMATION IN DISCRETE ENTANGLED STATES." Infinite Dimensional Analysis, Quantum Probability and Related Topics 04, no. 02 (June 2001): 137–60. http://dx.doi.org/10.1142/s0219025701000425.
Full textLi, Ming-Cui, and Ai-Xi Chen. "Enhanced Entanglement in Hybrid Cavity Mediated by a Two-way Coupled Quantum Dot." Open Physics 18, no. 1 (February 28, 2020): 14–23. http://dx.doi.org/10.1515/phys-2020-0003.
Full textBelavkin, Viacheslav P. "On Entangled Information and Quantum Capacity." Open Systems & Information Dynamics 08, no. 01 (March 2001): 1–18. http://dx.doi.org/10.1023/a:1011328315055.
Full textBrezinski, Mark E. "The Advantages of Not Entangling Macroscopic Diamonds at Room Temperature." Journal of Atomic, Molecular, and Optical Physics 2012 (December 27, 2012): 1–9. http://dx.doi.org/10.1155/2012/469043.
Full textLI, XI-HAN, XIAO-JIAO DUAN, FU-GUO DENG, and HONG-YU ZHOU. "ERROR-REJECTING BENNETT–BRASSARD–MERMIN QUANTUM KEY DISTRIBUTION PROTOCOL BASED ON LINEAR OPTICS OVER A COLLECTIVE-NOISE CHANNEL." International Journal of Quantum Information 08, no. 07 (October 2010): 1141–51. http://dx.doi.org/10.1142/s021974991000623x.
Full textPoojary, Bhushan. "Dark Matter and Quantum Entanglement Decoded." International Journal of Applied Physics and Mathematics 4, no. 3 (2014): 180–83. http://dx.doi.org/10.7763/ijapm.2014.v4.279.
Full textTao, Yunpeng. "Quantum entanglement: Principles and research progress in quantum information processing." Theoretical and Natural Science 30, no. 1 (January 15, 2024): 263–74. http://dx.doi.org/10.54254/2753-8818/30/20241130.
Full textHorodecki, Ryszard, Paweł Horodecki, Michał Horodecki, and Karol Horodecki. "Quantum entanglement." Reviews of Modern Physics 81, no. 2 (June 17, 2009): 865–942. http://dx.doi.org/10.1103/revmodphys.81.865.
Full textVedral, Vlatko. "Quantum entanglement." Nature Physics 10, no. 4 (April 2014): 256–58. http://dx.doi.org/10.1038/nphys2904.
Full textMB. "Quantum entanglement." New Scientist 262, no. 3492 (May 2024): 41–42. http://dx.doi.org/10.1016/s0262-4079(24)00982-5.
Full textDissertations / Theses on the topic "Quantum entanglement"
Gühne, Otfried. "Detecting quantum entanglement entanglement witnesses and uncertainty relations /." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972550216.
Full textRay, Megan. "Verifying Optical Entanglement." Thesis, University of Oregon, 2013. http://hdl.handle.net/1794/13430.
Full textBae, Joonwoo. "Entanglement and Quantum Cryphtography." Doctoral thesis, Universitat de Barcelona, 2007. http://hdl.handle.net/10803/1589.
Full textFirst, we introduce a general formalism to characterize the cryptographic properties of quantum channels in the realistic scenario where the two honest parties employ prepare and measure protocols and the known two-way communication reconciliation techniques. We derive a necessary and sufficient condition to distill a secret key using this type of schemes for arbitrary bipartite quantum systems of finite dimension. The obtained results suggest that there may exist weakly entangling channels useless for key distribution using prepare and measure schemes.
Next, we consider Gaussian states and Gaussian operations for cryptographic tasks and derive a new security condition. As it happens for quantum systems of finite dimension, our results suggest that there may also exist weakly entangled Gaussian states useless for key distribution, using Gaussian operations.
Finally, we study the connection between cloning and state estimation.
It was a long-standing problem to show whether state estimation becomes equivalent to quantum cloning in the asymptotic limit of an infinite number of clones. The equivalence is proven here using two known results in quantum information theory, the monogamy of quantum states and the properties of entanglement-breaking channels.
Gray, Sean. "Quantum Entanglement and Cryptography." Thesis, Uppsala universitet, Teoretisk fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-227085.
Full textOrús, Lacort Román. "Entanglement, quantum phase transitions and quantum algorithms." Doctoral thesis, Universitat de Barcelona, 2006. http://hdl.handle.net/10803/482202.
Full textDesde las pioneras ideas de Feynman hasta el día de hoy, la información y computación cuánticas han evolucionado de forma veloz. Siendo la mecánica cuántica en sus orígenes considerada esencialmente como un marco teórico en el que poder explicar ciertos procesos fundamentales que acontecían en la Naturaleza, fue durante los años 80 y 90 cuando se empezó a pensar sobre el comportamiento intrínsecamente cuántico del mundo en el que vivimos como una herramienta con la que poder desarrollar tecnologías de la información más potentes, basadas en los mismos principios de la física cuántica. Tal y como Landauer dijo, la información es física, por lo que no debe en absoluto extrañarnos el que se intentara comulgar la mecánica cuántica con la teoría de la información. Y nada más lejos de la realidad, pues pronto se vio que era posible utilizar las leyes de la física cuántica para realizar tareas inconcebibles desde un punto de vista clásico. Por ejemplo, el descubrimiento de la teleportación, la codificación superdensa, la criptografía cuántica, el algoritmo de factorización de Shor o el algoritmo de búsqueda de Grover, constituyen algunos de los logros remarcables que han atraído la atención de mucha gente, dentro y fuera de la ciencia. Queda la información cuántica, pues, constituida como un campo genuinamente pluridisciplinar, en el que se concentran investigadores provenientes de diferentes ramas de la física, las matemáticas y la ingeniería. Mientras en sus orígenes era la información cuántica quien se beneficiaba del conocimiento de otros campos, a día de hoy las herramientas desarrolladas en el marco de la teoría cuántica de la información pueden ser asimismo usadas en el estudio de problemas de diferentes áreas, como la física de muchos cuerpos o la teoría cuántica de campos. Ello es debido al estudio detallado que la información cuántica desarrolla de las correlaciones cuánticas, o entrelazamiento cuántico. Cualquier sistema físico descrito por las leyes de la mecánica cuántica se puede por lo tanto considerar bajo la perspectiva de la teoría cuántica de la información a través de la teoría del entrelazamiento.
Uyanik, Kivanc. "Entanglement Measures." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609292/index.pdf.
Full textAlsina, Leal Daniel. "Multipartite entanglement and quantum algorithms." Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/459120.
Full textLa informació quàntica ha crescut des d'un petit subcamp als anys setanta fins a esdevenir un dels camps més dinàmics de la física actualment, tant en aspectes fonamentals com en les seves aplicacions. En la secció teòrica, potser la propietat que ha atret més interès és la noció d'entrellaçament, la relació fantasmagòrica entre partícules que va deixar estupefacte Einstein i que ha suposat un enorme desafiament per a construir una interpretació coherent de la mecànica quàntica. Sense estar totalment solucionat, hem après prou per sentir-nos menys incòmodes amb aquest problema fonamental i el focus s'ha desplaçat a les seves aplicacions potencials. L'entrellaçament s'estudia avui en dia des de diferents perspectives com a recurs per realitzar tasques de processament de la informació. L'entrellaçament bipartit està ja molt ben comprès, però en el cas multipartit queden moltes qüestions obertes. La primera part d'aquesta tesi tracta de l'entrellaçament multipartit en diferents contextos. Estudiem l'hiperdeterminant com a mesura d'entrellaçament el cas de 4 qubits, analitzem l'existència i les propietats matemàtiques dels estats absolutament màximament entrellaçats, trobem noves desigualtats de Bell, estudiem l'espectre d'entrellaçament com a mesura de distància entre teories i estudiem xarxes tensorials per tractar eficientment sistemes frustrats. En l'apartat pràctic, el més prometedor avenç tecnològic del camp és l'adveniment dels ordinadors quàntics. La segona part de la tesi tracta d'alguns aspectes de computació quàntica, començant per la creació del camp de la computació quàntica al núvol, amb l'aparició del primer ordinador disponible per al públic general, que hem usat extensament. També fem petites incursions a la computació quàntica adiabàtica i a la termodinàmica quàntica en aquesta segona part
Tsegaye, Tedros. "Quantum interference, complementarity and entanglement." Doctoral thesis, KTH, Electronic Systems Design, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3004.
Full textNozaki, Masahiro. "Quantum Entanglement of Local Operators." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199101.
Full textVedral, Vlatko. "Quantum information theory of entanglement." Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299786.
Full textBooks on the topic "Quantum entanglement"
Moran, Annalynn M. Quantum entanglement. Hauppauge, N.Y: Nova Science Publishers, 2011.
Find full textFurusawa, Akira, and Peter van Loock. Quantum Teleportation and Entanglement. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527635283.
Full textStreltsov, Alexander. Quantum Correlations Beyond Entanglement. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09656-8.
Full textClifton, Rob. Quantum entanglements: Selected papers. Oxford: Oxford University Press, 2004.
Find full textBokulich, Alisa, and Gregg Jaeger, eds. Philosophy of Quantum Information and Entanglement. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511676550.
Full textYu, Yong. Long Distance Entanglement Between Quantum Memories. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7939-2.
Full textAlisa, Bokulich, and Jaeger Gregg, eds. Philosophy of quantum information and entanglement. New York: Cambridge University Press, 2010.
Find full textBokulich, Alisa. Philosophy of quantum information and entanglement. New York: Cambridge University Press, 2010.
Find full text1964-, Buchleitner A., Viviescas C, and Tiersch M, eds. Entanglement and decoherence: Foundations and modern trends. Berlin: Springer, 2009.
Find full textFickler, Robert. Quantum Entanglement of Complex Structures of Photons. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22231-8.
Full textBook chapters on the topic "Quantum entanglement"
Hughes, Ciaran, Joshua Isaacson, Anastasia Perry, Ranbel F. Sun, and Jessica Turner. "Entanglement." In Quantum Computing for the Quantum Curious, 59–71. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-61601-4_7.
Full textLvovsky, A. I. "Entanglement." In Quantum Physics, 41–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-56584-1_2.
Full textGan, Woon Siong. "Entanglement." In Quantum Acoustical Imaging, 9–12. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0983-2_2.
Full textGisin, Nicolas. "Quantum Entanglement." In Quantum Chance, 43–52. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-14603-4_5.
Full textHayashi, Masahito, Satoshi Ishizaka, Akinori Kawachi, Gen Kimura, and Tomohiro Ogawa. "Quantum Entanglement." In Introduction to Quantum Information Science, 167–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43502-1_7.
Full textStreltsov, Alexander. "Quantum Entanglement." In SpringerBriefs in Physics, 11–16. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09656-8_3.
Full textRajasekar, S., and R. Velusamy. "Quantum Entanglement." In Quantum Mechanics II, 151–78. 2nd ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003172192-7.
Full textMittelstaedt, Peter. "Entanglement." In Compendium of Quantum Physics, 201–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70626-7_64.
Full textScherer, Wolfgang. "Entanglement." In Mathematics of Quantum Computing, 127–60. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12358-1_4.
Full textWojcieszyn, Filip. "Entanglement." In Quantum Science and Technology, 133–79. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99379-5_5.
Full textConference papers on the topic "Quantum entanglement"
Zhu, Changlong, Claudiu Genes, and Birgit Stiller. "Optoacoustic entanglement in Brillouin-active waveguides." In Quantum 2.0, QM5A.5. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qm5a.5.
Full textWu, Jun-Yi, Pablo Andres-Martinez, Tim Forrer, Daniel Mills, Kosuke Matsui, Luciana Henaut, Kentaro Yamamoto, Akihito Soeda, Ross Duncan, and Mio Murao. "Entanglement-efficient distributed quantum computing." In Quantum 2.0, QM5A.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qm5a.2.
Full textHaddad, Madlene, Offek Tziperman, Ron Ruimy, and Ido Kaminer. "Electron-photon entanglement without recoil." In Quantum 2.0, QW3A.17. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qw3a.17.
Full textHe, Wenhua, Christos N. Gagatsos, Dalziel J. Wilson, and Saikat Guha. "Modal Entanglement Enhanced Deflectometry." In Quantum Sensing and Metrology, QTh1G.2. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/qsm.2024.qth1g.2.
Full textCurrie, Sebastian, Samuel Gears, Dominic Sulway, and Joshua Silverstone. "Mid-infrared Qubit Entanglement in Silicon." In Quantum 2.0, QM5B.5. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qm5b.5.
Full textDjordjevic, Ivan B., and Vijay Nafria. "Two-Pumps-Based Entanglement Generation Source Enabling Entanglement-Assisted Communication over Beyond Strong Atmospheric Turbulence Channels." In Quantum 2.0, QTh3A.37. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qth3a.37.
Full textLarsen, B. L., A. A. E. Hajomer, P. Abiuso, A. Acin, T. Gehring, J. S. Neergaard-Nielsen, and U. L. Andersen. "Experimental demonstration of continuous variable measurement-device-independent resource certification." In Quantum 2.0, QM4A.5. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qm4a.5.
Full textLam, Hahn, Evan Sutcliffe, and Alejandra Beghelli. "Impact of Noise on Multipartite Entanglement Distribution in Quantum Networks." In Quantum 2.0, QTh3A.35. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qth3a.35.
Full textRahmouni, A., P. S. Kuo, Y. S. Li-Baboud, I. A. Burenkov, Y. Shi, M. V. Jabir, N. Lal, et al. "100-km Entanglement Distribution with Co-existing Quantum and Classical Signals in a Single Fiber." In Quantum 2.0, QTh2B.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qth2b.4.
Full textWebb, Jonathan, Joseph Ho, Federico Grasselli, Gláucia Murta, Alexander Pickston, Andrés Ulibarrena, and Alessandro Fedrizzi. "Experimental anonymous quantum conferencing." In Quantum 2.0, QTh2B.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qth2b.2.
Full textReports on the topic "Quantum entanglement"
Das Sarma, Sankar, Michael Freedman, Victor Galitski, Chetan Nayak, and Kirill Shtengel. Topological Quantum Entanglement. Fort Belvoir, VA: Defense Technical Information Center, February 2014. http://dx.doi.org/10.21236/ada597621.
Full textRamos Reina, Isaac, and Artemio González López. Integrability and entanglement in quantum systems. Fundación Avanza, May 2023. http://dx.doi.org/10.60096/fundacionavanza/1792022.
Full textEberly, J. H. Evolution and Survival of Quantum Entanglement. Fort Belvoir, VA: Defense Technical Information Center, November 2009. http://dx.doi.org/10.21236/ada519007.
Full textBlain, Matthew Glenn, Francisco M. Benito, Jonathan David Sterk, and David Lynn Moehring. Ion-photon quantum interface : entanglement engineering. Office of Scientific and Technical Information (OSTI), September 2012. http://dx.doi.org/10.2172/1051703.
Full textShih, Yanhua. Multi-Photon Entanglement and Quantum Teleportation. Fort Belvoir, VA: Defense Technical Information Center, July 1999. http://dx.doi.org/10.21236/ada391161.
Full textPerez, R. B. Entanglement and Quantum Computation: An Overview. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/815790.
Full textSteel, Duncan G. Quantum Entanglement of Quantum Dot Spin Using Flying Qubits. Fort Belvoir, VA: Defense Technical Information Center, May 2015. http://dx.doi.org/10.21236/ada623828.
Full textCatalano, Jesse. Spontaneous Parametric Down-Conversion and Quantum Entanglement. Portland State University Library, January 2014. http://dx.doi.org/10.15760/honors.85.
Full textShapiro, Jeffrey H. Quantum Information Technology: Entanglement, Teleportation, and Memory. Fort Belvoir, VA: Defense Technical Information Center, October 2005. http://dx.doi.org/10.21236/ada447271.
Full textLeigh, Robert. Entanglement in Gravity and Quantum Field Theory. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1984935.
Full text